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ABSTRACT 

 

 

 

 

Various dyes that had been widely used in industries may produce harmful 

effects to the living organisms and the environment if not treated properly before being 

discharged into water bodies. Photocatalytic decolourization is one of the promising 

techniques to degrade dyes due to its mild operating conditions and green technology 

process. In this study, the effects of titanium dioxide (TiO2) supported on 

mesostructured silica nanoparticles (MSN) under different preparation methods were 

investigated for photocatalytic decolourization of congo red (CR). The microwave-

synthesized mesoporous titania nanoparticles (MTN) supported on MSN were 

prepared by impregnation method (MTN/MSN), while electrogenerated TiO2 was 

supported on MSN by in-situ electrochemical (TiO2/MSN-E) and impregnation 

(TiO2/MSN-I) methods, respectively. The properties of the catalysts were 

characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) 

spectroscopy, Nitrogen adsorption-desorption, electron spin resonance (ESR) analysis 

and 29Si magic angle spin nuclear magnetic resonance (29Si MAS NMR). The results 

indicated that the introduction of MTN and TiO2 did not change the lattice structure of 

MSN but decreased the surface area and pore volume of the catalysts as a consequence 

of pore blockage. The photocatalytic activity of the catalysts towards decolourization 

of 10 mg L-1 CR at pH 5 with 1.0 gL-1 catalyst after 5 h was in the following order: 

TiO2/MSN-E > MTN/MSN > TiO2/MSN-I. The TiO2/MSN-E (94 %) showed the best 

performance compared to other catalysts, probably due to the presence of abundant Si-

O-Ti bonds oxygen vacancies and titanium site defect in MSN frameworks. The 

kinetics study of the catalysts indicated that decolourization of CR followed the pseudo 

first order Langmuir-Hinshelwood model. The response surface methodology study 

for TiO2/MSN-E catalyst demonstrated good significance of model with a high 

coefficient of determination (R2 = 0.9698) and a regenerated study showed that the 

catalysts were still stable after 5 cycles. The employment of the catalyst on 

decolourization of simulated dyes revealed remarkable performance, suggesting the 

potential use of the catalysts for textile wastewater treatment. 
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ABSTRAK 

 

 

 

 

Pelbagai pencelup yang telah digunakan secara meluas dalam industri mungkin 

mendatangkan kesan berbahaya kepada organisma hidup dan persekitaran jika tidak 

dirawat dengan betul sebelum dilepaskan ke dalam sumber air. Penyahwarna 

fotopemangkinan adalah salah satu teknik yang meyakinkan untuk mengurai pencelup 

kerana keadaan operasi yang sederhana dan proses teknologi hijau. Dalam kajian ini, 

kesan titanium dioksida (TiO2) disokong pada mesostruktur silika zarahnano (MSN) 

terhadap kaedah penyediaan yang berbeza telah dikaji terhadap penyahwarna 

fotopemangkinan merah kongo (CR). Sintesis-ketuhar gelombang mikro liang meso 

titania zarahnano (MTN) telah disokong pada MSN dengan menggunakan teknik 

pengisitepuan (MTN/MSN), manakala penjana elektron TiO2 telah disokong pada 

MSN dengan in-situ elektrokimia (TiO2/MSN-E) dan pengisitepuan (TiO2/MSN-I). 

Sifat-sifat pemangkin telah dicirikan dengan menggunakan pembelauan sinar-X 

(XRD), spektroskopi inframerah transformasi Fourier (FTIR), penjerapan-

penyahjerapan nitrogen, analisis resonans putaran elektron (ESR) dan 29Si putaran 

sudut ajaib resonans magnet nukleus (29Si MAS NMR). Hasil kajian menunjukkan 

bahawa pengenalan MTN dan TiO2 tidak mengubah struktur kekisi MSN tetapi 

mengurangkan luas permukaan dan isipadu liang mangkin disebabkan liang tersumbat. 

Aktiviti fotopemangkinan pemangkin terhadap penyahwarnaan 10 mg L-1 CR pada pH 

5 apabila menggunakan 1.0 g L-1 pemangkin selepas 5 jam adalah dalam turutan 

berikut: TiO2/MSN-E > MTN/MSN > TiO2/MSN-I.  TiO2/MSN-E (94 %) 

menunjukkan prestasi yang terbaik berbanding pemangkin yang lain, mungkin 

disebabkan oleh kehadiran ikatan Si-O-Ti yang banyak, kekosongan oksigen dan 

kecacatan tapak titanium dalam kerangka MSN. Kajian kinetik pemangkin 

menunjukkan bahawa penyahwarnaan CR mengikut tertib model pertama pseudo 

Langmuir-Hinshelwood. Kajian kaedah gerak balas permukaan untuk pemangkin 

TiO2/MSN-E menunjukkan model penemuan baik dengan pekali penentu yang tinggi 

(R2 = 0.9698) dan kajian kebolehgunaan semula menunjukkan pemangkin masih stabil 

selepas 5 kitaran. Penggunaan pemangkin terhadap penyahwarnaan pencelup simulasi 

menunjukkan prestasi luar biasa, mencadangkan potensi penggunaan pemangkin 

untuk rawatan air sisa tekstil. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Textile dyes and other industrial dyestuffs constitute one of the largest groups 

of organic compounds, which contribute to an increasing environmental danger if not 

treated properly (Pouretedal and Keshavarz, 2010). The wastewater from dye industry 

containing toxic aromatic amine compounds are carcinogenic, harmful for skin, eye, 

blood and reproductive cell of human body, and threaten the aquatic organisms 

(Mohanta et al., 2013). There are more than 100,000 commercially available dyes with 

7×105 tons of dyestuff production annually (Khataee et al., 2010; Darus et al., 2005) 

and the synthetic origin and complex aromatic structures of dyes make them stable and 

difficult to be biodegraded (Srinivasan and Viraraghavan, 2010).   

 

 

Dye wastewater is one of the most difficult wastewaters to treat thus the 

removal of this toxic dye is considered as one of the important challenges in recent 

years (Abdel-Messih et al., 2013). A wide range of methods has been developed for 

the removal of synthetic dyes from waters and wastewaters to decrease their impact on 

the environment (Forgacs et al., 2004). The traditional wastewater treatment 

technologies including adsorption, coagulation or enzymatic decomposition have 
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proven to be markedly ineffective for handling wastewater of synthetic textile dyes 

because of the chemical stability of these pollutants. Besides that, the use of these 

techniques were also contribute to the production of secondary pollution, high cost and 

disable to treat all type of dyes (Lachheb et al., 2002). 

 

 

In recent time, advance oxidation process (AOP) appears to be promising 

technique to remove the pollutants because it is one of the simple and low cost 

processes. AOP rely on in situ generation of highly reactive radical species, mainly 

•OH by using solar, chemical or other forms of energy. The most attractive feature of 

AOPs is that this highly potential and strongly oxidizing radical allows the destruction 

of a wide range of organic chemical substrate with no selectivity (Gaya and Abdullah, 

2008). Among AOP, heterogeneous photocatalysis using semiconductors such as 

TiO2, ZnO, WO3, Fe2O3, CuO, ZrO2, and CdS has proved to be of real interest as 

efficient tool for degrading both aquatic and atmospheric organic contaminants. These 

semiconductors can convert a wide range of harmful dyes into non-toxic products, CO2 

and water at ambient temperatures (Houas et al., 2001; Sapawe et al., 2013a).  

 

 

Among all the catalysts, TiO2 is a well-known and most popular photocatalyst 

since it is relatively inexpensive to produce, non-toxic and chemically stable (Koodali 

and Zhao, 2010). It has a large number of applications such as environmental 

purification, decomposition of organic contaminants, generation of hydrogen gas, etc 

(Belhekar et al., 2002). However, TiO2 catalyst has some drawbacks such as wide band 

gap, high electron-hole recombination rate, large particle size and small surface area 

that limits its application range (Liu et al., 2015). To overcome those shortcoming, lot 

of researches nowadays focused on the modification of this catalyst by addition of 

mesoporous support.  

 

 

From the practical point of view, the ideal support for photocatalysis must 

satisfy several criteria as follows: (i) strong adherence between catalyst and support, 

(ii) non-degradation of the catalyst reactivity by the attachment process, (iii) offer a 

high specific surface area and (iv) have a strong adsorption affinity towards the 
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pollutants (Shan et al, 2010). In addition, the catalyst support influences the catalytic 

performance through structural features and the interaction between the materials leads 

to enhancement of the contact between the surface and the irradiation (Zhang et al., 

2010). Mesoporous silica (MS) is a suitable candidate to be used as a support due to 

its high surface area, highly uniform pore distribution, tunable pore size and unique 

hosting (Karim et al., 2012). Besides that, MS has high adsorption capacity that 

facilitate the photocatalytic reaction. In response to this, mesostructured silica 

nanoparticles (MSN) has become increasingly important because it also has such 

properties which offers considerable potential as an excellent solid support for 

immobilization of heterogeneous catalysts.  

 

 

Regarding all the factors, herein, we report three types of TiO2 supported on 

MSN and study its performance in photocatalytic decolourization of congo red (CR).  

Next, the potential of the catalyst was investigated on photodecolourization of 

simulated dye wastewater by using the optimum reaction condition.  

 

 

 

 

1.2 Problem Statement 

 

 

Recently, the disposal of untreated effluents from many dye industry to the 

environment often leads problems to humans and aquatic life. This phenomenon 

seriously affects the nature of water, inhibits sunlight penetration and reduces 

photosynthetic reactions. In addition, some dyes are either toxic or carcinogenic if not 

treated properly (Mittal et al., 2010). To overcome this problem, several methods for 

the removal of dyes have been reported, including chemical and biological oxidation, 

adsorption, coagulation and flocculation, electrochemical oxidation, ion exchange and 

membrane separation (Jusoh et al., 2013; Sapawe et al., 2013b). However, these 

methods have their own drawbacks of being time consuming, expensive, and 

commercially unattractive as well as the generation of secondary wastes. 
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The use of a heterogeneous photocatalysts for wastewater treatment has 

become more popular because it can be operated in mild conditions and transforms the 

toxic organic pollutants into nontoxic products (Zangeneh et al., 2015). In recent years, 

TiO2 have attracted great interest of many researcher for their peculiar properties, such 

as photostability, largely available, inexpensive and non-toxic (Yang et al., 2006; 

Jaafar et al., 2015a). However, it also shows some disadvantages such as lower surface 

area, easy to agglomerate into large particles and the separation or recovery of catalyst 

is difficult which has limited its application (Kuwahara and Yamashita, 2011).  

 

 

Many researchers focused on synthesis of mesoporous titania with high 

specific surface area or loading TiO2 with porous materials such as zeolite to improve 

its activity (Li et al., 2005; Yang et al., 2006). However, like most of the conventional 

zeolites, it is suffers from intracrystalline diffusion limitations due to the small size of 

its micropores. Accordingly, intensive research has been done to overcome this 

limitation, focusing on the synthesis of Ti-containing materials with enhanced 

accessibility to the reactive sites with large pores such as mesoporus silica (MS) 

(Corma et al., 1999; Cundy et al., 2003; Ke et al., 2007). Linking chemically TiO2 

particles and dispersing them inside the pores of MS materials allows the suitable mean 

pore size induce and control the oxide particle growth, uniformity of size, as well as 

to stabilize and prevent agglomeration of the particles (Acosta-Silva et al., 2011). 

Thus, this approach generates a large number of active sites which are used for 

adsorption/desorption of reactants or products. MS also have high surface area with a 

uniform and tunable pore size, which offers considerable potential as an excellent solid 

support for immobilization of heterogeneous catalysts and enhances the photocatalytic 

activity (Jusoh et al., 2013). In this study, we reported e new method preparing TiO2 

supported onto MSN and it is expected that the introduction of TiO2 on MSN can 

increase the surface area and number of active sites, thus enhance the photocatalytic 

activity.   
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1.3 Objective of Study 

 

 

The aims of this study are: 

 

1. To synthesize TiO2 and TiO2 supported on MSN using different preparation 

method and study the physico-chemical properties of a catalysts. 

2. To investigate the photoactivity of the catalysts on decolourization of congo 

red (CR). 

3. To study the mechanism and kinetics of the CR photodecolourization over the 

catalyst 

4. To optimize the photocatalytic decolourization by response surface 

methodology (RSM). 

5. To test the potential of catalysts on photodecolourization of simulated dye 

wastewater. 

 

 

 

 

1.4 Scope of Study 

 

 

The mesoporous TiO2 nanoparticles (MTN) and TiO2 catalysts were prepared 

by the microwave and electrolysis methods, respectively. Then, the MTN was loaded 

onto MSN by impregnation method (MTN/MSN) and, TiO2 were supported on MSN 

by in-situ electrolysis (TiO2/MSN-E) and impregnation electrolysis (TiO2/MSN-I) 

methods, accordingly. 

 

 

The physical and chemical properties of the catalysts was characterized using 

various method which could be explained as below. The structural and textural 

properties of the catalysts were recorded using X-ray diffraction (XRD) and N2 

adsorption-desorption isotherms, respectively. The chemical properties were 
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elucidated by Fourier transform infrared (FTIR) spectroscopy, electron spin resonance 

(ESR), 29Si magic angle spin nuclear magnetic resonance (29Si MAS NMR).  

 

 

The photoactivity of the TiO2/MSN-E was evaluated by the decolourization of 

congo red (CR) under varying parameters such as pH (5-11) and catalyst dosage 

(0.375-1.5 g L-1). Then, the best reaction conditions was applied for photoactivity of 

CR using MTN/MSN and TiO2/MSN-I. The mechanism pathway to prepare the 

catalyst was investigated based on the interaction between TiO2 and MSN framework 

support. A new structural model for the catalyst was established on the basis of 

characterization results. Next, the kinetic study of the photodecolourization was 

described by pseudo first-order Langmuir-Hinshelwood model. 

 

 

Response surface methodology (RSM) using central composite design (CCD) 

was carried out to optimize the conditions of photodecolourization using the high 

potential catalyst under three parameters including pH (5-9), catalyst dosage (0.5-1.5 

g L-1) and TiO2 loading (3-10 wt%). Finally, the potential of the related catalyst was 

tested for photodecolourization of simulated dye wastewater which contained of four 

types of dyes with 10 mg L-1 of initial concentration, including congo red (CR), methyl 

orange (MO), methylene blue (MB) and rhodamine B (RhB). 

 

 

 

 

1.5 Significant of Study 

 

 

This study was conducted to synthesize MTN/MSN and TiO2/MSN for 

photocatalytic decolourization of CR. A detail investigation of physico-chemical 

properties of the catalysts as well as the photocatalytic activity was also conducted. 

The TiO2 catalyst attracts great intention on photocatalytic activity of CR due to low 

cost, environmental benignity, plentiful polymorphs, good chemical and thermal 

stability. However, it also has some drawbacks such as easy to agglomerate and 



7 

difficult to separate. In response to this problem, the TiO2 has been modified by 

synthesizing mesoporous TiO2 and introducing TiO2 onto MSN. Additionally, the 

introduction of TiO2 onto MSN was improved the properties of the catalyst by 

increasing the adsorption capability and surface area while reducing the particle size. 

This catalyst was expected to give high percentage of photodecolourization of CR and 

consequently have great potential to be applied into various dyes samples in textile 

wastewater.  

 

 

 

 

1.6 Thesis Outline 

 

 

This thesis was divided into five chapters. In chapter 1, an introduction is given 

about the commercial use of dyes in industries and the significant of dyes removal that 

cause a problem to the environment and human health. The conventional removal 

techniques of dyes were also mentioned. Besides that, the potential of TiO2 as 

semiconductor photocatalyst and MSN as support material were highlighted. The 

problem of the current research was stated to give the clear objectives of the present 

study, while the scopes of study covered the research work to meet these objectives.  

 

 

Chapter 2 which is a literature review covers the details on previous studies 

that have been done in order to get the clear view in the synthesis, characterization and 

photocatalytic efficiency of catalyst. 

 

 

Chapter 3 described the experimental procedure which gives details on the 

chemicals and materials used in the present work, the procedure for catalyst 

preparation, characterization and photocatalytic reaction which includes experimental 

setup and analysis calculation.  

 

 



8 

Chapter 4, results and discussion are discussed in four parts, (i) physico-

chemical properties of catalysts (ii) photocatalytic activity of the catalysts (iii) 

optimization of photodecolourization of CR by RSM and (iv) potential of catalyst on 

photodecolourization of simulated dye wastewater. The result are presented and 

discussed comprehensively 

 

 

Finally, the conclusion about the study and the recommendation for future 

studies were simplified in the last chapter which is chapter 5. 
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