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ABSTRACT 

 

 

 

 

Cold-adapted enzymes are significant with structure flexibility and high 

catalytic activity at low temperature.  High structural flexibility could be due to 

combination of several features such as weak intramolecular bonds, decreased 

compactness of hydrophobic core and reduced number of proline and arginine 

residues. However, to compensate the structural flexibility, cold-adapted enzymes 

are also thermolabile which causes them to be easily inactivated at elevated 

temperature. Therefore, it would be more interesting and beneficial if more stable 

cold-adapted enzymes are produced to fulfill the industrial needs. In this study, a 

novel cold-adapted chitinase (CHI II) from Glaciozyma antarctica PI12 was 

rationally designed to improve their thermostability thus make them more resistant to 

increased temperature.  Four CHI II mutants were designed through rational design 

named as A157Q, I134P, mutant Loop and Y257R by manipulating the structural 

hydrophobicity, introduction of proline in the loop regions, introduction of arginine 

salt bridges and loop shortening.  Mutant Loop was designed by removing 9 residues 

in loop regions thus makes loop involved became shorter.  Stability of all mutants 

was first predicted through a computational approach where all structures were 

subjected to 10 ns molecular dynamics simulation at three temperatures; 273 K, 288 

K and at 300 K.  Based on the simulation, it was found that mutants I134P, mutant 

Loop and Y257R exhibited structural stability at 300 K.  This conclusion was made 

based on low and stable root-mean square deviation (RMSD) value at 300 K in 

comparison to RMSD values at 288 K and 273 K.  Low RMSD values indicated 

mutant structure experienced low structural deviation throughout the simulation.  

Besides, this observation is correlated with reduction of structure compactness 

(radius of gyration), reduced solvent accessible surface area and increased numbers 

of hydrogen and salt bridges.  However, mutant A157Q experienced structure 

destabilization at 300 K.  Substitution of helix-preferred residue, alanine with a 

thermolabile residue, glutamine had caused A157Q structure become loosely packed 

at 300 K indicating a thermal denaturation.  To support the theoretical model, CHI II 

and all mutants were then cloned into Pichia pastoris expression vector pPICZαC 

and expressed in P. pastoris (GS115).   
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ABSTRAK 

 

 

 

 

Enzim tahan sejuk adalah dikenali dengan struktur yang fleksibel serta 

aktiviti bermangkin yang tinggi pada suhu rendah.  Fleksibiliti struktur adalah 

disebabkan oleh kombinasi beberapa ciri seperti ikatan intramolekul yang lemah, 

penurunan kepadatan teras hidrofobik dan pengurangan sisa prolina dan arginina.  

Walau bagaimanapun, untuk menebus kembali fleksibiliti strukturnya, enzim tahan 

sejuk bersifat termolabil yang menyebabkannya mudah untuk ternyahaktif pada suhu 

lampau tinggi.  Oleh itu, ianya sangat menarik dan bermanfaat jika enzim tahan sejuk 

yang lebih stabil dapat dihasilkan bagi memenuhi keperluan industri.  Dalam kajian 

ini, enzim kitinase tahan sejuk (CHI II) dari organisma Glaciozyma antarctica PI12 

telah direkabentuk secara rasional untuk meningkatkan tahap termostabilnya dan 

menjadikan CHI II lebih tahan kepada peningkatan suhu.  Empat mutan CHI II telah 

di rekabentuk melalui rekabentuk rasional yang dinamakan sebagai A157Q, I134P, 

Gelung mutan dan Y257R dengan mengubah suai kehidrofobikan struktur, 

memperkenalkan prolina di kawasan gelung, memperkenalkan titian garam arginina 

serta pemendekan gelung.  Gelung mutan telah direkabentuk dengan pemotongan 9 

sisa di kawasan gelung menyebabkan gelung yang terlibat menjadi semakin pendek.  

Kestabilan kesemua mutan diramalkan terlebih dahulu melalui pendekatan 

pengkomputeran di mana kesemua struktur mutan tertakluk kepada simulasi 10 ns  

dinamik molekul yang dijalankan pada tiga suhu iaitu pada 273 K, 288 K dan 300 K.  

Berdasarkan simulasi yang dijalankan, mutan I134P, gelung mutan dan Y257R 

menunjukkan nilai sisihan punca min kuasa dua (RMSD) yang rendah dan stabil 

pada suhu 300 K, jika dibandingkan dengan nilai RMSD pada 288 K dan 273 K.  

Nilai RMSD yang rendah menggambarkan struktur mutan telah mengalami sisihan 

berstruktur rendah keseluruhan simulasi dijalankan.  Sebaliknya, pemerhatian ini 

berkorelasi dengan penurunan kepadatan struktur (jejari legaran), penurunan luas 

permukaan boleh capai pelarut dan peningkatan ikatan hidrogen serta titian garam.  

Walau bagaimanapun, mutan A157Q mengalami penurunan kestabilan struktur pada 

300 K. Penggantian sisa pilihan heliks, iaitu alanina dengan sisa termolabil, 

glutamina telah menyebabkan struktur A157Q menjadi longgar pada suhu 300 K 

menandakan penyahaslian terma.  Untuk menyokong model teori ini, CHI II dan 

kesemua mutan telah diklon ke dalam vektor ekspresi Pichia pastoris pPICZαC dan 

dinyatakan dalam P. pastoris (GS115).   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Earth’s surface is dominated by low temperature regions including polar 

region, mountains top and oceans which cover 80% of the biosphere where 

temperatures never exceed 5°C.  Low temperatures are known to place severe 

physicochemical constraints on cellular function by negatively influencing cell 

integrity, water viscosity, solute diffusion rate, membrane fluidity, enzyme kinetics 

and macromolecular interactions (Marx et al., 2004).  However, despite most other 

species cannot grow at this low temperature regions, an extremophiles known as 

psychrophiles are able to survive and inhabit this region.  Then the question arises: 

how can psychrophiles survive, let alone thrive under this harsh conditions?  The 

answer is, psychrophiles evolved and adapted to their environments by developing 

unique mechanisms to keep their cellular components stable and active. 

 

 

The ability of psychrophiles to survive in cold regions is therefore dependent 

on numbers of adaptive strategies to successfully counteract those low temperature 

constraints (D’Amico et al., 2006).  One of the strategies is by producing the cold-

adapted enzymes that able to perform their catalysis efficiently under these extreme 

environmental conditions (D’Amico et al., 2006).  For these reasons, cold-adapted 

enzymes have been considered as biotechnological potential due to their ability to 

perform catalysis at low temperatures thus offering advantages in the 
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environmental application and energy savings in industrials processes (Gianese et al., 

2001). 

 

 

While other enzymes are subject to cold denaturation and suffered the loss of 

activity at low temperatures, cold-adapted enzymes are resistant to cold denaturation 

with efficient catalytic activity.  Their survival is correlated with their structural 

flexibility that was believed as a compensation for the freezing effect in cold habitats 

(Johns & Somero 2004).  Structures flexibility of cold-adapted enzymes is the result 

of combination of several features such as increased numbers of hydrophobic side 

chains that are exposed to the solvent, a decrease in the compactness of hydrophobic 

core, a higher number of glycine and lysine residues, a reduced number of proline and 

arginine residues and weakening of intramolecular bonds (Rodrigues & Tiedje 2008).  

However, because of their structural flexibility, cold-adapted enzymes become less 

stable and also thermolabile which cause them to denature at elevated temperature 

(Siddiqui & Cavicchioli 2006). 

 

 

Therefore, cold-adapted enzymes are often engineered either through rational 

design or directed evolution to improve its thermostability.  Thermostability is defined 

as improved long-term survival under mild conditions and increased ability to remain 

active under harsh industrial condition but still retains its catalytic efficiency (Wijma 

et al., 2013).  In this study, a cold-adapted chitinase named as CHI II was used as the 

subject understudied.  Chitinase (EC 3.2.2.14) are categorized under glycosyl 

hydrolases (GH) family and can be found in wide range of organisms such as bacteria, 

fungi, yeasts, plants and mammals.  Capabilities of chitinase to hydrolyse chitin to a 

low molecular weight chitooligomers cause them to have broad potential in industrial, 

agricultural and medicinal functions (Dahiya et al., 2006; Liu et al., 2013; Patil et al., 

2000; Park & Kim 2010; Khan et al., 2015). 

 

 

CHI II was previously isolated from Glaciozyma antarctica PI12 and it's three-

dimensional (3D) structures had been modeled by Ramli et al. (2011, 2012).  Based 

on the structure analysis and primary sequence analysis, several characteristics related 

to cold adaptations were found in CHI II.  CHI II was identified to have less number 

of salt bridges and arginine residues, increase in surface hydrophobicity and reduced 
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number of hydrogen bonds (Ramli et al. 2012).  These characteristics were proved to 

be related to structural flexibility of CHI II which causes CHI II to be thermolabile and 

could not withstand elevated temperature and harsh environment.  In addition to the 

wide potential of chitinases in industrial application and biotechnological application, 

it is best for CHI II to be engineered to improve their thermostability. Based on the 

information obtain from previous study on amino acid affecting thermostability of cold 

adapted chitinase and based on comparison studies between mesophilic, psychrophilic 

and thermophilic enzymes, rational design was used to design CHI II mutants 

(Mavromatis et al., 2003; Siddiqui & Cavicchioli 2006).  Therefore, four mutants of 

CHI II will be designed through rational design and the effect of the mutation will be 

studied using an in-silico approach.  In particular, the mutant’s structure stability will 

be studied through molecular dynamic (MD) simulation at three temperatures: 273 K, 

288 K and 300 K.  This is an indicator of CHI II mutants performance as it reflects the 

ability of the mutants to perform under conditions relevant to an industrial process 

where enzyme is continually affected by temperature elevation. 

 

 

 

 

1.2 Problem Statement 

 

 

About 80 000 metric tons biomass waste of marine invertebrate were produced 

every year and it was predicted that the oceans will be depleted of chitin if this 

insoluble biomass is not converted into simple and recyclable material (Patil et al., 

2000).  Capabilities of cold-adapted chitinases to have high catalytic efficiency and 

high flexibility (low stability) at low temperatures allows them to offer several novel 

opportunities in industrial application.  Because of their inherent flexible structure, 

cold-adapted chitinase was correlated to be thermolabile as their reaction rates 

decrease when the temperature increases.  Hence, this condition becomes a limitation 

for cold-adapted chitinase to be used in industrial application.  Thus, production of 

cold-adapted enzymes chitinase with desired thermostability become an important 

aspect of industrial application which could also help to overcome chitin depletion.  

This can be achieved through mutagenesis of cold-adapted chitinase to improve its 

thermostability without compromising its structurally dependent cold-adapted 

properties (Cesarini et al., 2012).  
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1.3 Objectives 

 

 

The main objective of this study is to analyse the effect of amino acids 

substitution, loop shortening and introduction of the salt bridge in the non-catalytic 

region on CHI II thermostability through in-silico approach. 

 

 

 

 

1.4 Scopes of Study 

 

 

The scope of this study are: 

a) Design four CHI II mutants through rational design. 

b) Construction of four mutants three-dimensional (3D) structures using 

mutagenesis plugin in PyMOL and homology modeling by using Modeller. 

c) Performing the Molecular Dynamics (MD) simulation of CHI II and its four 

mutants at three different temperatures; 273 K, 288 K and 300 K. 

d) Performing comparative trajectories analysis on CHI II and its mutants to study 

the effect of mutation on CHI II thermostability. 
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APPENDIX A 

 

 

 

 

APPENDIX A: TUTORIAL FOR MD SIMULATION 

 

 

 

 

1) Process the pdb file withpdb2gmx 

pdb2gmx –ignh –f inputabf.pdb –o abf.pdb –p abf.top –water spce 

Pdb2gmx command converts the pdb file to a gromacs file and write the topology. 

Points to ponder: 

 What is the total mass of your protein? 

 What is the total charge of your protein? 

 Open the topology file (abf.top) using Gedit, see how the force define protein 

 

2) Set-up box for simulation 

editconf –bt cubic –f abf.pdb –o abf_bsolv.pdb –d 2.0 

Editconf specify the simulation box. ‘-d’ sets the dimension of the box 2.0 nm (20A). 

It should at no less than 0.9 nm for most system. 

 

3) Solvate the box 

genbox –cp abf_bsolv.pdb –cs spc216.gro –o abf_bion.pdb –p abf.top 

Points to ponder: 

 Does the size of your box change after the solvation? 

 How many SOL molecules were added into your simulation box? 

 Any change to your topology file? 

 

4) Neutralize the protein system 

grompp –f ion.mdp –c abf_bion.pdb –p abf.top –o ion.tpr –maxwarn 5 

genion –s ion.tpr –o abf_b4em.pdb –nname CL (–pname NA) –nn 2 (–np 2) –p abf.top 

–g ion.log 

Type “13” for SOL 

Points to ponder: 
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 How many NA and CL had been added into the system? 

 Is there any charge in the topology file? 

 What do the flags used along the genion? 

 

5) Energy Minimization 

grompp –f em.mdp –c abf_b4em.pdb –p abf.top –o em.tpr –maxwarn 5 

mdrun –v –deffnm em 

Points to ponder: 

 What do –v and –deffnm mean? 

 How many steps does the system take to converge? 

 How many output files are there? 

The output will be em.gro. If the Fmax did not converge, repeat the step by changing 

the input and output file (em.mdp file did not change). Take output from first step 

(em.gro) as an input for second step (after ‘-c’ command). The second step output will 

be em2.tpr (after ‘-o’ command). Run the simulation by naming em2 at mdrun step. 

 

6) Position Restrained Molecular Dymanics (equilibration) 

grompp –f pr.mdp –c em.gro –p abf.top –o pr.tpr –maxwarn 5 

Once the pr.tpr is generated successfully, run the position restrained MD 

mdrun –v –deffnm pr 

Points to ponder: 

 Is there any note/warning when grompp is pre-processing the pr.mdp?  

 

7) Convert Gromacs File 

editconf –f file.gro –o file.pdb 

 

8) First Evaluation 

a) First evaluate the system and see the water molecules had been equilibrated or 

not 

b) Compute the RMSD of the protein backbone and plot several graphs 

g_rms –f pr.trr –s pr.tpr –o rmsd_pr 

- Examine using GRACE. xmgrace rmsd_pr.xvg 

- For least square fit and RMSD calculation, select group 4 (Backbone) 
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- The program will generate a plot for RMSD over time 

c)  Examine the temperature: 

g_energy –f pr.edr –o temperature_pr 

- Select ‘14’ (Temperature) 

- Examine using GRACE. xmgrace temperature_pr.xvg 

d) Use g_energy to plot density_pr.xvg and pressure_pr.xvg, use xmgrace 

command to plot the graph. 

e) System had been equilibrated and may proceed to the production stage when: 

a. The temperature plot stabilized/constant at 300K 

b. The average reading for density_pr.xvg and pressure_pr.xvg are 1000 

kg/m3 and 1.05 bar respectively 

 

9) Production Stage 

grompp –f md.mdp –c pr.gro –p abf.top –o md.tpr –maxwarn 5 

mdrun –v –deffnm md 

 

 

10) Trajectories analysis 

Time evolving coordinates of a system are called trajectories. Trajectory files (*.trr) 

are normally binary files that contain several sets of coordinates for the system. 

a) Compress the trajectory  

trjconv –f md.trr –s md.tpr –o md.xtc –pbc nojump 

b) Analyse the energy output ( same for potential energy, kinetic energy and total 

energy) 

g_energy –f md.edr –o xxx and plot xmgrace –nxy xxx.xvg,  

c) Measure radius of gyration and select ‘4’ (Backbone). 

 g_gyrate –f md.trr –s md.tpr –o abf_gyrate.xvg  

d) Measure RMSD of the structure by and select ‘4’ (Backbone). 

g_rms –s md.tpr –f md.trr –dt 10 –o md_rmsd.xvg  

e) Compare RMSD to the NMR structure and select ‘4’ (Backbone) 

g_rms –s em.tpr –f md.trr –o abf_rmsd.xvg  

f) RMS fluctuation of atom positions and select ‘3’ (C-alpha). 

g_rmsf –s md.tpr –f md.trr –b 200 –e 1000 –o abf.rmsf  

g) RMSF to compute average structures and select ‘1’ (Protein). 
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g_rmsf –s md.tpr –f md.trr –b 800 –e 1000 –o abf_xvg.pdb  

h) Analyse the secondary structure of model by and select ‘1’ (Protein). 

do_dssp –s md.tpr –f md.trr –o abf_ss.xpm –dt 10  

  




