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ABSTRACT 

On the basis of regional economic growth, most cities in Southeast Asia have 

seen rapid development over the past forty years.  In general, seismic design has not 

been taken into account in Southeast Asia regions with low to moderate seismicity, as 

these areas have not experienced disaster caused by earthquakes.  Peninsular Malaysia is 

an example of these regions.  Although the main cities of this region are located in a low 

seismicity area, they may be vulnerable to distant earthquakes generated by active 

seismic sources located more than 300 km along and off the west coast of Sumatra 

Island.  Since 2007, several earthquakes due to the local faults within the Peninsular 

Malaysia region with the maximum moment magnitude (Mmax) of 4.4 have occurred.  

Even though the local earthquakes were small in size, the epicenters were as close as 20 

km to Kuala Lumpur, which could have remarkable effects on seismic hazard of the 

region.  After understanding this fact that Peninsular Malaysia could be affected by 

either the large magnitude, distant Sumatran earthquakes or the local earthquakes, an 

appropriate seismic hazard maps and a set of desirable elastic response spectral 

acceleration for seismic design purposes would be required.  Despite the earlier seismic 

hazard studies for this region, which were proposed based on only the far-field Sumatran 

earthquakes, this study has presented new maps and elastic response spectra using the 

combination of the local and Sumatran seismic sources.  Ground-Motion Prediction 

Equations (GMPEs) are the main inputs in any seismic hazard assessment.  This study 

has attempted first to derive new empirical spectral GMPEs for distant subduction 

earthquakes (the both interface and intraslab events).  The proposed GMPEs are for peak 

ground acceleration (PGA), peak ground velocity, and 5% damped pseudo-acceleration 

for four site classes (i.e., National Earthquake Hazards Reduction Program (NEHRP) site 

class B, C, D, and E, corresponding to rock, stiff soil, medium soil, and soft soil site 

conditions).  The response spectra database has been compiled from hundreds of ground-

motion recordings from subduction earthquakes of moment magnitude (M) 5.0 to 9.1, 

hypocentral distance (Rhyp) of 120 to 1300 km and M 5.0 to 7.7, Rhyp 120 to 1400 km for 

interface and intraslab events, respectively.  The probabilistic seismic hazard maps for 

PGA are presented over a 12.5 km grid for 10% and 2% Probabilities of Exceedance 

(PE) in 50 years corresponding to 475 and 2,475 years return periods, respectively.  The 

proposed new hazard maps give the expected ground motions based on the extended 

earthquake catalogue, consideration of the both Sumatran and local seismic sources, 

upgraded seismic source parameters, and more compatible GMPEs.  The maximum 

estimated PGAs on rock site condition across the Peninsular Malaysia region for 10% 

and 2% PE in 50-year are 11 %g and 20 %g, respectively.  In final, the horizontal elastic 

and design acceleration response spectra following the principles of Eurocode 8, on four 

soil site conditions with soil factors of 1, 1.45, 2, and 2.35 for rock, stiff soil, medium 

soil, and soft soil ground types, respectively, have been presented for the Peninsular 

Malaysia region based on the computed uniform hazard spectra with 475 and 2,475 years 

return period.   
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ABSTRAK 

Atas dasar pertumbuhan ekonomi serantau, kebanyakan bandar di Asia Tenggara 

telah pesat membangun sejak empat puluh tahun yang lalu.  Secara umumnya, reka bentuk 

sismik tidak diambil kira di rantau Asia Tenggara yang mempunyai aktiviti sismik berskala 

rendah dan sederhana, kerana rantau tersebut tidak pernah mengalami bencana yang 

disebabkan oleh gempa bumi.  Rantau Semenanjung Malaysia merupakan salah satu contoh 

sedemikian.  Walaupun kebanyakan bandar utama terletak di kawasan sismik berskala 

rendah, rantau tersebut mungkin terdedah kepada gempa bumi berjarak jauh yang dijana oleh 

sumber sismik berskala aktif terletak lebih dari 300 km di sepanjang mahupun di luar pantai 

barat Pulau Sumatera.  Sejak tahun 2007, beberapa gempa bumi yang berpunca daripada 

sesar tempatan di rantau Semenanjung Malaysia dengan magnitud maksimum (Mmax) 

berukuran 4.4 telah berlaku.  Walaupun gempa bumi tempatan berskala kecil, jarak pusat 

gempa adalah hampir 20 km dari Kuala Lumpur dan hal ini menunjukkan bahawa 

pendedahan kepada bencana sismik membawa kesan yang tinggi.  Berikutan pengetahuan 

ini, Semenanjung Malaysia boleh terjejas disebabkan gempa bumi berskala besar dan 

berjarak jauh yang berpunca dari Sumatera dan gempa bumi tempatan, oleh itu peta bencana 

sismik dan tindak balas pecutan spektrum anjal untuk tujuan reka bentuk sismik adalah 

diperlukan.  Disamping kajian bencana sismik sebelum ini, yang telah dibuat berdasarkan 

gempa bumi berjarak jauh dari Sumatera, kajian ini telah menyediakan peta baru dan 

spektrum gerak balas elastik dengan menggunakan gabungan sumber sismik tempatan dan 

Sumatera.  Persamaan ramalan gerakan tanah (GMPEs) merupakan intipati utama dalam 

mana-mana penilaian bencana sismik.  Kajian pertama adalah untuk memperolehi empirikal 

spektrum GMPEs yang baru untuk gempa bumi benam (untuk kedua-dua tujahan permukaan 

dan dalaman).  GMPEs yang dicadangkan adalah untuk tanah pecutan puncak (PGA), halaju 

tanah puncak, dan 5% teredam pseudo-pecutan pada empat kelas (berdasarkan National 

Earthquake Hazards Reduction Program (NEHRP) kelas B, C, D, dan E, masing-masing 

bersamaan dengan batu, tanah keras, tanah keras sederhana, dan keadaan tapak tanah 

lembut).  Pangkalan data spektrum gerak balas telah dikumpulkan daripada ratusan data 

gelinciran tanah daripada gempa bumi benam dengan magnitud (M) 5.0-9.1, jarak pusat 

tumpuan (Rhyp) daripada 120 hingga 1300 km dan M 5.0-7.7, Rhyp 120 hingga 1400 km, 

masing-masing pada tujahan permukaan dan dalaman.  Kebarangkalian peta bencana sismik 

untuk PGA yang dibahagikan kepada grid-grid berjarak 12.5 km untuk 10% dan 2% 

kebarangkalian terlampau (PE) dalam tempoh 50 tahun masing-masing bersamaan dengan 

475 dan 2,475 tahun tempoh ulangan.  Peta bencana sismik yang baru untuk gelinciran tanah 

adalah berdasarkan katalog gempa bumi lanjutan dengan mengambil kira kedua-dua gempa 

bumi dari Sumatera dan sismik tempatan, parameter sumber sismik yang dinaik taraf dan 

GMPEs yang lebih serasi.  Anggaran maksimum PGA pada batuan di seluruh rantau 

Semenanjung Malaysia untuk 10% dan 2% PE pada 50 tahun masing-masing adalah 11 %g 

dan 20 %g.  Akhir sekali, anjalan mendatar dan tindak balas pecutan spektrum anjal dengan 

merujuk kepada prinsip-prinsip Eurocode 8 untuk empat jenis tapak tanah dengan faktor 1, 

1.45, 2, dan 2.35 masing-masing untuk batu, tanah keras, tanah sederhana, dan lembut jenis 

tanah tanah telah dibentangkan bagi rantau Semenanjung Malaysia berdasarkan spektrum 

bencana seragam pada 475 dan 2,475 tahun tempoh ulangan.  
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CHAPTER 1 

INTRODUCTION 

1.1 General 

Earthquake is one of the world’s most destructive natural hazards.  In the last 

30 years alone, earthquakes have caused destroyed cities and villages around the 

world and thousands of people have been injured or lost their lives, with many more 

left homeless.  The unexpected and immediate devastation characteristics of 

earthquakes produce a unique psychological impact and a fear in modern civilization 

unsurpassed by any other natural hazards.  This devastation, however, is entirely due 

to the effects of earthquakes on civil engineering structures and the ground that 

supports the structures.  In essence, with the operational application of scientific and 

engineering principles and construction methods, the impact of catastrophic 

earthquake could be minimized, if not completely eliminated (Villaverde, 2009). 

Usual earthquake damage includes ground shaking, ground failure, and 

indirect effects.  Ground shaking could be considered as the most damaging effect of 

earthquakes.  During an earthquake, as is well known, the ground moves violently in 

two horizontal and vertical directions.  The generated ground-motion makes the 

structure oscillate back and forth and up and down causing the structure to undergo 

major stress and deformation.  Moreover, since an earthquake is able to shake the 

ground over extensive areas of the ground surface, the generated ground shaking may 

simultaneously affect a large number of structures (Figures 1.1 and 1.2).  It goes 

without saying that ground shaking is the main concern of structural engineers in 

low, moderate, and active seismic regions of the world. 
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Figure 1.1 Total collapse of a 22-story steel frame building in Pino Suárez 

Complex during the Michoacán earthquake that affected Mexico City in 1985 

(Villaverde, 2009) 

 

Figure 1.2 Collapse of middle rise building during the Chi-Chi earthquake in 

1999, Taiwan (Villaverde, 2009) 

The possible effects of ground failure are (a) ground cracking, (b) surface 

faulting, (c) landslides, (d) soil liquefaction, and (e) ground subsidence.  Ground 

cracking occurs when the soil at the surface is transported to a different location, or it 

sinks as a result of losing its support.  When the two sides of an earthquake fault slip 

relative to one another, surface faulting occurs that may cause severe damage to 

structures which lie across the fault.  Landslides are the failure of marginally stable 
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slopes before the earthquake, which become unstable due to the shaking induced by 

the earthquake.  Soil liquefaction is phenomenon that involves the temporary change 

of fine saturated soils from a solid to a liquid state, thus removing from the soil its 

ability to remain stable or carry loads.  Ground subsidence is possible when the 

ground surface of a site settles due to the compaction generated by earthquake 

vibrations (Figure 1.3). 

 

Figure 1.3 Settlement of a building in Mexico City due to ground subsidence 

phenomenon during the 1985 Michoacán earthquake (Villaverde, 2009) 

The indirect effects of earthquakes are (a) fires, (b) tsunamis, and (c) seiches.  

Fire may be considered as the most devastating indirect effect of earthquakes.  Fires 

start when, for instance, an earthquake destroys oil-storage tanks or breaks gas pipes 

or overturns stoves and heaters.  Tsunamis are massive sea waves generated by a 

sudden vertical dislocation of the ocean floor as a result of the slippage of an 

earthquake fault under the ocean.  Seiches are temporary long-period oscillating 

waves in enclosed bodies of water such as lakes, reservoirs, bays, and even 

swimming pools caused by distant earthquakes.  When the water body resonates with 

the earthquake waves, that is, when the natural frequency of the water body matches 

the frequency of the incoming earthquake waves, the phenomenon of seiches occur 

(Elnashai and Di Sarno, 2008; Villaverde, 2009). 
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As mentioned above, in order to minimize the earthquake catastrophes, an 

effective application of scientific and engineering principles should be followed to 

control earthquake-induced forces.  An elaborate process with participation of 

architects, seismologist, geologists, geotechnical engineers, foundation engineers, 

and structural engineers is required to design an earthquake-resistant structure.  That 

this required an elaborate process is due to the unpredictability of earthquake forces, 

the uncertainty of their occurrence, and their probabilistic devastating effects. 

Thus, earthquake engineering which could be considered as one of the civil 

engineering branches, provides the principles and procedures for the planning, 

analysis, and design of structures with the capability of resisting the earthquake 

effects.  In the other words, the principles and procedures provided by earthquake 

engineering are for (a) the selection of an appropriate location for the structures in 

order to minimize their exposure to earthquake hazards; (b) the estimation of the 

earthquake forces that may affect the structures in a given time interval; (c) the 

analysis of structures based on the estimated earthquake forces to determine the 

maximum stresses and deformations; (d) the detailing of the different components of 

the structures to make them resist the determined stresses and deformations without 

any failure or collapse; and (e) confirming the stability of the structures supported on 

weak soils or slopes with improvement of soils and the stabilization of natural slopes.  

All the mentioned principles are based on the concepts from seismology, geology, 

seismic hazard analysis, geotechnical engineering, structural dynamics, and structural 

engineering (Villaverde, 2009). 

As the parameters of future earthquake ground motions (i.e., peak ground 

acceleration, peak ground velocity, and response spectrum ordinates) are 

unpredictable and also radically different from one earthquake to another and from 

one site to another, the selection of such parameters for structural design purposes 

needs a difficult and elaborate procedure.  This procedure involves the use of 

historical, statistical and geological data, probabilistic models, empirical correlations 

and engineering judgment.  The mentioned elaborated procedure for the purpose of 

seismic design based on the likely parameters of future earthquake ground motions in 

a given region is an essential step in the seismic design of the structures and is called 
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seismic hazard assessment.  Seismic hazard analysis as the early stages of seismic 

design procedure results in the macrozonation maps that present the estimation of the 

peak ground acceleration, peak ground velocity, or response spectrum ordinates due 

to the expected earthquakes in the vicinity of a given region within a specific time 

interval.  These maps could be important from the point of view that they give an 

overview of the seismicity of a given region.  They are also valuable for site 

selection and land-use planning as well as specifying the earthquake intensity that 

structures should be designed for in different zones of a geographical region. 

The first simple approach, in the early days of earthquake engineering, by 

which such an analysis could be made, was deterministic approach (i.e., called 

deterministic seismic hazard assessment (DSHA)).  This method was made without 

consideration of the uncertainties in the estimation of source to site distances and the 

magnitudes of future earthquakes.  But today, these analysis are being performed 

through the probabilistic approach (i.e., called probabilistic seismic hazard 

assessment (PSHA)) by considering random characteristic of all variables that are 

defined in terms of given probability distributions (Kramer, 1996; Villaverde, 2009). 

Ground-motion prediction equations (GMPEs) sometimes referred to as 

attenuation laws, attenuation relationships, or ground-motion attenuation relations 

are the most critical key factors in any seismic hazard analysis.  In the past fifty years 

many hundreds of GMPEs have been developed in order to relate ground-motion 

parameters to a set of independent variables such as magnitude, source-to-site 

distance, focal depth, local site condition, and often focal mechanism (e.g., strike-

slip, reverse, and normal mechanism).  Where earthquake ground-motion recordings 

are abundant, these equations are being developed empirically by a regression 

analysis using data from the recorded ground motions.  In contrast, where recordings 

are limited, the equations are often derived from seismological models based on the 

simulated earthquake ground motions using stochastic and theoretical methods.  

However, the calculation of absolute values of the ground motions simulated by 

seismological models have a large degree of uncertainty in the regions where data are 

sparse (Campbell, 2003). 
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1.2 Background and Problem Statement 

On the basis of regional economic growth, most cities in Southeast Asia have 

seen rapid development over the past forty years.  In general, seismic design has not 

been taken into account in Southeast Asia regions with low to moderate seismicity, 

as these areas have never experienced disaster caused by earthquakes.  Peninsular 

Malaysia is an example of these regions.  Although the main cities of this region 

(such as Kuala Lumpur-capital of Malaysia, Putrajaya, Penang, and Johor Bahru), are 

located in a low seismicity region, they may be vulnerable to distant earthquakes 

generated by active seismic sources located more than 300 km along and off the west 

coast of Sumatra Island.  These seismic sources have generated many earthquakes, 

some of which have shaken medium to high rise buildings in Kuala Lumpur, capital 

of Malaysia.  The number of felt events is being increased due to the rapid 

construction of medium to high rise buildings in this region (Pan, 1997).  Although 

earthquakes have never caused any severe structural damages in Kuala Lumpur, the 

effects of even a moderate level of ground-motion can be huge because of the 

population and many major business activities in the buildings that are not designed 

for earthquake-induced forces (Megawati et al., 2005). 

Large-magnitude earthquakes, occurring several hundred kilometers away, 

are capable of causing substantial damage, especially to medium- and high-rise 

buildings, due to the long period wave trains generated by the rupture of long fault 

systems.  Experimental evidence of this well-known physical fact has been 

extensively reported in Bormann (2002) and a remarkable recent example was 

provided by the 2011 Tohoku earthquake in Japan with moment magnitude (M or 

MW) 9.1.  It was reported that most of the super high-rise buildings in major cities in 

Japan such as Tokyo and Osaka with epicentral distances of about 385 and 760 km 

away, respectively, were harshly shaken by long-period ground motions (Takewaki 

et al., 2011).  

On the other hand, soil amplification is another factor that could cause serious 

damage by amplifying the low amplitude, long-period ground motions.  The 1985 

Michoacán earthquake with a surface-wave magnitude (MS) of 8.1 could be a 
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remarkable example.  This earthquake caused serious damage in Mexico City, which 

was 300450 km from the epicenter, due to the amplification of incoming 

earthquake waves by the soft soil on the ground surface (Seed et al., 1988).  

The mentioned concepts have been also seen in Peninsular Malaysia and 

Singapore.  For instance, an earthquake in February 1994 (MS 7.0) occurred near 

Liwa in southern Sumatra, 700 km from Singapore.  This earthquake affected some 

buildings in densely populated areas of Singapore (Pan, 1995).  Another earthquake 

occurred in May 1994, when the vibrations of the earthquake with the magnitude of 

6.2 on the Richter scale (ML), near the island of Siberut were felt 570 km from Kuala 

Lumpur and Singapore (Pan and Sun, 1996).  In October 1995, stronger and more 

extensive ground tremors were felt in Singapore, Kuala Lumpur, and Johor Bahru, 

the southern state of Peninsular Malaysia.  The earthquake with MS 7.0 took place 

450 kilometers away from these areas.  Bengkulu earthquake of June 2000 had a 

moment magnitude of 7.7.  Although its epicenter was around 700 km southwest of 

Singapore, it produced heavy tremors in the city (Pan et al., 2001).  More recently, 

the major earthquakes in Aceh, 2004 (M 9.0) and Nias Island in 2005 (M 8.6) 

occurred in the Sumatran subduction interface area.  Although the movements caused 

by these earthquakes were offset by distances up to 1000 km, they still resulted in 

ground-motion that was felt by the occupants of high-rise buildings built on the soft 

ground in Kuala Lumpur and Singapore (Nabilah and Balendra, 2012).  Even though 

there have never been severe earthquake-induced damages in Peninsular Malaysia, 

the increasing number of felt tremors shows this fact that the seismic hazard may not 

be negligible for this region, especially its potential to damage the medium to high 

rise buildings built on soft sedimentary deposits or reclaimed lands (Megawati and 

Pan, 2002). 

Since 2007, several earthquakes due to local faults with the maximum 

moment magnitude (Mmax) of 4.4 have occurred within Peninsular Malaysia.  Even 

though the local earthquakes were small, the epicenters were as close as 20 km to 

Kuala Lumpur, which could have remarkable effects on seismic hazard of the region.  

A local earthquake with moment magnitude (M) of about 5 to 7 rupturing within 50 

km would cause a significant base shear demand on low-rise buildings (Lam et al., 
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2015).  Current design code for building structures in Peninsular Malaysia widely 

adopts the British Standard (BS) 8110 code (BS 8110-1:1997), which has no 

provisions for earthquake-induced forces.  The fact that the earthquakes have not yet 

inflicted any serious damage in Peninsular Malaysia historically, should not be taken 

as an excuse for not considering the effects of earthquakes on the existing and future 

structures.  In the interest of public safety, it is reasonable to comprehensively assess 

the seismic hazard of the region, where there are main metropolises with high 

concentrations of high-rise buildings, complex infrastructure systems and large 

populations. 

After understanding the fact that the Peninsular Malaysia region could be 

affected by either large magnitude, distant Sumatran earthquakes or the earthquakes 

due to the local faults, an appropriate seismic hazard assessment and a set of 

desirable elastic acceleration response spectra for seismic design purposes would be 

required.  These basic criteria have been required by the well-known seismic design 

codes such as international building code (IBC) 2012, Iranian seismic code (standard 

No. 2800) 2015, and Eurocode 8 (BS EN 1998-1:2004).  In order to assess the 

seismic hazard and construct the design spectra, representative ground-motion 

prediction equations (GMPEs) as the essential factor in any seismic hazard 

assessment, compatible with the region are required. 

Most of the existing proposed empirical GMPEs for subduction earthquakes 

(reviewed in Chapter 2) are not tuned to a suitable magnitude-distance range 

compatible with the Peninsular Malaysia region.  In addition, the previous 

probabilistic seismic hazard assessment studies done for the study region were only 

based on the far-field Sumatran seismic sources and the seismic effects of the local 

faults within Peninsular Malaysia were not taken to be considered. 

1.3 Objectives of the Study 

This research has attempted to achieve the following three (3) primary 

objectives: 
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1. To derive new empirical spectral ground-motion prediction equations 

(GMPEs) for distant subduction earthquakes (the both interface and intraslab 

events) using the recorded ground motions by the Malaysian Meteorological 

Department (MMD), Kyoshin network (K-NET) and Kiban Kyoshin network 

(KiK-net), and Building and Housing Research Center (BHRC) seismic 

stations located in Peninsular Malaysia, Japan, and Iran, respectively. 

2. To improvise the macrozonation maps of Peninsular Malaysia with 10 and 

2% probabilities of exceedance in 50 years corresponding to 475 and 2,475 

years return period, respectively, through the probabilistic approach of 

seismic hazard assessment, based on the more appropriate and compatible 

sets of GMPEs, and due to both the Sumatran seismic sources (i.e., Sumatran 

subduction and Sumatran fault zones) and the local faults within the 

Peninsular Malaysia region. 

3. To propose new elastic and design acceleration response spectra on four 

different soil site conditions (i.e., rock, stiff soil, medium soil, and soft soil) 

for seismic design purposes for the Peninsular Malaysia region following the 

principles of the Eurocode 8 seismic design code.  

Referring to the mentioned objectives, it is sincere hoped that this study could 

be able to provide the necessary science and engineering principles to guide future 

seismic hazard studies and provisions for the regions which are subjected to the 

large-magnitude, distant earthquakes such as Peninsular Malaysia. 

1.4 Scope and Limitations 

As there are so many parameters that may affect the final results of this study, 

the following scope and limitations have been considered for analysis: 

1. New empirical spectral ground-motion prediction equations (GMPEs): 



10 

 

 

a) Identifying the subduction earthquakes, including both interface and 

intraslab events, occurred mainly in Sunda and Japan trenches (i.e., 

Sumatran and Japan subduction zones) as well as the trench in South-

East of Iran, based on their location, focal depth, and faulting 

mechanisms introduced by Harvard Centroid Moment Tensor 

catalogue (Ekström et al., 2012). 

b) Collection of the raw recorded ground-motion data on four different 

soil site conditions as B, C, D, and E, based on National Earthquake 

Hazard Reduction Program (NEHRP) site classification, due to the 

identified subduction interface and intraslab earthquakes. 

c) Preparation of an exhaustive response spectra ground-motion database 

containing the ground-motion parameters as peak ground acceleration 

(PGA), peak ground velocity (PGV), and 5% damped pseudo-

acceleration response spectrum (PSA). 

d) Selection an appropriate ground-motion attenuation model and 

performing regression analysis using least-square method in order to 

derive the regression coefficients. 

e) The GMPEs proposed by this study are considered to be valid for 

estimating ground motions for subduction earthquakes of moment 

magnitude (M) 5.09.1, hypocentral distance (Rhyp) of 1201300 km 

and M 5.07.7, Rhyp 1201400 km for interface and intraslab events, 

respectively. 

2. Macrozonation study: 

a) Updating the previous earthquake catalogue (i.e., including the 

earthquake events from 1900 to late 2008) up to 2014, by compiling 

the reliable earthquake catalogues with minimum moment magnitude 

(Mmin) of 5.0. 

b) Preparing an earthquake catalogue from the earthquakes induced by 

the local faults within the Peninsular Malaysia with Mmin 2.1. 
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c) Obtaining the new macrozonation maps of Peninsular Malaysia with 

10 and 2% probabilities of exceedance in 50-year corresponding to 

475 and 2,475 years return period, respectively. 

3. New elastic and design acceleration response spectra: 

a) Computing uniform hazard spectra (UHS) of the main regions of 

Peninsular Malaysia on four different soil site conditions (i.e., rock, 

stiff soil, medium soil, and soft soil).  

b) Proposing new elastic and design acceleration response spectra on 

four soil site conditions for seismic design purposes for the Peninsular 

Malaysia region following the principles of the Eurocode 8 seismic 

design code. 

1.5 Significance of the Study 

The proposed new sets of spectral ground-motion prediction equations 

(GMPEs) would be expected to be more compatible with the Peninsular Malaysia 

region due to the consideration of real ground-motion data recorded in the region.  

This study will be significant in terms of estimating the seismic hazard of Peninsular 

Malaysia more accurately and realistically based on the much more compatible 

ground-motion attenuation relations, consideration of the local intraplate 

earthquakes, and updated seismic source parameters.  The design-basis acceleration 

maps and the elastic acceleration response spectra presented by this study will be 

also significant as a future reference for the application of seismic design.  Moreover, 

this study will be helpful in the society of civil engineers in training and informing 

them in the area of earthquake engineering. 
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1.6 Research Methodology 

The overall methodology in order to achieve the defined objectives has been 

depicted in two phases in Figure 1.4.  The comprehensive descriptions of the phases I 

and II are presented in Chapters 3 and 4, respectively. 

 

Figure 1.4 The overall schematic methodology of the present study 
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1.7 Orientation of Thesis 

The title and contents of each chapter have been described briefly as follows: 

Chapter 1: Introduction This chapter presents a brief description of 

earthquake-induced direct and indirect effects and importance of earthquake 

engineering at the first parts.  In the next parts, the background and problem 

statement, objectives, scope and limitations, significance, and the research 

methodology of the study are described. 

Chapter 2: Literature Review This chapter firstly presents a precise 

explanation about seismology and earthquake genesis in terms of plate tectonics, 

interplate and intraplate earthquakes, faulting mechanisms, seismic waves, and 

earthquake size measurements.  A review about the previously proposed ground-

motion prediction equations for the region of interest as well as other regions of the 

world is also reported in this chapter.  In the next parts, seismotectonic setting of 

Peninsular Malaysia and a complete review of previously conducted seismic hazard 

studies of the Peninsular Malaysia region have been presented.  Finally, previously 

presented elastic acceleration response spectra for the study region are also reviewed 

and presented in this chapter. 

Chapter 3: Ground-Motion Prediction Equations (GMPEs) This chapter 

gives a complete explanation about the considered methodology in order to prepare a 

response spectra database to derive the new empirical spectral ground-motion 

prediction equations (GMPEs) for distant subduction interface and intraslab 

earthquakes.  Then, a comprehensive comparison between the proposed GMPEs and 

the existing ones is discussed and presented at the end of the chapter. 

Chapter 4: Seismic Hazard Assessment The first part of this chapter 

presents the methodology identified to do probabilistic seismic hazard assessment 

(PSHA) for the Peninsular Malaysia region.  Then, the new resulted seismic hazard 

maps of the region have been proposed. In addition, the uniform hazard spectra using 

probabilistic approach of seismic hazard assessment have been achieved and 
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described in this chapter.  Referring to the obtained uniform hazard spectra, the 

elastic and design acceleration response spectra on different soil site conditions for 

the Peninsular Malaysia region have been presented in this chapter.  Finally, the 

obtained results are evaluated by comparing with the results derived previously by 

other researchers.  As the different input parameters could cause different final 

results, the influence of various input parameters have been also discussed in this 

chapter. 

Chapter 5: Conclusions and Recommendations This chapter discusses the 

conclusions of the study and the recommendations for further related researches. 
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