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ABSTRACT 

Carbon capture and storage is gaining prominence as a means of combating 
climate change. Mineral carbonation is the only known form of permanent and 
leakage-free carbon storage. The aim of this research was to investigate the 
suitability and feasibility of utilizing red gypsum as the calcium source for the 
mineral carbonation process. The physico-chemical analysis of red gypsum showed 
that calcium and iron are its major constituents, which makes it a highly suitable and 
potential feedstock for mineral carbonation. The direct carbonation of red gypsum 
showed that both the purity of the product and the efficiency of the reaction were 
very low even at elevated reaction temperature and CO2 pressure. The maximum 
CaCO3 purity of 23.63% and carbonation efficiency of 41.04% were achieved during 
direct aqueous carbonation of red gypsum. The red gypsum dissolution studies 
showed that H2SO4 resulted in higher calcium extraction efficiency compared to HCl 
and HNO3. Increasing the reaction temperature from 30 °C to 70 °C and also 
increasing the reaction time from 5 to 120 minutes were found to be effective in 
enhancing the degree of extraction for all three types of acid used. The maximum of 
100% and 84.6% extraction efficiency was achieved for Ca and Fe, respectively. 
Kinetic analysis found that the dissolution rate of red gypsum is controlled by the 
combination of product layer diffusion and chemical reaction control. The 
carbonation efficiency was found to be in direct relationship with CO2 pressure 
where the maximum carbonation efficiency of 100% was achieved at 8 bar CO2 
pressure. The pH swing experiments resulted in CaCO3 with a maximum purity of 
98%. The pH swing carbonation of red gypsum could be further investigated as a 
promising method for large scale CO2 sequestration.   
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ABSTRAK 

Pemerangkapan dan penyimpanan karbon semakin terkenal sebagai satu cara 
untuk mengatasi masalah perubahan iklim. Pengkarbonan mineral adalah satu-
satunya cara yang diketahui sebagai kaedah penyimpanan karbon secara kekal dan 
bebas daripada kebocoran. Kajian yang dijalankan ini adalah bertujuan untuk 
mengkaji kesesuaian dan kebolehlaksanaan penggunaan gipsum merah sebagai 
sumber kalsium untuk proses pengkarbonan mineral. Analisis fisiko-kimia ke atas 
gipsum merah menunjukkan bahawa kalsium dan ferum adalah juzuk utamanya, 
yang menjadikan ianya sangat sesuai dan berpotensi sebagai sumber bahan mentah 
bagi proses pengkarbonan mineral. Proses pengkarbonan langsung ke atas gipsum 
merah menunjukkan hasil tindakbalasnya adalah sangat rendah terutama darisegi 
ketulenan produk dan kecekapan tindakbalasnya walaupun tindakbalas dijalankan 
pada suhu dan tekanan CO2 tinggi. Dalam proses pengkarbonan berakues langsung 
pada gipsum merah, didapati ketulenan maksimum sebatian CaCO3 yang dicapai 
adalah 23.63% manakala kecekapan pengkarbonan adalah sebanyak 41.04%. Kajian 
kebolehlarutan gipsum merah menunjukkan bahawa H2SO4 menghasilkan kecekapan 
pengekstrakan kalsium lebih tinggi berbanding dengan HCl dan HNO3. Peningkatan 
suhu tindak balas daripada 30 °C hingga 70 °C dan juga masa tindak balas dari 5 
hingga 120 minit didapati lebih berkesan dalam meningkatkan tahap pengekstrakan 
kalsium apabila menggunakan ketiga-tiga jenis asid tersebut. Kecekapan 
pengekstrakan maksimum sebanyak 100% telah dicapai bagi Ca, manakala bagi Fe 
adalah 84.6%. Analisis kinetik mendapati bahawa kadar kebolehlarutan gipsum 
merah dipengaruhi oleh gabungan dua faktor iaitu serapan lapisan hasil bahan dan 
kawalan tindak balas kimia. Kecekapan pengkarbonan didapati mempunyai 
hubungan secara langsung dengan tekanan CO2, yang mana kecekapan 
pengkarbonan maksimum 100% dicapai pada tekanan CO2 8 bar. Eksperimen pH-
berubah dapat menghasilkan sebatian CaCO3 dengan ketulenan maksimum sebanyak 
98%. Dengan ini didapati bahawa pengkarbonan pH-berubah ke atas gipsum merah 
boleh dikaji selanjutnya kerana ianya amat berpotensi sebagai satu kaedah untuk 
proses pemencilan- CO2 yang berskala besar. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

 

It is postulated that the current warming of the global climate is the result of 

the increase in anthropogenic greenhouse gas (GHG) emissions, particularly carbon 

dioxide (CO2) since the beginning of the industrial revolution (IPCC, 2007). The av-

erage atmospheric CO2 has increased from 280 ppm in the 1750s to 389 ppm in 2010 

(IPCC, 2005; IPCC, 2007; Bobicki et al., 2012). The increase in atmospheric CO2 

over the last two and a half centuries has been attributed to two major anthropogenic 

forcing fluxes: (i) emissions from fossil fuel combustion and industrial processes and 

(ii) land use change (Canadell et al., 2007; IPCC, 2007; Raupach et al., 2007). Be-

cause the use and supply of global energy is projected to grow, especially as develop-

ing countries pursue industrialization, fossil fuels are expected to maintain their dom-

inance in the global energy mix until 2030 and beyond. If no proactive mitigative 

action is taken, energy-related CO2 emissions are likely to be 40-110% higher in 

2030 than they were in 2000 (23.5 Gt CO2 per annum) (IPCC, 2007; IEA, 2011). The 

latest figures indicate that the world CO2 emission from fuel combustion was 29.4 Gt 

in 2008 (IEA, 2011). By 2100, atmospheric CO2 concentrations could reach 540-970 

ppm (IPCC, 2001), resulting in a global mean temperature increase of 1.8–4 ºC 

(IPCC, 2005). It is recognized that a temperature increase of this magnitude would 

have wide-ranging and drastic implications for water and food availability, human 

health, ecosystems, coastlines and biodiversity (Kiehl and Trenberth, 1997; Yamasa-
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ki, 2003; IEA, 2003; Feely et al., 2004; IPCC, 2005; van Alphen et al., 2010a; 

Bobicki et al., 2012).  

Reducing the energy intensity, switching to non–fossil fuels, and enhancing 

CO2 sequestration by developing technologies to capture and sequester more CO2 are 

the available and applicable methods of reducing the CO2 concentration. However, in 

a short-to-medium period, CO2 sequestration methods are necessary to implement to 

avoid further increase of CO2 (Raupach et al., 2007; Bobicki et al., 2012). The con-

tribution of up to 15!55% of the cumulative global climate change mitigation effort 

by 2100 has been predicted by carbon capture and storage (CCS) methods. Moreo-

ver, improvements of CO2 sequestration methods, the increase of their effectiveness 

and the change to a carbon-free fuel, such as renewables, are very important to 

achieve a sustainable energy system (Yamasaki, 2003; IPCC, 2005). 

The basic steps of CCS methods consist of post–combustion and pre–

combustion CO2 capture, separation from other gases, transportation to the sites, and 

CO2 isolation from the atmosphere via storage. CO2 sequestration is a process that 

involves all four steps of CO2 capture, separation, transportation, and finally storage. 

Geological CO2 storage, ocean storage, below seabed storage, and CO2 mineral se-

questration are the practical techniques of CO2 sequestration (Svensson et al., 2004; 

Gibbins and Chalmers, 2008; Olajire, 2010). 

Geological storage is the injection of CO2 into abandoned underground 

gas/oil fields or saline formations to improve the oil, gas, and coal bed methane re-

covery from reservoirs. Several projects operating in Norway (such as the Sleipner 

project), Canada, Algeria, Australia, and other locations are examples of the use of 

this method throughout the world. However, the lack of permanency, the risk of 

leakage and the post–monitoring of the site are the problems and challenges associat-

ed with this method (IPCC, 2005). CO2 injection into the great depth of ocean water 

results in carbonate production due to the reaction of CO2 with ocean water and car-

bonic acid dissociation. Ocean storage is very suitable for CO2 reduction; however, 

environmental issues, such as decreasing of water pH and the lack of permanency, 



3 
!

have made this method unattractive in recent years (Huesemann, 2006; Bobicki et 

al., 2012). CO2 storage below the ocean floor at depths of at least 3,000 m of ocean 

and several hundred meters of marine sediment is called below seabed storage. The 

lack of permanency and post–monitoring of the site (negative points of geological 

and ocean storage) do not exist with below seabed storage method; however, this 

method is still new and requires further research (House et al., 2006).  

Mineral carbon dioxide sequestration is an exothermic chemical reaction of a 

metal–bearing oxide, usually calcium (Ca), magnesium (Mg), or iron (Fe), with CO2 

to form stable solid carbonates. Carbonation can take place either in-situ or ex-situ 

(Bobicki et al., 2012). In–situ carbonation is the reaction of CO2 with Mg and Ca 

minerals underground where CO2 is being injected, and ex-situ carbonation is the 

same reaction taking place above ground in a chemical processing plant (Lackner et 

al., 1995; Gerdemann et al., 2004). The CO2 mineralization, or mineral carbonation, 

is an artificial rock weathering and was first proposed by Seifritz in 1990, whereas 

natural rock weathering is a geological time-scale process (Seifritz, 1990). Mineral 

carbonation provides a permanent and leakage–free CO2 disposal method in that the 

produced carbonates are environmentally benign and stable (Maroto–Valer et al., 

2005). The produced carbonates are also profitable because Ca and Mg carbonates 

are widely used industrially, such as in papers, paints, plastics, adhesives, sealants, 

cosmetics, flooring, fireproofing and fire–extinguishing industries (Bobicki et al., 

2012).   

Alkaline earth metals, such as Ca and Mg, are the most favorable metals for 

mineral carbonation (Huijgen and Comans, 2003). However, these minerals are usu-

ally rare in nature due to their high reactivity, and they usually appear in the form of 

silicates. The most common natural silicate minerals are olivine (Mg2SiO4), wollas-

tonite (CaSiO3), and serpentine (Mg3Si2O5(OH)4) (Lackner et al., 1995; Huijgen and 

Comans, 2003). In addition to the natural minerals, industrial solid residues and 

wastes rich in Mg and Ca are also potential materials to be used as carbonation feed-

stocks. Some more investigated and well–known waste solids, such as waste ashes, 

waste cement, steelmaking slag, and mining wastes, can also be used as carbonation 
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feedstocks (Bertos et al., 2004; IPCC, 2005; Bonenfant et al., 2008a, Dri et al., 2013; 

Dri et al., 2014).  

Red gypsum (RG) is a by-product produced during titanium dioxide (TiO2) 

production from ilmenite (FeTiO3) ores. Ilmenite contains approximately 43-65% 

titanium dioxide and is widely used as raw material for titanium dioxide manufactur-

ing. Titanium dioxide is extracted from ilmenite through stepwise processes. The 

first step is the chemical reaction of ilmenite with sulfuric acid to digest the ore. In 

this step, the titanyl sulfate (TiOSO4) and iron sulfate (FeSO4) are produced. The se-

cond step is the clarification of produced liquor through solid separation. This is fol-

lowed by the hydrolyzation of the liquor by steam for TiO2 precipitation. Finally, the 

hydrated TiO2 is separated and washed with water to remove the impurities. The neu-

tralization of the spent sulfuric acid during TiO2 extraction with limestone and lime 

produces a by-product named RG (CaSO4.2H2O). In the next step, the RG is filtered 

and separated from water, and the produced water is recycled in the process. This 

waste product is disposed of in landfill areas or left as stacks close to the titanium 

dioxide industry. RG is rich in Ca and Fe (more than 70%), which makes it a very 

potential feedstock for mineral carbonation. The titanium dioxide industry in Malay-

sia produces 400,000 tons of RG annually that could be utilized for CO2 sequestra-

tion (Fauziah et al., 1996, Azdarpour et al., 2014). 

1.2 Problem Statement  

One main technical parameter makes the mineral carbonation process indus-

trially viable. The process must result in high carbonation efficiency and products 

purity at low operating conditions, which means at low CO2 pressure and reaction 

temperature (Bobicki et al., 2012). The main barriers to the commercial deployment 

of mineral carbonation are low carbonation conversion and slow reaction kinetics. It 

has been stated in the literature that carbonation through direct mineral carbonation 

results in low carbonation efficiency and product purity. This is because the process 

suffers from thermodynamic limitations, which results in low overall carbonation 



5 
!

efficiency (O'Connor et al., 2000a; O'Connor et al., 2000b; Gerdemann et al., 2004). 

In some of the studies in the literature, moderately high carbonation efficiencies have 

been reported; however, critical analysis of those studies reveals that relatively high 

CO2 pressure and reaction temperature have been utilized. This inherently increases 

the overall cost and required energy of the project and prevents the project from be-

ing implemented in large-scale (Lackner et al., 1997; Fauth et al., 2000; Fauth et al., 

2002; Goldberg and Walters, 2002). In some of the studies in the literature, even at 

relatively high CO2 pressure and reaction temperature, the overall carbonation effi-

ciency is still low, which hinders the process from being implemented in large-scale 

(Béarat et al., 2002; Huijgen et al., 2006; Lammers et al., 2011). Another problem 

arises from mining and pretreatment of feedstocks. The natural minerals require min-

ing activities, energy-intensive pre-treatments, such as fine grinding, heat treatment, 

and chemical activation with strong acids, to provide adequate conversions and reac-

tion kinetics. These activities increase the overall required energy of the carbonation 

process (Lackner et al., 1997; O’Connor et al., 2001; Goldberg et al., 2002; Huijgen 

et al., 2006; Teir et al., 2005; Teir et al., 2007a; Teir et al., 2007b).  

Therefore, carbonation through an indirect process has been proposed in this 

study to improve the carbonation efficiency and product purity. In addition, this re-

search is aimed to utilize the by-product red gypsum, an industrial waste rich in Ca 

and Fe, as a feedstock for the mineral carbonation process.  

1.3 Research Objectives 

This research investigated the suitability and feasibility of utilizing RG as the 

Ca source for mineral carbonation processes. In addition, this research also investi-

gates the effects of different reaction conditions, such as temperature, CO2 pressure 

and particle size, on the overall carbonation process in a wide range, not only at cer-

tain limited values. Based on the research novelty and also the contributions to the 

literature, the objectives of this research are defined as follows:  
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1. To determine physico-chemical properties of red gypsum as the feedstock  

2. To evaluate the feasibility of the red gypsum for carbonation through direct 

carbonation  

3. To evaluate the efficiency of calcium and iron extraction from red gypsum by 

using different acids and bases along with kinetic analysis for indirect car-

bonation process  

4. To determine the effect of CO2 pressure on the overall carbonation of pH 

swing process  

1.4 Research Scope  

In this research, RG (CaSO42H2O), a by-product from the titanium dioxide 

industry that is rich in Ca and Fe, is selected as the potential feedstock for mineral 

carbonation purposes. This research consists of four main steps, including characteri-

zation of raw red gypsum in the first step, direct carbonation of RG in the second 

step, Ca extraction from RG in the third step and, finally, implementation of the pH 

swing process at different CO2 pressures. These four main steps are designed and 

aimed in such a way to cover all objectives of this study.   

RG is characterized physically, chemically, and mineralogically using induc-

tively coupled plasma optical emission spectrometry (ICP-OES), flourier transform 

infrared (FT-IR) spectroscopy, X-ray fluorescence (XRF) analysis, thermogravimet-

ric analysis (TGA), field emission scanning electron microscopy (FESEM), particle 

size distribution (MASTERSIZER 2000) analysis, and X-ray diffraction (XRD) 

analysis.  
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For the direct carbonation of RG, different CO2 pressure of 1 to 70 bar in con-

junction with different reaction temperature of 25 to 300 °C applied. In addition, RG 

with several range of particle size of less than 45 microns, 45-75, 75-100, 100-212, 

212-300, 300-400, and 400-500 microns utilized. In these experiments, NH4OH used 

as a basic solution in all experiments. All carbonation experiments conducted in a 

100 mL autoclave mini reactor capable of withstanding a maximum pressure of 200 

bar and maximum temperature of 450 °C.  

In the third step of this research, H2SO4, HCl and HNO3 with variable con-

centrations of 0.1 to 4 M utilized to extract Ca from RG. A stirring rate of 1000 rpm 

used consistently in all experiments. The reaction temperatures of 25, 30, 50 and 70 

°C in conjunction with variable reaction times of 5 to 120 min utilized. All dissolu-

tion experiments carried out in a 500 mL spherical glass batch reactor. In addition, 

the kinetic analyses performed using heterogeneous reaction models and pseudo-

homogeneous models. Finally, Arrhenius plot used to calculate the activation ener-

gies (Ea).  

In the final step, initially 2 M H2SO4 was used for RG dissolution at 70 ºC 

with 60 min reaction time and 1000 rpm stirring rate. NH4OH was used to remove 

impurities from the Ca-rich solution. The carbonation experiments performed under 

CO2 initial pressure of 1 to 70 bar at a constant reaction temperature of 25 °C. A 100 

mL autoclave mini reactor with temperature controller was used for all carbonation 

experiments.  

1.5 Significance of the Study 

Increasing anthropogenic greenhouse gas emissions and, in particular, CO2 

have caused the current warming of the global climate (Canadell et al., 2007; IPCC, 

2007). Excessive fossil fuel combustion, industrial processes and land use changes 

are considered as the main causes of increasing the atmospheric CO2 concentration 
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(IPCC, 2007; Raupach et al., 2007). In this regard, stabilization of the atmospheric 

CO2 concentration is of great importance (Bobicki et al., 2012). CCS involves sepa-

ration of CO2 from gaseous wastes, transportation to storage sites and, finally, long 

term isolation from the atmosphere. CCS has been proposed as a bridging technology 

that will allow CO2 emissions to be managed during fossil fuel dependence while the 

effort for the use of renewable energy sources steadily increases (van Alphen et al., 

2010a, van Alphen et al., 2010b). Mineral carbon sequestration of RG is one of the 

CCS technologies that provide a safe and leakage-free CO2 isolation. This study is 

aimed to discover implementations that will reduce the atmospheric CO2 concentra-

tion. This is because RG contains significant amounts of Ca and Fe (more than 33%), 

which makes it a very potential feedstock for mineral carbon sequestration processes. 

Therefore, mineral carbonation of RG will be able to play a significant role in reduc-

ing the concentration of CO2 in the atmosphere. The objectives of this study are de-

signed in such a way that the findings can contribute to the literature data significant-

ly.  

This study presents various major contributions to the literature. This research 

provides comprehensive details regarding the physical and chemical properties of 

RG. The findings of RG’s characterization can be used as a reference for future 

works. This study also provides knowledge to determine the most effective acid for 

maximizing the extraction rate of Ca from RG. In addition, the kinetics involved dur-

ing Ca extraction from RG are introduced. Moreover, this study provides compre-

hensive knowledge regarding the feasibility of direct and indirect carbonation of RG. 

The carbonation efficiency and CaCO3 purity are investigated in direct and indirect 

carbonation under different operating conditions. These findings can be used as valu-

able references for designing the most effective and feasible carbonation method 

with the aim of maximum conversion rate with minimum energy loss.  

Another significance of this study is the possibility of waste management. RG 

is considered a waste of titanium extraction industries that is usually accumulated in 

landfills. Malaysia is considered one of the major RG producers in the world. There-

fore, utilization of this waste as a potential feedstock for mineral carbonation pro-

cesses, alongside process optimizations for large-scale implementation could be a 
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significant achievement in CO2 mitigation strategies. In addition, the produced car-

bonates have some industrial applications, such as in papers, paints, plastics, adhe-

sives, sealants, cosmetics, flooring, fireproofing and fire–extinguishing industries 

(Eloneva et al., 2008; Eloneva et al., 2010, Bobicki et al., 2012).  

1.6 Organization of the Thesis 

This thesis is organized into six chapters. A brief outline of the contents of 

the thesis is as follows: 

Chapter 1 presents an introduction to the research problem. It involves the 

background and significance of the research, as well as the problem statement and 

contributions. 

Chapter 2 is devoted to the literature study that has been carried out in rela-

tion to subjects concerning this thesis. Firstly, energy dependency on fossil fuels and, 

consequently, GHG emissions and the global warming phenomenon are studied. 

Secondly, CCS as one of the key elements in CO2 mitigating scenarios is reviewed 

and discussed. Finally, mineral carbonation as the main focus of this research is criti-

cally described and reviewed. Suitable feedstocks, carbonation routes and parameters 

affecting the overall process are critically addressed.  

Chapter 3 focuses on introducing methodologies to achieve the designed ob-

jectives of this research. Methodologies to conduct RG characterization, direct car-

bonation of RG, Ca/Fe extraction from RG, and pH swing carbonation of RG are ful-

ly designed and described in this chapter.  

Chapter 4 presents the results of RG characterization as well as direct car-

bonation of RG. The characterization studies include physical and chemical analysis 

of RG. The results of direct carbonation of RG are expressed in terms of product pu-
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rity and carbonation efficiency with respect to variable RG particle size, different 

CO2 pressure and reaction temperature.   

Chapter 5 presents the results of RG dissolution and pH swing carbonation. 

In the first section, the dissolution results are presented in terms of Ca/Fe extraction 

efficiency with respect to different reaction temperatures and times. In addition, ki-

netic analysis results are also provided to support the experimental findings. In the 

second section, the results of the pH swing carbonation experiments with different 

CO2 pressures are provided. The results are expressed in terms of product purity, 

carbonation efficiency and removal efficiency. 

Chapter 6 sums up the research findings and outlines the directions for fu-

ture research works. 
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