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ABSTRACT 

 
 
 
 

Backfill material for retaining wall should be lightweight in order to reduce 
the lateral pressure behind the wall. In addition, high permeability backfill walls are 
designed to eliminate or minimize the development of pore water pressure. Tire 
Derived Aggregate (TDA) has low unit weight and high permeability. Moreover, 
reutilizing solid wastes like TDA with cohesive soil as backfill material may reduce 
sand mining and preserve the environment to achieve sustainable construction. 
Therefore, the aim of this study was to evaluate the performance of Kaolin-TDA 
mixtures as a backfill material for retaining wall. Geotechnical properties of Kaolin, 
TDA and Kaolin-TDA mixtures were determined in addition to compaction and 
hydraulic conductivity tests. A total of 13 scaled down 1:20 physical model tests on 
polymer concrete retaining wall using Kaolin and different mixtures of Kaolin-TDA 
as backfill material were performed. Footing settlements and wall displacements due 
to loading on fabricated steel as strip footing in the model test were measured. The 
results were verified using three numerical methods, namely PLAXIS 2D, Genetic 
Programming and Multiple Linear Regression. The maximum dry density of Kaolin-
TDA mixture was in the range of 964 kg/m3 to 1590 kg/m3, lighter than the 
maximum dry density of Kaolin 1750 kg/m3. Therefore, using Kaolin-TDA mixture 
as backfill material reduced the unit weight of backfill in a range of 9% to 45% 
resulted in a decrease in lateral pressure. Physical modeling and permeability tests 
results showed that mixture of Kaolin with 20% Granular (5-8 mm) TDA was the 
optimum mixture. The permeability of the optimum mixture was 2.56 times higher 
than that of the Kaolin. It was also observed from the physical modeling that by 
using the optimum mixture as backfill material, it resulted in footing stress roughly 3 
times higher than using Kaolin without TDA. Thus, by mixing TDA with Kaolin, the 
weight of backfill decreases, permeability increases and footing stress increases 
compared to Kaolin as a backfill material for retaining wall. 
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ABSTRAK 

 
 
 
 

Bahan kambus balik tembok penahan seharusnya ringan bagi mengurangkan 
tekanan sisi di belakang tembok. Di samping itu, kebolehtelapan yang tinggi bagi 
bahan kambus balik direka untuk menyahkan atau meminimumkan pembentukan 
tekanan air liang. Agregat Yang Didapati Daripada Tayar (TDA) mempunyai berat 
unit yang rendah dan kebolehtelapan yang tinggi. Disamping itu, penggunaan semula 
bahan-bahan buangan pepejal seperti TDA dengan tanah berjelekit sebagai bahan 
kambus balik dapat mengurangkan perlombongan pasir dan memelihara persekitaran 
bagi mencapai pembinaan lestari. Tujuan kajian ini ialah untuk menilai prestasi 
campuran Kaolin-TDA sebagai bahan kambus balik bagi tembok penahan. Sifat-sifat 
geoteknikal Kaolin, TDA dan campuran Kaolin-TDA telah ditentukan di samping 
ujian-ujian pemadatan dan keberaliran hidraulik ke atas campuran-campuran itu. 
Sejumlah 13 ujian model fizikal tembok penahan konkrit polimer yang telah diskala 
kecilkan 1:20 menggunakan Kaolin dan campuran Kaolin-TDA yang berlainan 
sebagai bahan kambus balik telah dilakukan. Enapan asas jalur dan pergerakan 
tembok penahan akibat pembebanan ke atas plat keluli yang difabrikasi sebagai asas 
jalur dalam ujian model telah diukur. Keputusan yang diperolehi daripada model 
fizikal telah disahkan menggunakan tiga kaedah berangka iaitu PLAXIS 2D, 
Pengaturcaraan Genetik dan Berbilang Regrasi Lelurus. Ketumpatan kering maksima 
bagi campuran Kaolin-TDA antara 964 kg/m3 dan 1590 kg/m3 adalah lebih ringan 
dari Kaolin yang mempunyai ketumpatan kering maksima 1750 kg/m3. Oleh itu, 
penggunaan campuran Kaolin-TDA sebagai bahan kambus balik telah 
mengurangkan berat unit antara 9% hingga 45% menyebabkan penurunan tekanan 
sisi di belakang tembok. Model fizikal dan hasil ujian kebolehtelapan menunjukkan 
bahawa campuran Kaolin dengan 20% Granular (5-8 mm) TDA adalah campuran 
yang optima. Kebolehtelapan campuran optima tersebut adalah 2.6 kali lebih tinggi 
dari kebolehtelapan Kaolin. Kajian dari model fizikal juga menunjukkan bahawa 
penggunaan campuran optima sebagai bahan kambus balik telah menyebabkan 
tekanan penapak asas jalur 3 kali lebih tinggi dari menggunakan Kaolin tanpa TDA. 
Oleh itu, dengan campuran TDA dan Kaolin, berat kambus balik berkurangan, 
kebolehtelapan meningkat dan tekanan asas jalur meningkat berbanding dengan 
Kaolin sebagai bahan kambus balik bagi tembok penahan.  
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CHAPTER 1  
 
 
 
 

INTRODUCTION 

 
 
 
 
1.1       Background of the Study 

 
 

Tire Derived Aggregate (TDA) has a low unit weight, is highly permeable 

and insulating. These characteristics make it an excellent choice as fill material for 

embankments build on unstable ground and also for landslide stabilization. TDA can 

be a proper backfill material for retaining walls and bridge abutments. Moreover, it 

may be use for insulation against frost penetration beneath roads, and as a drainage 

layers in landfills. In addition, the reuse of waste tires avoids problems associated 

with their disposal as well as stockpiling as scrap tires. 

 
 

Literatures have shown that combining TDA and cohesive soil brings about 

additional benefits. For instance, adding TDA to cohesive soil reduces the need for 

sand mining and creates more sustainable construction. Kaolin-TDA mixtures are 

lightweight and create less horizontal pressure against the back of a retaining wall. In 

addition to that, the mixture may sustain and provide effective drainage, reduce water 

pressure, and insulation against frost damage to walls. Interestingly, TDA has been 

tested by the University of Maine and used in the construction of the Merrymeeting 

Bridge in Maine (Whetten et al., 1997; Humphrey et al., 1998; Tweedie et al., 1998; 

Cosgrove and Humphrey, 1999). However, the use of shredded tires as a way to 

reduce pressure on rigid frame bridges remains largely untested. 
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In one study, series of triaxial tests were conducted on a mixture of tires chips 

and Ottawa sand (Ahmed, 1993). The results of this study demonstrated that apparent 

cohesion was increased while friction angle decreased when more tire chips were 

added to the mixture. According to Edil and Bosscher (1994) a formulation 

consisting of 25% chips (size 20 to 80mm) and 75% sand resulted in a mixture with 

superior shear strength at low normal stresses. More so, Lee et al. (1999) found that 

dilatancy behavior in TDA-sand was influenced by the stress strain relationship 

between pure sand and pure chips. In a similar study, Rao and Dutta (2006) 

discovered that the stress strain volumes of sand and tire chip mixtures exhibited 

various responses in triaxial compression tests. The results of their study also 

indicated that adding tire chips to sand mixtures may lead to a slight increase in 

frictional angles. The work of Dutta and Rao (2009) showed that triaxial testing on 

TDA mixed with soil was better able to absorb energy and decrease stress when the 

aspect ratio, chip content and confining pressure were increased. 

 
 

Other researchers have also investigated on the performance of mixtures 

composed of sand and waste tires. For instance, Yoon et al. (2008) conducted plate 

load tests on sand reinforced with TDA. The sand samples used in Yoon’s study had 

relative densities of 40%, 50%, and 70%. They found that the Bearing Capacity 

Ratio (BCR) of loose sand improved when the volume of TDA was added. However, 

they also found that BCR decreased when density increased. According to the study 

of Tafreshi and Norouzi (2012), the results of plate load tests on square footing 

resting on soil mixed with TDA was also significantly improved. Overall, direct 

shear tests on material containing scrap tire chips demonstrate that the addition of tire 

chips increases shear strength (Naval et al., 2013). 

 
 

This study investigates Geotechnical properties of Kaolin-TDA mixture as 

backfill material. Also, it compares the effect of various TDA shapes and 

percentages in Kaolin. Physical modeling of the retaining wall is conducted in the 

laboratory using normal and modified soil as backfill. The result of physical 

modeling was verified by the numerical modeling (PLAXIS 2D) for retaining wall 

using the modified soil as backfill. Tables and charts of modified soil properties are 

established that may be used in retaining wall design. 
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1.2       Problem Statement 

 
 

Backfill material with poor permeability used in reinforced structure is of 

great concern as it has resulted in maintenance issues and structural failures (Mitchell 

and Zornberg, 1995). Often, materials with low permeability are used in inexpensive 

wall systems. These systems are vulnerable to deformation and may fail. If fine 

materials such as silt or clay are used as backfill, then any water pressure in the 

regions in front of, behind, or underneath the backfilled area must be collected and 

removed through proper filtration and drainage methods. Moreover, the region above 

the backfilled area must be waterproofed using geomembrane or a geosynthetic clay 

liner. The process is necessary so as to prevent surface water from entering the 

backfilled area (Koerner and Soong, 2001). On the other hand, clay soils have a 

plastic behavior. Therefore, combining the elastic properties of shredded tires with 

the plastic properties of clay soil in a single mixture creates a perfectly Elasto-

plasticity backfill material for retaining walls. 

 
 

Moreover, reutilizing solid wastes like TDA with cohesive soil as backfill 

material would reduce sand mining and preserve the environment to achieve 

sustainable construction. The proper disposal of waste tires is a global issue as an 

environmental problem as the secondary problem statement of this study. Scrap tires 

cannot be easily disposed of by burning because they release pollutants into the water 

and air when they are set alight. When disposed of in landfills, waste tires float to the 

surface and compromise the surface of the landfill providing a way for rodents, 

insects and water to enter the landfill (Figure 1.1). Stockpile of scrap tires represents 

a threat to environment and public health. Fortunately, scrap tires can be reused in 

several ways such as creating tire chips for lightweight fill (Humphrey and Manion, 

1992; Foose et al., 1996; Yoon et al., 2008). In this study, the benefits of Kaolin-

TDA mixtures as a backfill material for retaining walls were examined. 
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Figure  1.1: Stockpiling and burning the waste tire (Environmental Engineering and 

Contracting, 2002) 

 
 
 
 
1.3       Objectives of the Study 

 
 

The aim of this study is to evaluate the performance of Kaolin-TDA mixture 

as a backfill material on reinforced polymer concrete retaining wall. The following 

objectives are identified in order to achieve this aim: 

 
i. To identify material characteristics of Kaolin-TDA mixture including 

different shapes, sizes and amount of the TDA. 

ii. To determine the performance of the polymer concrete retaining wall using 

different backfill material prepared from the Kaolin-TDA mixtures based on 

physical modeling. 

iii. To verify the physical modeling test results with numerical simulation using 

PLAXIS 2D, Genetic Programming (GP) and developing an equation based 

on Multiple Linear Regressions. 
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1.4       Scope of the Study 

 
 

The study investigates the geotechnical properties of Kaolin pre-admixed 

with the TDA, for the purpose of use as a backfill material for polymer concrete 

retaining wall. The scopes of the study are as follows: 

 

i. Test samples were mixed at optimum moisture content obtained from 

compaction test 

ii. The basic tests were performed based on the ASTM (1992) and BS 1377-

(1990). 

iii. Physical modeling tests of the retaining wall were performed in the laboratory 

using Kaolin and Kaolin-TDA mixtures as backfill material. 

iv. The results of physical modeling were verified using commercial numerical 

modeling program PLAXIS 2-D (based on Mohr-Coulomb model), Genetic 

Programming and Multiple Linear Regression while, active force was 

considered for retaining wall and backfill. 

v. Physical modeling tests were conducted in dry condition because the main 

reason for conducting the physical modeling was investigating the use of 

lightweight material as backfill. However, permeability tests were conducted 

to show the increase in permeability for different mixtures.  

vi. In this study the mixing ratio of 0:100, 20:80, 40:60 and 60:40 were chosen to 

conduct the laboratory tests, physical modeling tests and numerical modeling. 

 
 
 
 
1.5       Significance of the Study 

 
 

Consideration of the performance of Kaolin-TDA mixture as backfill material 

on the prepared polymer concrete retaining wall is the most important purpose of this 

investigation. TDA is a light weight material while the use of this waste in 

geotechnical engineering may decrease weight of structures. Hence, Kaolin-TDA 

mixtures prevent overturning in retaining wall because of low horizontal pressure. In 

addition, removal of waste tire as integral parts of solid waste of a nation is a good 



6 
 

solution for saving the environment. The removal can result in because of preventing 

of burning and stockpiling the tire while, thus adding economic value to it. 

 
 
 
 
1.6       Thesis Organization 

 
 

The thesis consists of five chapters. Chapter 1 presents the background, 

problem statements, objectives, scope, and significance of this research. Chapter 2 

reviews previous studies related to this study. Topics such as clay soil properties, 

shredded tire properties, soil-shredded tire applications, fill materials, recycled 

materials, backfill material and retaining wall, polymer concrete, physical modeling 

and numerical modeling were discussed. Chapter 3 describes the research 

methodology including various laboratory tests carried out. The tests included 

compaction test, permeability test and triaxial test on Kaolin mixed with different 

percentages and shapes of Tire Derived Aggregate (TDA). Besides physical 

modeling, equipment and procedures of the loading were illustrated. The design of 

the box and steel strip footing dimensions and instrumentation were addressed. In 

Chapter 4, laboratory test results and the results from the physical modeling tests and 

numerical simulations are presented and discussed. The results cover several issues 

such as the settlement of the improved ground, retaining wall displacement at failure 

and backfill failure modes. The results from triaxial tests on the backfill materials 

were also presented. The effects of shape of TDA, percentage of TDA and 

arrangement of the material particles in mixtures were presented. Furthermore, 

comparison between the Load-displacement of experimental tests with numerical are 

performed. Consequently, the equations were created for predicting the footing 

settlement and wall displacement. Finally, Chapter 5 lists the conclusions and 

recommendations for future research on Kaolin-TDA mixture as a backfill material. 
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