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ABSTRACT 

 

 

 

 

High-strength concrete is currently being used in columns of multi-storey 

building all over the world. Although, it offers superior properties, it is relatively a 

brittle material. This study intends to improve the ductility of the concrete using a 

pre-tensioning lateral confinement technique. It investigates the effects of the 

technique on strength and ductility of the concrete and develops model equations to 

predict the stress-strain behaviour of confined concrete. The basis of the technique is 

to apply a pre-tensioning force to relatively low cost steel straps wrapped around the 

cylindrical concrete specimens. The experimental work was carried out using 

cylindrical specimens with a dimension of 100mm in diameter and 200mm in height 

and concrete compressive strength were fixed at 50, 60 and 80 MPa. The parameters 

studied including different properties of steel straps, various spacing between straps, 

number of layers of straps and different levels of pre-tensioning stress in the steel 

straps. The confined specimens were tested in compression until failure under 

monotonic and cyclic loading conditions. Data collected from the test included mode 

of failure, loads at peak and ultimate condition, and longitudinal and lateral strains in 

both concrete and straps. The data were analysed based on volumetric ratio of 

confinement which is a function of strength of steel straps, compressive strength of 

concrete, spacing and number of layers of straps. The experimental results show that 

the pre-tensioning technique using steel straps enhanced the ductility as well as 

strength of the concrete as the volumetric ratio increases. The results also depicted 

the ability of the technique to improve the ductility and strength of the concrete, 

especially for concrete with higher compressive strength by effectively utilising the 

confinement material. Moreover, the layers of straps had also delayed the onset of 

volumetric expansion and, undoubtedly, the concrete failure. Based on the analysis, 

new equations of strength and strain enhancement with confinement coefficients of 

2.62 and 11.6 respectively, using pre-tensioning technique had been developed to 

predict the stress-strain behaviour of confined high-strength concrete. 
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ABSTRAK 

 

 

 

 

Konkrit kekuatan tinggi banyak digunakan terutamanya dalam pembinaan 

tiang bangunan tinggi di serata dunia. Walaupun konkrit ini mempunyai sifat-sifat 

yang baik, tetapi ia secara relatif merupakan bahan yang rapuh. Projek penyelidikan 

ini bertujuan untuk meningkatkan kemuluran konkrit berkekuatan tinggi 

menggunakan teknik kurungan sisi pra-tegangan. Ia melibatkan kajian kesan 

penggunaan teknik ini keatas kekuatan dan kemuluran konkrit dan pembangunan 

persamaan matematik bagi menganggar hubungan tegasan-terikan konkrit kurungan 

sisi. Asas penting teknik ini adalah dengan mengenakan daya pra-tegangan pada jalur 

keluli yang dililit pada permukaan silinder konkrit. Ujian makmal telah dilakukan ke 

atas spesimen silinder konkrit berukuran 100 mm dia. x 200 mm tinggi, dan kekuatan 

mampatan konkrit ialah 50, 60 dan 80 MPa. Parameter kajian ini termasuk 

penggunaan jalur keluli yang berlainan sifat, perubahan jarak langkau antara jalur 

dan bilangan lapisan jalur dan juga tahap daya pra-tegangan yang dikenakan. 

Spesimen telah diuji di bawah beban mampatan statik dan juga beban kitaran 

sehingga gagal. Data yang diambil termasuklah mod kegagalan, beban pada ketika 

puncak dan muktamad, terikan tegak dan sisi bagi konkrit dan jalur keluli. Data telah 

dianalisis berdasarkan nisbah isipadu bahan kurungan, di mana ia mempunyai 

hubungkait dengan kekuatan keluli, kekuatan mampatan konkrit, jarak langkau dan 

bilangan lapisan jalur keluli. Keputusan ujian menunjukkan bahawa kemuluran dan 

juga kekuatan konkrit meningkat apabila nisbah isipadu bahan kurungan bertambah. 

Keputusan ujian juga menunjukkan teknik ini berupaya meningkatkan kemuluran 

dan kekuatan konkrit terutamanya bagi konkrit yang mempunyai kekuatan mampatan 

lebih tinggi melalui keberkesanan penggunaan bahan kurungan. Jalur keluli dalam 

berbilang lapisan juga didapati berupaya melewatkan pengembangan isipadu dan 

seterusnya kegagalan konkrit. Berpandukan kepada analisis, persamaan bagi 

kekuatan dan terikan konkrit masing-masing dengan pekali kurungan sisi 2.62 dan 

11.6 telah dibangunkan untuk menganggar hubungan tegasan-terikan konkrit 

berkekuatan tinggi kurungan sisi menggunakan teknik pra-tegangan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

High-strength concrete is an advanced construction material which offers 

superior properties such as higher strength, higher stiffness and better durability 

performance as compared to normal strength concrete. It can be produced using 

similar ordinary raw materials that are used in the production of normal strength 

concrete with a low water-cement ratio and special admixtures added. Nowadays, 

high-strength concrete is frequently used in columns of multi-storey building, in pre-

cast concrete industries and in structures where strength and durability are 

emphasised in design consideration. It can reduce the cross-section area of the 

column and subsequently reduce the self-weight of the structure. 

 

 

Generally, high-strength concrete can be produced by improving the density 

of the concrete mix so that it increases the strength of both the cement matrix and the 

interface between the matrix and the aggregates. However, an increase in the strength 

of the concrete results in increase in its brittleness or reduction in ductility. Concrete 

in brittle failure is not capable to resist any increase in load after reaching ultimate 

state. Then the load decreases very rapidly after peak and the type of failure is 

explosive. Whereas in ductile failure the load is remain constant at increasing 

deformation after peak stress. Therefore, in designing high strength reinforced 

concrete element, more precaution is required in term of ductility requirement 

especially for structural elements that are possibly exposed to lateral type of loading 

such as seismic, blast and wind loadings etc. 
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The lack of ductility of high-strength concrete can be seen as a steep ascending 

slope of a stress-strain curve followed by a very rapid post-peak descending branch 

of the curve as shown in Figure 1.1. In structural design point of view, this type of 

stress strain behaviour is not allowed and therefore the need to improve the ductility 

of the concrete is very crucial. One way of improving the ductility of concrete is by 

confining the concrete laterally. This method has been used for normal strength 

concrete since decades and it has been established that concrete confined laterally 

can increase the ductility and strength very significantly. The lateral confinement 

works if the concrete under axial compression produce sufficient lateral dilation. 

However, it is a fact that high-strength concrete exhibits smaller lateral expansion 

compared to normal strength concrete when subjected to axial or cyclic compression 

loads (Parenchio et al., 1978, Persson et al., 1973, Lee et al., 1988). Thus, this 

classical technique may be questioned and not be as effective when it is applied to 

high-strength concrete. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Concrete and steel stress strain relationship (ACI 363R) 

 



3 

 

 This research was to investigate the effectiveness of lateral confinement using 

low cost steel straps with an innovative pre-tensioning and multilayer techniques to 

high strength concrete columns. The pre-tensioning stress applied to high-strength 

concrete column during installation may assist the column to mobilise the 

confinement material effectively and thus, enhanced the performance of the concrete 

in term of ductility and strength. A continuous steel straps in the form of multilayer 

distributed the confining stress exerted from concrete core during loading evenly 

between layers, thus extended the deformation of the column and subsequently 

delayed the failure. 

 

 

 

 

1.2 Background of Concrete Confinement 

 

 

Lateral confinement was originally introduced by Considere (Sakai and 

Sheikh 1989) in the form of internal spiral reinforcements in concrete columns. 

Richart, Brandtzaeg and Brown (cited from Roy and Sozen 1964) proposed the 

following relationship for strength and confining pressure of confined concrete, 

based on the results of extensive experimental programme from the first published 

research. This relationship is applied to both passive spirally reinforced and active 

hydraulically confined columns. 

 

 

rcocc fff 1.4
             (1.1) 

where: 

 

 𝑓𝑐𝑐   is a longitudinal stress for confined concrete, 

 𝑓𝑐𝑜   is a longitudinal stress for unconfined concrete, and 

 𝑓𝑟   is a lateral confining stress. 

 

 

Confinement reinforcement in a form of rectangular ties or spirals is 

commonly used to confine the concrete since the early years of reinforced concrete 

structural design. However, for high-strength concrete column, its high brittleness 

cannot be successfully eliminated using conventional ties and spirals (Krstulovic-
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Opara and Thiedeman 2000); and the use of closely spaced interlocking ties or spiral 

to increase strength and ductility may associate with construction-related problems. 

For columns strengthening, there are three methods of confining the concrete, 

namely reinforced concrete jacketing, steel jacketing and fiber reinforced polymer 

(FRP) -wrapping. Reinforced concrete jacketing requires formwork and considerable 

increase in weight and cross-section of the column. Steel jacketing and FRP-

wrapping are also labour intensive and costly. Although FRP confined concrete gains 

high strength enhancement, but evidences show that it fails in brittle mode (Ortega, 

2006, Valdmanis et al. 2007). Furthermore, the jacket and wrapped confinement 

materials using the conventional techniques are proven not fully utilised especially 

for those concrete with small lateral dilation. 

 

 

 

 

1.3 Significance of Research 

 

 

The most fundamental issue in predicting the behaviour of reinforced concrete 

members is the stress-strain behaviour of the constituent materials. Concrete is used 

to resist compression and its behaviour in compression is important to the designer. 

If the behaviour of concrete subjected to uniaxial compression is known, the 

structural behaviour of reinforced concrete can be estimated. 

 

 

The confinement steel requirements for normal-strength concrete are 

reasonably well established in current building codes (ACI 318, Canadian code, 

1994) but not for the high-strength concrete; high-strength concrete real constitutive 

behaviour is almost nonexistent. This concern arise from the fact that the 

requirements for design and detailing of concrete in different model codes are 

primarily empirical and are developed based on experimental data obtained from 

testing the concrete specimens having compressive strength below 40MPa (ACI-

363R, 1992). While designing a structure using high-strength concrete, the designer 

usually ignores the enhanced properties of confined concrete and possible changes in 

the overall response of the structure because of lack of adequate code guidance. 
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Also, the existing models for confined high-strength concrete are mostly 

derived by calibrating of experimental results of normal strength concrete. This may 

not be a safe approach since the mechanical properties of high-strength concrete 

differ with those of normal strength concrete. 

 

 

This research provides experimental data on the stress-strain behaviour of 

confined and unconfined high-strength concrete. The data produced in this study 

were generated by considering variables such as different properties of steel straps, 

levels of pre-tensioning stress, numbers of layers and various amount of 

confinement. Such data are useful in order to develop a stress-strain model of high-

strength concrete and compared with the existing models.  

 

 

 

 

1.4 Objectives 

 

 

The main objective of the research is to develop structurally ductile high-

strength concrete with superior deformation property using a new technique of pre-

tensioning and multilayer straps. The objective also includes generating of 

experimental data on an innovative confinement technique, with emphasis on 

investigating of the stress-strain response of confined concrete within elastic and 

inelastic ranges. The detailed objectives are as follows: 

 

 

1. To develop a confinement technique using steel straps of various 

properties to provide lateral confining pressure on high-strength concrete. 

 

2. To investigate the stress-strain behaviour of high-strength concrete 

confined with different levels of pre-tensioning force and varying number 

of strap layers. 

 

3. To develop a model to predict the stress-strain behaviour of high-strength 

concrete with pre-tensioning lateral confinement technique. 
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1.5 Scope of Research 

 

 

The objectives of the research programme were realised within the following 

scope: 

 

 Review of previous research on the behaviour of concrete columns 

tested under different load conditions to determine relevant parameters 

for the present study. 

 

 Review of existing stress-strain models for concrete confinement. The 

models are examined based on parameters used for their derivation such 

as concrete strength, type of confinement, type of confinement 

materials etc. 

 

 Design and construction of stress and strain measurement devices for 

testing of high-strength concrete cylindrical specimens.  

 

 Examination the suitable concrete mix designs and standards for high-

strength concrete. Determination the proportions for concrete strength 

ranging from 50 to 80MPa.  

 

 Investigation of the advantages and disadvantages of various properties 

of steel straps with the purpose of effective confining stress generating 

during wrapping and loading. The straps properties are vary in strength 

elongation and dimension as well. 

 

 Examination of the various possibilities for connecting the straps and 

investigation of the effectiveness of the connection. Design suitable 

prefabricated straps in layers accounted for a self adjustment for 

purpose of distributing confining stress between layers. 

 

 Evaluation interpretation and verification of test data with respect to 

specific parameters. 
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 Theoretical analysis of the behavior of confined concrete and compared 

with experimental results. 

 

 Identification of a rational model for ductile high-strength concrete 

columns subjected to axial compressive loads. 

 

 Preparation of thesis and presentation of results. 

 

 

 

 

1.6 Outline of Thesis 

 

 

In chapter 2, a literature survey on high-strength concrete and confinement is 

presented. How does confinement work and affects the ductility, the effect of 

configuration on confinement and the effective confinement area on different 

sections are discussed in different sections of this chapter. A review on conventional 

models of concrete confinement based on steel is also presented in this chapter. 

 

 

Chapter 3 presents the experimental methodology. Four phases of the 

experimental programme are briefly described at the beginning of the chapter. Phases 

one and two focused on the effects of pre-tensioning stress to the confined concrete 

whereas phases three and four investigated on multi-layer effects to the concrete. All 

phases mentioned above investigated the behaviour of concrete in monotonic 

compression load. Some specimens were tested under cyclic load to verify the stress-

strain response of the confined concrete. The prefabrication of innovative straps 

confinement is presented towards the end of the chapter. 

 

 

 Chapter 4 presents the fabrication and arrangement of new devices used to 

measure strain and deformation of confined concrete. The devices were calibrated 

using established confined normal strength concrete. 

 

 

Chapter 5 presents all the results carried out in phases one and two. The 

stress-strain behaviour, volumetric strain and mode of failure for specimens confined 
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in a single layer of different properties of steel straps are discussed. The results of 

unconfined specimen are also presented. The results presented in this chapter were 

emphasised on the effects of pre-tensioning stress and properties of steel straps.  

 

 

Chapter 6 presents the stress-strain behaviour, volumetric strain and the 

failure mode for specimens confined in multilayer straps using different properties of 

steel straps. This chapter presents the results of experimental works in phases three 

and four. The concrete cylinder compressive strengths used in this project were 50, 

60 and 80 MPa and the type of loads applied to the specimens were axial monotonic 

load as well axial cyclic load.  

 

 

In Chapter 7, a detail discussion of the results is presented. The experimental 

data tabulated in chapters 5 and 6 were presented in form of graphs and verified with 

the data produced from existing models. Six equations are proposed to predict the 

stress-strain behavior of high-strength concrete. The results generated from the 

proposed equations were compared with existing stress-strain models available in 

literature. 

 

 

In the final chapter, the general conclusions are drawn from the work 

described above and are presented together with recommendations for future 

research in this area. 
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