
Comparative Evaluation of Change Propagation Approaches
towards Resilient Software Evolution

Noraini Ibrahim
Software Engineering Dept.
Faculty of Computer Science

and Information System
Universiti Teknologi

Malaysia
noraini_ib@utm.my

Wan M Nasir Wan Kadir
Software Engineering Dept.
Faculty of Computer Science

and Information System
Universiti Teknologi

Malaysia
wnasir@utm.my

Safaai Deris
Software Engineering Dept.
Faculty of Computer Science

and Information System
Universiti Teknologi

Malaysia
safaai@utm.my

Abstract

Producing software that is adaptable to the rapid
environmental changes and the dynamic nature of the
business life-cycle is extensively becoming a topical
issue in the software evolution. In this context, change
propagation (CP) process is one of the critical parts in
the software change management. Traditional
strategies have projected more complex ways,
resulting to substantial failures and risks. This paper
presents an investigation and highlights on the desired
criteria to provide better means to simplify the
complicated CP tasks. The evaluation results may be
used as a foundation in improving CP approaches that
provide significant challenges in software evolution.

1. Introduction
Software evolution is unavoidable due to the

dynamic nature of the business environment in
software life-cycle [1]. Thus, producing software
systems that are able to adapt themselves to rapid
environmental and requirement changes has become a
topical issue in the software engineering research [2,
3]. However, the task is most critical and costly in
today’s evolutionary software development [4, 5],
time-consuming and error-prone to support developers
throughout the evolution of large-scale projects and
complex software systems [6]. Hence, failure in
controlling changes may result to delays of the project
schedule, as well as high development cost [7].

Focus on change propagation (CP) research arena
continues to grow as software evolves. It is becoming a
need in helping software engineers and maintainers to
improve their productivity and quality of work. They
require a better and efficient mechanism to maintain
the associations and consistencies between the

different types and granularity level of artifacts once
the changes are implemented. Therefore, focus on the
change propagation process is a very vital activity that
needs to be discovered in helping software maintainers
to avoid any omission in identifying and propagating
critical change to interconnected artifacts [8].

Nevertheless, there is little work done to highlight
and classify the current change propagation approaches
previously. This paper is organised as follows: Section
2.0 provides an overview of CP, the CP definition, its
process, and a brief description on the state-of-the-art
of CP approaches. Section 3.0 discusses on the
comparative evaluation approaches that consist of the
framework criteria, the overall results of comparative
evaluations and the critical discussion on the result.
Section 4.0 presents the future trends for the CP
research works and its conclusion. Finally, section 5.0
describes the whole summary of this paper.

2. Related Works
In general, all components are related and depend to

each other in one software system. The relationship
established is consistent until one of the links is broken
due to the changes introduced to the software at any
duration during its life-cycle. Such changes might
appear in terms of adding, removing or updating the
functionalities and capabilities of the software
components. Therefore, when some parts of the
software are changed and modified, many other parts
of the software need to be identified and changed as
well [9]. This is where the change propagation fits into
an area of the software change. Previously, CP
approaches have been widely studied under the
umbrella term of impact analysis in software evolution.
However, in this paper we will specifically focus on
the CP techniques that are being used with regard to
the change management process that supports software
evolution as a whole.

The Third International Conference on Software Engineering Advances

978-0-7695-3372-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ICSEA.2008.71

198

The Third International Conference on Software Engineering Advances

978-0-7695-3372-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ICSEA.2008.71

198

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 18, 2009 at 22:01 from IEEE Xplore. Restrictions apply.

2.1. Change Propagation Definition.
Hassan and Holt define change propagation as the

“changes required to other entities of the software
system to ensure the consistency of assumptions in a
software system after a particular entity is changed”
[9] [4]. In other words, it is a process of actually
carrying out a set of initial modifications to the
software components, and to re-establish the system’s
consistency, by making a set of estimated consequent
changes. [10]. From the definition, it describes twofold
critical questions on the CP: (i) which and when the
components need to be changed after the initial
changes have been implemented, and (ii) how to better
control and maintain the existing relationships and
dependencies that are currently established between
the consistent components.

2.2. Change Propagation Process
Previously in the manual CP process, it attempts to

propagate the next changes to the related components
based on set of proposed impacts during the impact
analysis phase and consult advices from the guru.
Apart from that, maintainers also will work based on
their own knowledge and prior experience to identify
the next components to be changed. The change is
iteratively propagated for each suggested components
until there is no more changes needed [4]. To address
this manual process, Hassan and Holt propose the
basic CP model that shows the steps in managing the
change request such as adding new requirement,
enhancement in current software or fixing the bugs [4].
In the following Figure 1, we illustrate the basic idea
to automate the CP process adopted from Incremental
Software Change approach proposed by Chen [11].
The grey highlighted text box depicts the step of which
fundamental process of change propagation that should
be taken into account.

2.3. State-of-the-Art of Change Propagation
Approaches

In this section, we discuss four approaches on
existing change propagation topics, although they vary
on the focus for the evolutionary software
development. We provide an overview to highlight the
summary of the mechanism, properties of software
artifacts under this study and any other supports that
are being used for each change propagation approach.

2.3.1. Evolving Interoperation Graphs Approach
In the early days of change propagation research,

Rajlich proposes an evolving interoperation graphs to
model the change propagation for the evolution of
component-based software [5, 12, 13]. The basis of
this prior model is that each change consists of finer
and smaller granularity of change propagation steps.
The graph illustrates the relationships and
dependencies among the software components. Rajlich
suggests four change propagation strategies based on
dependency graph rewriting that include top-down,
random change-and-fix, strict change-and-fix and
bottom-up [13]:

Tools such as Ripples [14], JTracker[15] and
JRipples [16] were implemented to support change
propagation based on this model. Ripples tool is
concerned on the change implementation for C source
code. JTracker and JRipples focus on detecting the
secondary as well as an additional change for the
affected classes in Java codes. However, all of the
above said tools are still conferring with human
intervention and also need maintainers’ previous
experiences to perform manual change propagation
process. Therefore, handling the change is error-prone
because there is a possibility to introduce unnecessary
and unanticipated effects or risks to other components.

Figure 1. Basic model of a CP process

Yes

Identify component(s)
to be changed

Change identified
component(s)

Identify other affected
component(s) to be changed

Change request

No more change

F
or each com

ponent (s)

Change Impact
Analysis

Implement
Change

Change
Propagation

Consistency
Analyzer

No
Check

consistency

199199

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 18, 2009 at 22:01 from IEEE Xplore. Restrictions apply.

From the different preceding perspectives, Derulle
et al. [10] propose Software Components Structural
Model (SCSM) to perform change propagation on
multi-language programs, heterogonous and
distributed database applications that are based on the
graph rewriting technique by Rajlich [13] to represent
the software components and their relationships. They
identified several numbers of problems when
performing the existing change-and-fix algorithm and
improved it by combining the algorithm with
knowledge based system that is constraint by rules in
an expert system.

2.3.2. Agent-Oriented Based Approach
Previously in software evolution, not much work in

change propagation research focuses on agent-oriented
software engineering, particularly in the development
of agent designs. In the context of agent-oriented,
once the new agent type is included, all other agents
that are interrelated with the new agent type need to be
modified too. From our best experiences upon
exploration of the literature, only one work introduced
by Dam et al. shows the agent-oriented approach
dealing with propagating changes through design
models [17]. The framework is based on the
recognised Belief-Desire-Intention (BDI) agent
architecture which is capable to support with
consistency management in the context of the
Prometheus methodology to design the agent based
systems. Apart from that, the metamodel and the
Object Constraints Language (OCL) are used to
describe the rule forms or constraints for the automatic
repair plan generation mechanism.

On the other hand, their work demonstrates that the
proposed framework can also be applied to UML
design for object-oriented methodologies.
Additionally, they plan to further evaluate the
framework with different and more complex case
studies to measure its efficiency and scalability. Also,
they present the extended agent-oriented mechanism
for automatic repair plan generation to perform change
propagation by fixing constraints inconsistencies when
primary changes are made to a design models [18].

2.3.3. Historical Recorded Information Approach
Work done by Hamada and Adachi was among the

earliest efforts that focuses on change propagation
analysis [19]. They propose a method to support
change propagation analysis by means of recorded
software design rationale. The semantic and data
models for the design process are established to
provide software maintainers with an essential
information needed by the change propagation analysis
process to trace i) what are the design subject

characteristics and ii) how the designer used the
characteristics to design the software. They also
develop a prototype system named DIG (Design
Information Gathering) to implement the method and
run the change propagation experiment on the
requirement analysis. The result shows that the use of
design process records is 15% less of the efforts
required during the software modification and is 35%
effective in terms of total cost savings during software
development.
One of the current approaches that is based on
recorded information to facilitate change propagation
is Development Replay (DR) introduced by Hassan
and Holt [9]. The DR approach uses the historical co-
change information to estimate the effectiveness of not
yet developed change propagation tools. [4,9]. The
historical data (the state of the software project and the
change sets) can be retrieved from the source control
repository for each project handled by the software
maintainers. The DR approach allows maintainers to
highlight the limitation as well as to allow possible
improvements of the studied tools. As a result, this can
reduce the development’s efforts and time especially
for industrial studies. Hassan and Holt [9] claimed that
this approach can assist researchers in propagating
changes better than the previous simple static
dependency information which are usually integrated
and need substantial amount of human intervention. To
assess the effectiveness of a heuristic or a tool in
supporting the maintainers propagate changes, a metric
of precision and recall has been used at the change set
level.

2.3.4. Change Prediction Approach
AbdelMoez et al. propose a detailed architecture

attribute, namely Change Propagation Probability that
defines the likelihood or probability of a change from
one or more architecture components and the
consequences changes to other related components
[20]. They use Change Propagation Probability to
evaluate the design quality attributes of software
architectures such as extensibility, maintainability and
reusability. They also introduce Change Propagation
Coefficient (CPC) to store the information of a matrix
in a single scalar, which demonstrates the likelihood of
architecture to avoid its components from propagating
changes to each other.

Additionally, they implement the change
propagation matrix into Software Architectures
Change Propagation Tool (SACPT) to display the
Change Propagation Probability [21]. Clarkson et al.
[22] use Design Structure Matrices (DSMs) to develop
a mathematical models to predict the risk of change
propagation in terms of likelihood and impact of

200200

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 18, 2009 at 22:01 from IEEE Xplore. Restrictions apply.

change in complex design. Their work is slightly
different to existing change propagation approaches
because their intention is to analyse the changes
execution processes by customising the design in an
engineering product i.e. helicopters. The developed
Change Prediction Method (CPM) is needed first to
identify the previous sources of change propagation
instances that have potentials to be affected and high
likelihood to occur again. Secondly, the cost can be
estimated by capturing the impact of change using the
CPM approach. The captured likelihood and impact
relationships are then used to determine the potential
propagation graph as well as to produce the product
risk matrix.

3. Comparative Evaluation of Change
Propagation Approaches

This section describes the evaluation framework
criteria in relation to the current change propagation
approaches. We present the classification for the
fundamental criteria discussed in the literature to
develop a comparative evaluation framework to
highlight and discover the critical attributes in
performing change propagation without considering
the domain of the changes sources. Moreover, the
framework comprises criteria that are supported by
most of the discussed approaches, as well as the
criteria that must be underlined as desirable factors by
the software maintainers.

3.1 The Evaluation Framework Criteria
In this first mechanism criterion, aspects related to

the technique, algorithm or metrics support, and
automation are discussed. Then, properties of software
artifacts under study such as type, granularity,
dependency relationships and change flow are also
evaluated. The last criterion to be discussed below is
the type of other support that is needed in performing
change propagation in terms of visualisation,
prioritisation, notification, consistency checking and
log history or versioning system supports.

As a whole, the following criteria considered in the
evaluation framework have been classified in three
main elements: the mechanism, properties of software
artifacts under this study and any other supports that
are being used for each change propagation approach.

Table 1. Change Propagation Framework Criteria

Framework
Criteria

Brief Explanations

Mechanism

Technique

Does the approach apply any specific techniques during the
change propagation process? i.e. analysis of the best
propagation path in terms of time consuming and efficiency
measurement [22]

Algorithm or
metric

Does the approach explicitly use any particular metric or
algorithm to implement the change propagation process?

Automation

Does the approach provide any support of full automated
process or partially automated where it still needs a manual
and human intervention (semi-integrated) to perform the
task?

Software artifacts property

Type of
software
artifacts

What type of software artifact or software life cycle objects
(SLO) and work products are being addressed when the
change propagation process took place? This is because
different type of artifacts will influence the type of change
support mechanisms that will be required. [23]

Granularity
What extent is the level of high fine-grained and low
coarse-grained granularity for each type of artifacts being
defined? [24, 25]

Dependency
relationships

Does the approach apply change propagation process
within the same phase of artifacts (Horizontal or intra-
phase: i.e. links from requirement to requirement) or across
the different level of artifacts (Vertical or inter phase: i.e.
links forward from requirement to design or links backward
from design to requirement)? Or does the approach apply
any strategies to maintain the defined traceability links [25-
27]

Change Flow

What type of change flows are covered by the approach?
Direct from change sources to the primary affected artifacts
(i.e. a change in artifact A will affect artifact B) or indirect
to secondary and hidden dependent artifacts (a change in
artifact A will indirectly affect artifact C, as artifact B is
dependant on artifact C)? [12], [28]

Other supports

Visualisation
Does the approach provide any support to visualise the
affected artifacts during change propagation process? Or
any other kind of visualisation for propagation path?

Change
Prioritisation

Does the approach provide any technique to prioritise the
sets of impacted artifacts that should be given a high
priority in determining the consequences change during
change propagation process? [22, 29]

Change
Notification

Does the approach provide any mechanism to notify the
stakeholders or the maintainers when there is any changes
happened and that should be highlighted and during change
propagation process? For instance; notify the person
responsible when the requirement changes hands [25, 30]

Consistency
checker

Does the approach provide any support to check the
dependencies consistencies between the artifacts before the
change being implemented and after the change
propagation is done? For example, consistencies validation
and checking on dependencies between changing
requirements [5, 12, 31]

Log history or
Versioning
System

Does the approach provide any support to keep the log and
history of all changes, status and other related information
needed during change process? This is due to high
possibility for sources that are likely to change in the
future; which follows regular patterns [4, 9, 19]

201201

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 18, 2009 at 22:01 from IEEE Xplore. Restrictions apply.

3.2 The Comparative Evaluation Results
We believe that the CP process is a very critical

activity during change management in software
evolution. At this point, it is important to
comprehensively investigate all of the factors that are
being influenced during CP process. In addition, the
criteria that contribute to improve or degrade the
ability in performing the propagation process must also
be identified. Thus, we also believe that the best
practice to plan for the software evolution is to better
control and support the process of changing
requirement. This is because, a large portion of total
software lifecycle cost is devoted to introducing new
requirements, and removing or modifying the existing
requirements [32]. It is significant to focus on
requirement as important sources of changes from the
initial stage of software development [8]. Looking at
the recent works on change propagation, we realise
that most of the efforts are expended and the issue is
addressed from low and downstream level artifacts
such as code and design. [9, 12, 15], but not much
focus on high level like requirements [8, 25, 33]. The
reason is because low level artifacts are more concrete
and informative compared to high level artifacts that
are normally expressed in an abstract manner [34].

Maintaining the existing consistent traceability and
dependencies links of the software artifacts effectively
is the essence of change propagation problem. Hence,
software engineers and maintainers need a proficient
mechanism to preserve the consistent relationships
between the components after changes have been
performed.

Another topical issue is how to systematically
develop a better process to simplify the rigorous CP
jobs according to the needs in each specific change
requests situation. Nevertheless, the accurate
prediction of the CP process provides a significant
challenge [35] because the goal is to maximise
efficiency by minimising error when selecting the next
affected components from the impacted set.
Eventually, this can assist them from any omission in
identifying and propagating critical change to
interconnected artifacts. Therefore, the work to be
developed in this area must not only be able to predict
the affected set correctly, but also propagating changes
must be easily done without expected period time. It is
an increasing need to help software engineers and
maintainers to improve their productivity and quality
of work in software development lifecycle. Thus, we
believe that the automated CP strategies will help to
reduce human errors when predicting all anticipated
components.

4. Conclusion and Summary
This paper provides the first step towards providing

the state-of-the-art of current change propagation
research. From the literature, it is clear that the current
CP approaches have various functions and criteria.
Hence, we present a classification of fundamental
criteria to develop a comparative evaluation
framework, which in turn helps the researchers to
identify the strengths and weaknesses of current
approaches, and consequently discover the
opportunities of improvement to be addressed in our
proposed approach.

5. Acknowledgement
This research is funded by the ScienceFund Grant

by Ministry of Science and Technology (MOSTI) under
Vote No.79265. The authors would like to thank
MOSTI and Universiti Teknologi Malaysia (UTM) for
their financial support, as well as to individuals for
their involvement and invaluable feedbacks during the
time that this research was being conducted.

6. References
[1] W. M. N. W. Kadir, "BROOD - Business

Rule-Driven Object-Oriented Design," PhD
Thesis, School of Informatics, University of
Manchester, 2005

[2] S. L. Pfleeger and J. M.Atlee, Software
Engineering Theory and Practice. New
Jersey, USA: Pearson Prentice Hall, 2006.

[3] M. M. Lehman, "Software Evolution,"
Encyclopedia of Software Engineering, vol. 2,
2002, pp. 1507-13.

[4] A. E. Hassan and R. C. Holt, "Replaying
development history to assess the
effectiveness of change propagation tools,"
Empirical Software Engineering, vol. 11, no.
3, September, 2006, 2006, pp. 335-67.

[5] V. Rajlich, "Modeling software evolution by
evolving interoperation graphs," Annals of
Software Engineering, vol. 9, 2000, pp. 235-
48.

[6] T. Mens, M. Wermelinger, S. Ducasse, S.
Demeyer, R. Hirschfeld, and M. Jazayeri,
"Challenges in software evolution,"
Principles of Software Evolution, Eighth
International Workshop on, 2005, pp. 13-22.

[7] V. T. Rajlich and K. H. Bennett, "A Staged
Model for the Software Life Cycle,"
Computer, vol. 33, no. 7, 2000, pp. 66-71.

202202

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 18, 2009 at 22:01 from IEEE Xplore. Restrictions apply.

[8] A. von Knethen, "Change-oriented
requirements traceability. Support for
evolution of embedded systems," Software
Maintenance, 2002. Proceedings.
International Conference on, 2002, pp. 482-
85.

[9] A. E. Hassan and R. C. Holt, "Predicting
change propagation in software systems,"
Software Maintenance, 2004. Proceedings.
20th IEEE International Conference on,
2004, pp. 284-93.

[10] L. Deruelle, M. Bouneffa, N. Melab, and H.
Basson, "A change propagation model and
platform for multi-databaseapplications,"
Software Maintenance, 2001. Proceedings.
IEEE International Conference on, 2001, pp.
42-51.

[11] K. Chen, "Incremental Software Change,"
PhD Thesis, Wayne State University, 2003

[12] V. Rajlich, "A Model and a Tool for Change
Propagation in Software," NSF Software
Engineering and Language Program
Summaries, Software Engineering Notes, Jan.
2000, 2000, pp. 72.

[13] V. Rajlich, "A model for change propagation
based on graph rewriting," in International
Conference on Software Maintenance
(ICSM), IEEE Computer Society, 1997.

[14] K. Chen and V. Rajich, "RIPPLES: tool for
change in legacy software," Software
Maintenance, 2001. Proceedings. IEEE
International Conference on, 2001, pp. 230-
39.

[15] S. Gwizdala, Y. Jiang, and V. Rajlich,
"JTracker-a tool for change propagation in
Java," in European Conference on Software
Maintenance and Reengineering, IEEE
Computer Society Press, 2003.

[16] J. Buckner, J. Buchta, M. Petrenko, and V.
Rajlich, "JRipples: A Tool for Program
Comprehension during Incremental Change,"
Program Comprehension, 2005. IWPC 2005.
Proceedings. 13th International Workshop
on, 2005, pp. 149-52.

[17] K. H. Dam, M. Winikoff, and L. Padgham,
"An agent-oriented approach to change
propagation in software evolution,"
Australian Software Engineering Conference
(ASWEC'06), vol. 0, 2006, pp. 309-18.

[18] K. H. Dam and M. Winikoff, "Generation of
Repair Plans for Change Propagation," Eighth
International Workshop on Agent Oriented
Software Engineering, 14 May 2007, 2007.

[19] M. Hamada and H. Adachi, "Recording
software design processes for maintaining the
software," in Seventeenth Annual
International, Computer Software and
Applications Conference, (COMPSAC) 93,
1993.

[20] W. Abdelmoez, M. Shereshevsky, R.
Gunnalan, H. H. Ammar, B. Yu, S. Bogazzi,
M. Korkmaz, and A. Mili, "Quantifying
software architectures: an analysis of change
propagation probabilities," The 3rd ACS/IEEE
International Conference on Computer
Systems and Applications, 2005.

[21] W. AbdelMoez, M. Shereshevsky, R.
Gunnalan, Y. Bo, S. Bogazzi, M. Korkmaz,
A. Mili, and H. H. Ammar, "Software
Architectures Change Propagation Tool
(SACPT)," in Proceedings of the 20th IEEE
International Conference on Software
Maintenance, Chicago, 2004.

[22] P. J. Clarkson, C. Simons, and C. Eckert,
"Predicting Change Propagation in Complex
Design," Journal of Mechanical
Design(Transactions of the ASME), vol. 126,
no. 5, 2004, pp. 788-97.

[23] J. Buckley, T. Mens, M. Zenger, A. Rashid,
and G. Kniesel, "Towards a taxonomy of
software change," Journal of Software
Maintenance and Evolution: Research and
Practice, 2004.

[24] A. von Knethen and M. Grund, "QuaTrace: a
tool environment for (semi-) automatic impact
analysis based on traces," in 19th IEEE
International Conference on Software
Maintenance (ICSM) 2003, 2003.

[25] M. J. Smith, R. G. Dewar, K.
Kowalczykiewicz, and D. Weiss, "Towards
Automated Change Propagation; the value of
traceability," Technical Report School of
Mathematical and Computer Sciences, Heriot-
Watt University, 2005.

[26] K. Kowalczykiewicz and D. Weiss,
"Traceability: Taming uncontrolled change in
software development," Proceedings of IV
National Software Engineering Conference,
Tarnowo Podgorne, Poland, vol. 10, 2002.

[27] S. Ibrahim, "A Document Based Software
Traceability to support Change Impact
Analysis of Object-Oriented Software," PhD
Thesis, Universiti Teknologi Malaysia, 2006

203203

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 18, 2009 at 22:01 from IEEE Xplore. Restrictions apply.

[28] P. Jönsson and M. Lindvall, "Impact
Analysis," in Engineering and Managing
Software Requirements, A. Aurum and C.
Wohlin, Eds.: Springer, Berlin, Heidelberg,
New York, 2005, pp. 26.

[29] I. Shaik, W. Abdelmoez, R. Gunnalan, M.
Shereshevsky, A. Zeid, H. H. Ammar, A.
Mili, and C. Fuhrman, "Change Propagation
for Assessing Design Quality of Software
Architectures," in Proceedings of the 5th
Working IEEE/IFIP Conference on Software
Architecture (WICSA’05), 2005.

[30] T. Olsson and J. Grundy, "Supporting
Traceability and Inconsistency Management
between Software Artifacts," Proceedings of
the 2002 IASTED International Conference
on Software Engineering and Applications
(Boston, USA, 2002), 2002.

[31] J. Han, "Supporting Impact Analysis and
Change Propagation in Software Engineering

Environments," Proceedings. In STEP97,
London, England, 1997, pp. 172-82.

[32] K. H. Bennett and V. T. Rajlich, "Software
maintenance and evolution: A roadmap," in
IEEE International Conference on Software
engineering, Dublin, Ireland, 2002.

[33] S. Lock and G. Kotonya, "An Integrated,
Probabilistic Framework for Requirement
Change Impact Analysis," Australian Journal
of Information Systems, vol. 6, no. 2, 1999.

[34] S. Lock and G. Kotonya, "Requirement Level
Change Management and Impact Analysis,"
Cooperative Systems Engineering Group,
Technical Report Ref: CSEG/21/1998.

[35] V. Rajlich, "Changing the Paradigm of
Software Engineering," Communications of
the ACM, vol. 49, no. 8, 2006, pp. 67-70.

204204

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 18, 2009 at 22:01 from IEEE Xplore. Restrictions apply.

