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ABSTRACT 

Photoreduction of CO2 to useful chemicals have shown promising results from 

the research on CO2 conversion and utilization. The objective of this study is to 

synthesize copper and carbon nitride based titanium dioxide nanocomposites for 

selective photoreduction of carbon dioxide to methanol under visible light irradiations. 

The nanocomposites were synthesized by a chemical precipitation method and 

characterized using XRD, FT-IR, FESEM, TEM, DRS, BET and XPS. The XRD 

results confirmed the presence of TiO2, g-C3N4 and Cu in the nanocomposite by their 

characteristic peaks. The doping of Cu metal reduced the intensity of the PL emission 

and the rate of recombination. The most effective catalysts was g−C3N4/(3% Cu/TiO2) 

which gave a maximum methanol yield of 948.14µmol/g.cat after 2 h. Cu doped TiO2 

enhanced its photoactivity by fostering carrier separation. The position of Cu in the 

composite affected the distribution of electrons and hence the photo-activity. 

Parameters investigated were weight percent ratio, effect of time and stability. The 

position of Cu in the composite affected the distribution of electrons and hence the 

photo-activity. After   8 h of photoreaction, a maximum CH3OH yield of 2574 µmol/g. 

cat was obtained using visible light. The ratio of g-C3N4 to Cu/TiO2 dictated the 

efficiency of the composite and the visible light was seen to demonstrate higher 

efficiency compared to the ultraviolet light. The higher emitting power UV light 

provided more photons for photoexcitation of more electrons, but photo-oxidation of 

CH3OH to HCOOH affected the product yield while using UV light. The low band 

gap, electronic structure and light absorption capacity of g-C3N4 assisted in the transfer 

of photogenerated electrons to Cu/TiO2 in the composite thereby aiding maximal usage 

of the irradiated light. Cu/TiO2 demonstrated a high selectivity for photoreduction of 

CO2 to CH3OH in the nanocomposite. The photostability of the composite was 

maintained even after three cycles. Possible reaction mechanisms were proposed  to 

understand the type of catalysts and light irradiations on yield and selectivity. 
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ABSTRAK 

Tindak balas penurunan CO2 oleh cahaya kepada bahan kimia berguna telah 

menunjukkan keberhasilan penyelidikan mengenai penukaran CO2 dan 

penggunaannya.   Objektif kajian ini adalah untuk mensintesis tembaga (Cu) dan 

karbon nitrat (g-C3N4) berasas nanokomposit titanium dioksida (TiO2) untuk tindak 

balas penurunan terhadap CO2 kepada methanol di bawah radiasi cahaya. Sintesis 

nanokomposit disintesis dijalankan melalui kaedah pemendakan dan 

dikelaskan/dicirikan menggunakan XRD, FT-IR, FESEM, TEM, DRS, BET and 

XPS. Hasil kajian XRD menunjukkan kewujudan TiO2, g-C3N4 dan Cu di dalam 

nanokomposit berdasarkan ciri-ciri puncaknya. Penambahan bendasing seperti 

logam Cu telah mengurangkan keamatan pemancaran PL dan kadar penggabungan 

semula.  Mangkin yang paling berkesan ialah g−C3N4/(3% Cu/TiO2) dimana telah 

menghasilkan metanol secara maksimum 948.14µmol/g.cat selepas 2 j. Penambahan 

Cu ke atas TiO2 melalui kaedah pemisahan pembawa telah meningkatkan tindak 

balas aktiviti penurunan cahaya. Tindak balas penurunan CO2 kepada CH3OH oleh 

cahaya didalam nanokomposit telah menunjukkan pemilihan tinggi untuk Cu/TiO2. 

Kedudukan Cu didalam komposit memberi kesan ke atas pengagihan elektron-

elektron dan tindak balas aktiviti penurunan cahaya. Parameter kajian ialah nisbah 

peratus berat, kesan masa dan kestabilan Selepas 8 j tindak balas penurunan cahaya, 

sebanyak 2574µmol/g CH3OH terhasil dibawah radiasi cahaya. Nisbah g-C3N4 

kepada Cu/TiO2 telah menunjukkan kecekapan komposit dan cahaya nampak 

berbanding dengan cahaya ultraungu. UV yang dipancar akan merangsang 

penghasilan lebih banyak foton-foton untuk proses pengujaan elektron-elektron 

walaubagaimanpun, pengoksidaan CH3OH kepada HCOOH akan menjejaskan 

penghasilan produk. Pemindahan elektron-elektron melalui cahaya kepada Cu/TiO2 

didalam komposit dibantu oleh jalur gelombang rendah, struktur elektronik, dan 

kadar penyerapan cahaya oleh g-C3N4 sekaligus mengawal penggunaan cahaya yang 

terang. Kestabilan foto didalam komposit dikekalkan selepas 3 kitaran. Kepelbagaian 

dalam tindak balas mangkin dan radiasi cahaya turut dicadangkan untuk menyatakan 

sebarang kemungkinan dari mekanisme dan hasil pemilihan tindak balas tersebut. 
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CHAPTER 1 

 

 

 

 

1INTRODUCTION 

 

 

 

 

1.1 Problem Background 

 

 

Global warming is considered to be one of the major environmental concerns 

of mankind today (Tahir and Amin, 2013). One of the major hazards from 

industrialization and technological advancement is the unguarded release of carbon 

dioxide (CO2). Combustion of fossil fuel is the main source of greenhouse gas 

emission, which ultimately leads to global warming. It is gradually destroying the 

earth’s climate and making survival tougher than ever (Olah et al., 2006).  

CO2 can be perceived to be a safe gas to some extent since it is exhaled by man 

and animals and absorbed by plants but if its percentage in the atmosphere is not 

checked it could become a potential threat to the ecosystem and its occupants. This has 

generated massive attentions as it is a problem that has ripple effects such as global 

warming which is the major challenge in the world at the moment. The environment 

is under a lot of stress and a sustainable immediate solution is essential (Ali et al., 

2015). 

Several options exist for global warming resolution and they can be categorized 

into two alternatives: eliminating the sources of greenhouse gases and capture of the 

gases. The first option cannot totally be accomplished because the comfort of man, 

industrial development and advancement are tied to most of these sources (Jiang et al., 

2010). This leaves us with the option of reducing the concentration of CO2 in the 

atmosphere by capturing the released CO2 and providing other alternatives which are 
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not CO2 producing. One way of doing this is to capture the CO2 and store it in oceans, 

depleted coal seams etc. This option is CO2 capture and storage also known as 

Sequestration, but it is expensive therefore unsustainable. The alternative and 

preferred option is to convert the captured CO2 into valuable bulk chemicals such as 

methanol etc. Technologies for capturing CO2 from flue gas includes absorption & 

adsorption of gases, the use of permeable membranes, cryogenic distillation etc. Many 

of these methods are not economically feasible (Cheah et al., 2016).  

Although it is obvious that CO2 is a major cause of global warming and other 

environmental mishaps, another issue of concern in the world today is energy and its 

conservation. As of today, the largest percentage of the world energy demand is met 

through the deployment of fossil fuels and if more alternatives are not focused on this 

might not change in decades to come. The worlds reserve of natural gas is 

approximately 1014 m3 which is a large portion of the worlds energy in total. In 

comparison to crude oil reserve, natural gas storage will remain longer and is hence a 

better option. Nations who are major consumers of petroleum and petroleum products 

constantly face problems due to the use of fossil fuels, geological spread and political 

supremacy of key petroleum raw materials (Aruchamy et al., 1982; Moritis, 2004). 

One other viable substitute for fossils is nuclear energy except it is non-renewable and 

is destructive. To this end, an alternative source of energy which provides a simpler 

and cleaner fuel is a better option. CO2 conversion and utilization provides us this 

alternative – turning CO2 into a raw material for useful chemicals.   

 

 

 

 

1.2 Photocatalysis as a viable route for CO2 Conversion and Utilization  

The conversion and utilization of captured CO2 is a better option compared to 

sequestration, as it is a win-win approach. CO2 conversion techniques include: - 

electrochemical (Li et al., 2016), photochemical (Grebenshchikov, 2016), thermo-

chemical (Dufour, 2016), radio-chemical (Yadav and Purkait, 2016), biochemical  

(Cheah, et al., 2016), photoreduction and photo-electrochemical reduction processes 

(Apaydin et al., 2016; Prasad et al., 2016). For certain reasons such as cost of 
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electricity (electrochemical), low efficiency (photochemical), one of the best methods 

for CO2 conversion is the photocatalytic method in which solar energy is transformed 

and stored as chemical energy. Photocatalytic reduction of CO2 is a clean, low cost and 

environmentally safe process (Cybula et al., 2012).  

The photocatalytic process involves direct absorption of photons by the 

photocatalyst. These photons must have band gap energies equal or greater than that 

of the photocatalyst in order to generate electron hole pairs. This is the initial step 

followed by reactions which will take place as a result of the excitation and energy 

transfer of the electrons to the reactants adsorbed on the photocatalyst. Although 

photoreduction of CO2 is a multi-step reaction which is thermodynamically uphill it 

remains a very feasible and promising process (Indrakanti et al., 2009). Photocatalysts 

provide the most viable method for harvesting solar energy with their reversible 

oxidation-reduction capabilities. They reduce CO2 to form hydrocarbons such as 

methane and ethanol and essentially take exhaust and turn it back to fuel (Graham et 

al., 2012). Considering the numerous benefits that can be derived from photocatalytic 

conversion of CO2 to useful chemicals, this study focuses on the photocatalytic 

reduction of CO2 to CH3OH.  

The research on photoreduction of CO2 to methanol is a progressive one, a 

number of researches have been conducted using various photocatalysts.  In terms of 

photocatalysts, TiO2 remains the most researched of all photocatalysts owing to its 

exceptional properties though it is limited by its large band gap (3.2 eV) (Tahir and 

Amin, 2013). This limitation-necessitated modification of TiO2 and one of the 

common modification methods is doping with metals (Cu (Slamet et al., 2009), Ag 

(Liu et al., 2014), and Au (Neaţu et al., 2014) etc.). One notable research on CO2 

photoreduction to CH3OH is that of (Slamet, et al., 2009) involving the use of Cu 

doped TiO2. A very good yield of methanol was obtained using 3% Cu/TiO2 to 

photoreduce CO2. Other alternative methods for modification include - non-metal (N) 

doping (Tahir and Tahir, 2016), co-catalyst (Prasad, et al., 2016), formation of 

heterostructures (Li et al., 2015), use of nanocomposites (Gusain et al., 2016) etc.  The 

results obtained from the photocatalysts modified using these methods are better than 

that of pure TiO2. Recently, the use of g-C3N4 as a photocatalyst have increased due to 
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its unique properties. It is thermally and chemically stable, can be prepared easily from 

nitrogen containing precursors, it is non-toxic, possess a low band gap of 

approximately 2.7 eV and it is active in the visible region (Yin et al., 2015). 

Nanocomposites of g-C3N4 and TiO2 have been used to photoreduce CO2 to other 

hydrocarbons such as CH4, CO (Zhou et al., 2014) and H2 (Chai et al., 2012). Therefore 

considering the work of (Slamet, et al., 2009) and previous works done on g-C3N4 and 

TiO2 nanocomposites, the focus of this research is to investigate the prospects of g-

C3N4/(Cu/TiO2) for photoreduction of CO2 to CH3OH. The doping with copped helps 

in creation of more active sites for adsorption of CO2, (2) enables TiO2 to absorb and 

utilize visible light and (3) creates a Schottky barrier, which promotes separation of 

electron and hole pairs hence inhibiting recombination (Slamet, et al., 2009). 

 

 

In conclusion, the yield of the product is of major concern in photocatalytic 

reduction of CO2 and the yield depends on: - the type of photocatalyst, nature of the 

light used, reductant and type of reactor used. The nanocomposite synthesized (g-

C3N4/(Cu/TiO2) is expected to fulfill the material requirements to obtain a yield that is 

better than that of pure TiO2. This is because the nanocomposite utilizes the unique 

properties of each of its constituents (g-C3N4, TiO2 and Cu) to provide the necessary 

band structure required for effective charge separation, light absorption and utilization. 

It is expected that the use of NaOH as the reductant, two different light sources (UV 

and Visible) and the slurry type photoreactors would improve the yield of CH3OH 

produced.       

 

 

 

 

1.3 Problem Statement and Research Hypothesis  

Though photoreduction of CO2 to hydrocarbons is getting increased attention 

in research there are still certain limitations faced and the main challenges are low 

yield and selectivity of the products. To this end, the problems and possible solution 

approach are:  
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1. There is a need for a photocatalyst that is photo-stable, possess high light 

absorption and utilization efficiency, has high charge separation, inhibits 

recombination, absorbs in both the UV and visible region and has a large surface area 

to adsorb enough CO2. The constituents of the g−C3N4/(Cu/TiO2) nanocomposite 

possess these characteristics hence it is expected these problems will be solved by 

synthesizing it.  

2. The solubility of CO2 in the reductant used dictates the amount of CO2 

available for the photocatalyst and the photoreduction process. A reductant that is 

environmentally benign, affordable and dissolves CO2 very well is one of the focus of 

CO2 photoreduction. The use of NaOH as a reductant would improve the solubility of 

CO2 into the system and give the desired result during photo splitting as opposed to 

using pure water.  

3. The selectivity of the product from photoreduction of CO2 depends on the 

choice of dopant or co-catalyst used. For example, Pt. is known to possess a high 

affinity for H2 and CH4 during photoreduction of CO2. Therefore, the type of co-

catalyst to use is paramount. The use of Cu in the photoreduction of CO2 is expected 

to give high selectivity for CH3OH production.  

4. The knowledge of how type of light affects the mechanism of CO2 

photoreduction is a topic of debate and research is focused on understanding more 

about this. The use of both UV and visible light in this research is expected to shed 

more light to this issue and give better understanding on the effect of light intensity.  

 

 

 

 

1.4 Research Objective 

The objectives of this research include: - 
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1. To synthesize and characterize copper and graphitic carbon nitride 

based TiO2 nanocatalysts for CO2 conversion to methanol; 

2. To study and compare the performance of nanocatalysts for selective 

photocatalytic CO2 conversion to methanol under UV and visible light 

irradiations; 

3. To study the effect of operating parameters and propose reaction 

mechanisms for the catalyst having maximum yield and selectivity. 

 

 

 

 

1.5 Research Scope 

The research focus is summarized in detail. The photocatalysts to be used for 

the photoreduction process were synthesized i.e. (g−C3N4, g−C3N4/TiO2, Cu/TiO2, 

Cu/g−C3N4, (Cu/g−C3N4)/TiO2, g−C3N4/(Cu/TiO2) using the appropriate methods. 

The characterization of the catalysts was carried out using the following technologies 

XRD, FTIR, FESEM, BET, XPS, TEM, UV-VIS and PL. These analysis were done to 

determine the crystalline nature, the organic and inorganic bands of functional groups, 

morphology, surface area, porosity and pore dimension, oxidative state, atomic 

structure and the formation of heterostructure, absorption region of each catalyst in the 

spectrum and identify the catalyst sample with the lowest PL emission intensity and 

recombination rate respectively. The catalysts were then used to photoreduce CO2 to 

obtain CH3OH using both UV &Visible light and their performances were compared 

based on the yield of CH3OH. The catalyst with the optimum yield of methanol was 

used to study the operating parameters (time, % weight ratio and photostability test). 

After proper analysis and study of the results obtained, reaction mechanisms for both 

UV and Visible light were proposed. 

 



7 

1.6 Significance of Study 

This study has immense contribution to researchers in photocatalysis, the 

scientific community and the public for the following reasons. Firstly, the research on 

the g-C3N4/(Cu/TiO2) nanocomposite provides more insight and direction on the 

mechanism of composites during CO2 photoreduction. In addition, the effect of type 

of light on the efficiency of photocatalysis can be better understood from this research. 

A photocatalyst that is photo-stable, has high charge separation and is environmentally 

benign has been introduced. The process of CO2 utilization and conversion has been 

accomplished through this study.      

 

 

 

 

1.7 Outline of Thesis         

This thesis is divided into five chapters excluding all introductory pages, table 

of content and abstract. The first chapter (Chapter 1) contains the introduction, 

problem statement and research hypothesis, objectives, research scope, significance of 

study and outline of thesis. The literature survey, basics of photocatalysis and CO2 

photoreduction, previous works in photoreduction of CO2, the photoreactor setups, and 

characterization techniques were discussed in Chapter 2. Chapter 3 gives a detailed 

representation of the research methodology and order of the research, details of the 

methods used to synthesize the catalysts and carry out the photoreduction process. The 

results obtained from the experiments and analysis of characterization are discussed in 

Chapter 4. Chapter 5 concludes the thesis with inferences drawn and recommendations 

for further research.  
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