
A Comparative Study of Interface Design Approaches for
Service-Oriented Software

Hui Ming Teo and Wan M.N. Wan Kadir
Software Engineering Department

Faculty of Computer Science and Information Systems,
Universiti Teknologi Malaysia,

81300 UTM Skudai, Johor, Malaysia.
hmt@teohuiming.name, wnasir@fsksm.utm.my

Abstract

In the service-oriented software environment,
interactions between components are highly dependent
on the exposed service interfaces. Therefore, designing
an appropriate service interface is essential. In this
paper, we aim to perform a comparative evaluation on
three different approaches to service interface design,
i.e. method-centric, message-centric and resource-
centric. The evaluation is peformed systematically
based on a list of selected evaluation criteria. It is
expected that the evaluation results may assist
software architects to understand the differences
between approaches and adopt the approaches wisely
in the service interface design.

1. Introduction

Back to year 2000 in a software maintenance and
evolution roadmap [1], Bennet and Rajlich envisioned
a “software as a service” (SaaS) model that aims to
improve software evolution by allowing users to
assemble a set of services for use on demand [2]. The
model allows dynamic service substitution whereby,
unsatisfied service components can be disengaged
easily and replaced immediately with new ones found
in an open marketplace. Besides SaaS, a similar model,
termed Service-oriented Architecture (SOA) is
progressively being pushed as an alternative to
traditional Electronic Data Interchange (EDI) for
business-to-business interactions [3] and promoted as
an integration solution for enterprise applications [4].

Despite the differences of usage, service-oriented
models share a common challenging environment that
is, to handle the interactions among a large number of
heterogeneous components. Due to the complexity of
such environment, it is essential for service-oriented

software to raise the abstraction by shielding more
implementation details behind well-defined interfaces.
Interactions are allowed only through the service
interfaces. Thus, an appropriate interface design is
important.

This paper starts with describing a common
service-oriented software environment in section 2,
followed by a brief description on the three service
interface design approaches in section 3. The
evaluation criteria and the comparative evaluation are
discussed in section 4, whilst related work is presented
in section 5. The conclusion and further work are
summarized in section 6.

2. Service-oriented software environment

Service-oriented software paradigm has its own
unique environment, which will directly influence the
design of software. First, a precondition to allow
dynamic service substitutability is to have an open
marketplace with a large number of services offered by
competing vendors. Software interoperation and
integration issues cannot be avoided when users need
to assemble different services developed independently
into one software within a short period (termed as
ultra-late binding [5]). Second, different services are
often distributed across wide geographical locations,
which leads to issues in distributed computing [6].
Finally, in contrast with the distributed environment
within single trust boundary, where single authority is
able to coordinate all participating components for
software changes in a controlled manner, the service-
oriented environment often needs to scale up to involve
world-wide participating organizations from different
trust boundaries, thus a centralized maintenance and
evolution process becomes impractical.

The three issues described above represent a
generalized view of the service-oriented environment.

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 20:39 from IEEE Xplore. Restrictions apply.

To design a service that will operate well in such
environment, architects should understand potential
problems raised by each issue and tackle them
appropriately in the design. However, depends on the
actual deployment environment, the significant impact
of each issue may be vary. At one end of the spectrum,
the actual environment may consist of a few services
that are developed and maintained by single vendor
and operate in a local area network within a small
organization. At the other end, we expect an open
marketplace with many services developed
independently to compete and interact with each other
in an Internet-scale distributed environment. Based on
the actual deployment environment, architects may
choose to ignore issues with little impact in order to
achieve an optimized design.

3. Service interface design

Service providers offer services by exposing a set
of well-defined service interfaces to consumers.
Service interface is the only communication point
between both parties. It is important to design service
interfaces that match with the nature of service-
oriented environment. In this paper, we discuss three
service interface design approaches currently used in
practice, i.e. method-centric, message-centric, and
resource-centric. This section provides a brief
description of each approach.

3.1. Method-centric approach

Similar to Remote Procedure Call (RPC) that
allows a program to call procedures located on other
machines, method-centric approach exposes service
functionality via a set of distinct procedure calls.
Consumers invoke an application-specific operation on
a service endpoint with input arguments and optionally
expecting for a return value. Current implementations
can be found in several public web-based service
applications. For example, Google exposes its services
as three operations: doGoogleSearch,
doGetCachedPage and doSpellingSuggestion
[7]. Most earlier service-oriented research [8-12] are
centered on this approach. In some literatures, it is
termed control-centric [13], programmatic approach
[14] or RPC-style.

3.2. Message-centric approach

In message-centric approach, instead of invoking

function calls, consumers consume a service by
exchanging application-specific messages with a
service endpoint. Service providers define a set of

schemas (e.g. XML document schema) for messages
that will be used in the interactions. Several online
business standards (e.g. RosettaNet [15] and
OpenTravel Alliance (OTA) [16]) have adopted this
approach. For example, a purchase order can be
submitted to a RosettaNet-compliant purchase service
by sending a PurchaseOrderRequest message and
receiving a PurchaseOrderConfirmation message
as response. In contrast with method-centric interface
that exposes multiple operations, message-centric
interface has only a processThis operation to
receive various messages for processing. Since there is
only one operation, it is therefore implicit [17].

3.3. Resource-centric approach

Resource-centric is also known as content-centric
[13], Representational State Transfer (REST) style [18]
or constrained interface [19] in different literatures.
The most distinct difference from other approaches is
that, it applies a uniform interface constraint [18] to
restrict the interaction. Everything that consumers
interact with is always a resource, thus a set of
messages can be used uniformly to interact with all
resources across different domains. The most notable
implementation of this approach is the World Wide
Web (WWW), a world-wide deployed distributed
document-based system [20]. It uses a set of standard
general-purpose messages in Hypertext Transfer
Protocol (HTTP) [21] to allow consumers to interact
with resources. For instance, a HTTP GET message
can be used to retrieve a web page, as well as a
bookmark list at del.ico.us bookmark service [22] or
even an object stored in Amazon S3 storage service
[23].

4. Comparative evaluation of service
interface design approaches

In this section, we systematically analyze and
evaluate each service interface design approach based
on a set of evaluation criteria.

4.1 The evaluation criteria

It is important to realize that designing a service
interface is different from designing a library-based
API interface for local running applications. There are
simply more issues to concern due to the nature of
service-oriented environment. We have selected a list
of design concern issues as the evaluation criteria, and
then group them into three design concern areas:

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 20:39 from IEEE Xplore. Restrictions apply.

Table 1. Summary of evaluation criteria

Criteria Brief Description

Design for developers
Abstraction
model

the underlying abstraction model used by
a service interface

Granularity the degree of business-level interaction
details described by a service interface

Design for maintenance
Integration the ease of interface standardization and

software integration tasks within and
across domain

Evolution the cost of changing service interfaces
over time

Design for distributed environment
Latency to handle the network latency in a

distributed environment
Partial
failure

to handle the partial failure nature of
distributed environment

Sync/async
interaction

to model business-level asynchronous
interaction in service interface

 Design for developers. Developers who build a

service implementation or software that consume
the service need to understand the abstraction
model underlying a particular service interface.
Each interface design approach may adopt a
different model. Each model provides a different
way to think about a domain problem and a
different way to model the service abstractions.
Understanding each model is crucial for architects
to construct appropriate service abstractions and
to enforce certain design practices tailored to the
adopted model. It is also important for service-
oriented application framework developers to
design frameworks that match to the nature of
each abstraction model. In this area, we consider
two criteria: abstraction model and granularity.

 Design for maintenance. As mentioned earlier,
the integration issue cannot be avoided in service-
oriented software environment, thus it should be
taken care right from the design. For long-term
maintenance, since the communication between
service providers and consumers are heavily
relying on service interfaces, changes on
interfaces may break the binding between both
parties. Coordinating interface changes in an
Internet-scale distributed environment without
centralized maintenance is non-trivial.
Periodically changes that each time invalidates
the previous interface contract may discourage
consumers from binding to a service. Therefore,
the interface evolvability should be taken care as
well. We consider both integration and evolution
as the criteria in this area.

 Design for distributed environment. Early
distributed computing research has warned about
the negative impact of hiding the nature of
distributed environment from programmers [6].
Architects should realize the distributed
computing is a part of the service-oriented
environment and should handle related issues
accordingly in the interface design. In this paper,
we include three criteria: latency, partial failure,
and synchronous/asynchronous interaction.

The criteria presented here is not an exhaustive list.
However, they are enough to cover a wider range of
concern areas and able to reveal the differences of
three design approaches from various perspectives.

4.2 The comparative evaluation

4.2.1 Abstraction model. The method-centric
approach adopts a similar abstraction model of
structured programming paradigm. A method-centric
interface can be viewed as a list of procedure calls.
Each procedure call is identified by its signature
consists of an operation name, a list of input arguments
and optional return value. As a result, method-centric
interfaces can be mapped naturally to existing interface
definition languages (e.g. OMG IDL [24]) and
programming languages. This may help to retain
features directly from earlier programming paradigms,
e.g. the static type checking at compilation time.
Furthermore, the established design techniques (e.g.
structured design [25] and data engineering [26]) may
continue to be applicable in the service design. In the
abstraction model, business interaction semantics are
encoded into the procedure signatures. It means that by
sending a doGoogleSearch call to Google service, a
consumer is expecting to receive a web page search
results, and not other results.

The message-centric approach focus on defining a
set of message formats for message-exchange
interactions. A message-centric interface can be viewed
as a collection of messages. Based on the
implementations such as RosettaNet and OTA,
interestingly, we observe a common method used by
architects to identify and design messages. To illustrate
this, given a method-centric interface
doGoogleSearch, the common way is to split the
procedure call into two different messages: a
GoogleSearchRequest message that contains all
input arguments and a GoogleSearchResults
message with the returned search results. A message
can be as simple as an argument list or as complex as a
hierarchical data structure. Business interaction
semantics are encoded into each message. For instance,
by sending a GoogleSearchRequest message, the

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 20:39 from IEEE Xplore. Restrictions apply.

sender can safely assume that a
GoogleSearchResults message will be returned.

The resource-centric approach constrains the
consumers to always, and only interact with resources.
Thus, a resource-centric interface can be viewed as a
collection of resources. Two object-oriented (OO)
concepts, i.e. polymorphism [27] and programming to
interface [28] may help to explain the model. Using the
former, all resources should be derived from a single
abstract class Resource, thus they can be accessed
uniformly through operations defined in the abstract
class. Based on the latter, all resources should
implement a same Resource interface. Users can then
interact with them through a same set of operations
regardless of their actual types.

The resource-centric model has been implemented
in the Web architecture, where HTTP/1.1 provides a
standard set of general-purpose messages for resource
manipulation. To further understand the model, we
borrow the OO concept of identity/state/behavior [27],
whereby: each resource has an identity (URI); it may
have a state similar to an object’s variables; a
resource’s state is retrieved or updated through HTTP
GET or PUT message respectively; data is sent to a
resource via POST message for encapsulated
processing (behavior). Interestingly, Venner’s
observation [29] in OO design paradigm shows that
most object’s operations can be generalized into three
basic types: state-view, state-change and utility, which
are semantically equivalent to HTTP GET, PUT and
POST messages respectively. Booch [27] also suggests
a similar classification (i.e. selector, modifier and free
subprogram). From this insight, we may suggest that a
resource is approximate to a generalized object with a
small set of general but sufficient operations for
common OO interactions. A more concrete model
proposed by Baker can be found in [30].

Rather to have application-specific business
semantics, HTTP messages are encoded with general
resource manipulation semantics (e.g. retrieve/modify
resource state, create new resource). Thus, the
messages can be reused to manipulate various
resources across applications. For example, we send a
HTTP GET message to the Google Search resource
[31] to retrieve a search results; by changing the target
resource’s identifier, the GET message can be sent to
the Bucket resource at Amazon S3 service [23] to
retrieve a list of objects stored in that bucket. Similar to
OO, resources are differentiated by their identifiers.

4.2.2 Granularity. In the context of service interface,
granularity often refers to the degree of business-level
interaction details described by an interface. Raising
the abstraction level often results a coarse-grained
granularity. For example, a service may provide an

interface to accept a purchase order submission
(includes all purchase items) as a whole unit in single
interaction. In contrast, a fine-grained service interface
may accept a purchase order submission through
multiple interactions (e.g. by accepting each purchase
item separately). Since granularity represents the
business-level interaction abstraction, it is important to
align it with consumer needs and application domain
requirements. In other words, the granularity level
should be a design choice made by architects to match
the business requirements, and not because of the
adoption of certain interface design approach.
Therefore, it should not become a primary reason to
choose between interface design approaches.

However, architects should be aware of the cost of
network latency in actual deployment environment
since most interactions will be done through network
links. Besides, it is worth to note here, as pointed out
by Feuerlicht [14], if without careful design, the
message-centric approach may produce over-coarse-
grained interfaces, which results in complex message
structures. A better message design method may be
needed to cope with message schema maintainability
issues.

4.2.3 Integration. Standardization on communication
point is an important step to promote interoperable
interaction and integration among a wide range of
heterogeneous components [32]. It has been identified
that it is more difficult to standardize control-centric
interfaces than content-centric interfaces [8, 13].

The method-centric interface is control-centric. A
service is allowed to expose a variety of arbitrary
application-specific operations, which are often
vendor-specific. For example, Google search engine
currently provides a doGoogleSearch operation,
while other search engines will certainly provide
similar operations with different names. Thus, in order
to substitute services dynamically, consumers are
required to know every vender-specific operation
available in the marketplace. This approach does not
scale well for integration tasks within a domain as well
as across domain when the number of services grows.
Early service-oriented research on integration and
interoperation has focus on workarounds to reduce the
interface variation by using an interface adapter
framework [8], introducing a generalized abstract
service interface layer on top of services [9, 11], and
mapping is-a hierarchical relationship between similar
services [33].

In current practice, message-centric interfaces are
often developed and governed by a few standard
business alliances (e.g. OTA [16]) and used within
their own domain. Open and standard message formats
help in promoting interoperable communications.

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 20:39 from IEEE Xplore. Restrictions apply.

However, since the current practice of standardization
in message-centric is towards domain-specific, the
messages are often not usable outside a specific
interaction context. Thus, it does not ease the
integration tasks across domain. Section 4.2.4 will
continue to elaborate more on this particular issue.

The resource-centric interface is towards content-
centric. Its generic resource interaction model provides
a unified data-centric model to simplify overall
integration tasks [13]. Interface variation is minimized
by enforcing standardization on message semantics, i.e.
HTTP. General-purpose message semantics in HTTP
encourage further adoptions within and across domain.
The resource-centric has been adopted by several
ubiquitous computing research [34-36] as a
middleware integration platform for a wide range of
portable computing devices.

4.2.4 Evolution. In method-centric approach, each
service procedure call is identified via its signature,
thus suffers from tight coupling between the operation
name and input arguments. A slight change in input
arguments will alter the procedure signature and
immediately break the interface contract. Interface
evolvability may be improved by separating input
arguments from the signature and representing them
with a more flexible format (e.g. RDF document).

It is common to see huge and complex XML
message schema specifications in message-centric
interfaces. Feuerlicht suggests the complexity and
redundancy of message data structures increase data
coupling and reduce message evolvability [14].
Besides, we also notice that many message schemas
are hardly reusable outside a specific interaction
context. Possibly, it is due to the tight coupling
between the context-specific protocol message and its
document payload. To illustrate this: RosettaNet’s
Cluster 3 “Order Management” PIP3A4 Specification
[15] defines a PurchaseOrderRequest message
standard specifically for the buyer to submit an order to
the seller to purchase desired items. In this case, the
message is context-specific thus limiting its reusability
outside the buyer-seller purchase order submission
scenario. An alternative design is to separate out a
standalone PurchaseOrder document from the
PurchaseOrderRequest message and standardize
the document format for public adoption. Compare to a
standardized PurchaseOrderRequest message, a
standardized PurchaseOrder document may be reuse
across domain.

In contrast to message-centric, resource-centric
decouples the document payload from HTTP protocol
message. This simple separation introduces significant
advantages. First, both protocol message and document
can now evolve independently. Second, a standalone

document can be reuse in different contexts across
domain. For instance, a HTTP POST message with
PurchaseOrder document as payload can be sent to a
printing service to print out the document, as well as to
a purchase service to submit the purchase order.
Besides, a simple technique similar to OO method
overloading may be used in resource-centric design to
encourage evolvability. For instance, a purchase
service may initially accept only one type of
PurchaseOrder document via a POST message. Over
time, it may overload the POST message to accept new
variants without rejecting the earlier one. This may
allow a service to upgrade gradually without breaking
the earlier interface contract.

4.2.5 Latency. The resource-centric model is often
associated with HTTP, a network-based application
protocol. HTTP provides a caching feature to handle
network latency. Thus, architects may leverage this
feature and decide the caching strategy at the design
time. On the other hand, method-centric and message-
centric approaches are not associated with a particular
network-based application protocol. Since the network
latency problem is unavoidable in the service
deployment environment, architects should know how
to handle the problem in the chosen communication
platform. Although some may argue that latency is
more a deployment issue, it is an advantage to consider
it earlier to ensure services are designed with
performance concern from ground up. Hiding or
ignoring the latency issue may consider harmful in a
distributed computing environment [6].

4.2.6 Partial failure. Partial failure is a central reality
of distributed computing environment [6]. Due to the
distribution of computation tasks among a set of
physically separated components, one component
either machine or network link may fail while the
others continue. In an Internet-scale network, it is
impossible to tell precisely where the failure has taken
place. This leads to the question: can a buyer send an
identical purchase order request twice or more, when
fail to receive a response?

In the resource-centric model, every interaction can
be generalized into simple resource state manipulation.
Sending a request to a resource is simply an action to
change or retrieve the resource’s state. When dealing
with partial failure, this model allows a sender to
retrieve the latest resource’s state to verify whether the
previous state change attempt has been successful
before deciding to resend the request. In addition, each
message in HTTP is given a label (e.g. safe,
idempotent [21]) to suggest its usage and possible
effects when dealing with identical requests. It aids
architects to make appropriate design decision, for

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 20:39 from IEEE Xplore. Restrictions apply.

example HTTP PUT may be preferred over POST
when possible, due to its idempotent nature that allows
clients to resend identical requests without breaking the
intended semantics. Both method-centric and message-
centric approach may utilize this feature by choosing
HTTP as the communication protocol in deployment.
An alternative is to migrate the responsibility to a
separate reliable-messaging layer (e.g. WS-Reliability
[37]) underneath all interacting components.

4.2.7 Synchronous/asynchronous interaction. A
service may require certain business process
interactions to be asynchronous. For example, when a
purchase order is submitted to the seller, the purchase
order may be put into pending for days before the final
confirmation (or rejection) returned to the buyer.

At interface level, we often view a procedure call as
synchronous [38] because in method-centric approach,
each business process function is often modeled as
single procedure call. For instance, when a
submitPurchaseOrder operation is designed to
return the final confirmation results, it does not make
much sense to invoke the procedure call and maintain
the connection for days before the results returned.
Therefore, method-centric model may not be as natural
in representing asynchronous interactions. In local
computing, passing a callback function reference
address along with the invocation will allow
asynchronous call. To apply this concept in a large-
scale distributed environment, standardization on the
reference address schema is essential to ensure the
callbacks are identifiable and accessible globally.

By decoupling the request and response into two
separate messages, message-centric is often viewed as
a better choice for asynchronous interaction. A pair of
separated request/response messages are designed to
represents a single business process function. For
example, a purchase order submission function can be
modeled as two separate messages: a
PurchaseOrderRequest message contains all
purchase items details and a
PurchaseOrderConfirmation message with the
order confirmation. Due to the partial failure nature in
the deployment environment, architects often need to
design an extra Acknowledged message to be sent
back immediately from the receiver to the sender
whenever a request received.

By not hiding the network existence at interface
level, the HTTP specification provides a similar
Acknowledged message mentioned above (HTTP 202
Accepted [21]). Business-level asynchronous
interactions can be achieved with two separate client-
server requests: a buyer sends a purchase order (first
request) to the seller along with a special resource
identifier (e.g. a URI) and the seller returns a “HTTP

Accepted” response. Later, the seller sends an order
confirmation results (second request) to the special
resource supplied in the first request.

5. Related work

An earlier service interface design comparison done
by Henkel and Zdrakovic can be found in [19]. They
presented a brief discussion about the differences of
the three interfaces, without providing detailed
evaluation. In a service-oriented design methodology
proposed by Papazoglou and Heuvel [38], they
suggested the difference between method-centric and
message-centric interface is merely the interaction
model (synchronous/asynchronous), thus architects
may simply decide to adopt one of the approaches
based on the preferred interaction model. Feuerlicht
further suggested that decision can be delayed until the
implementation stage [14]. We suspect the assertions
were made due to the lack of understanding on the
abstraction model underlying each approach. From our
evaluation, it is clear that there are simply more issues
to be considered during the design of service interface.

6. Conclusion and further work

The paper presents a comparative evaluation on
three service interface approaches, i.e. method-centric,
message-centric and resource-centric. It first explains
common issues found in the service-oriented
environment. Based on this environment, a list of
evaluation criteria has been selected and grouped into
three design concern areas. The list is then used in the
analysis and evaluation of each design approach.

From the evaluation, we notice the method-centric
abstraction model can be mapped naturally to existing
programming languages, thus several established
design techniques may be applied easily. On the other
hand, the uniform interface constraint in resource-
centric approach simplifies the integration tasks. While
the message-centric interface allows asynchronous data
exchange, its maintainability problems should be taken
care during the design. This paper does not provide
quantitative data to insist that certain design approach
is superior over another. It is more important for
architects to first, be aware of the common issues in
service-oriented environment, then selectively adopt or
hybrid desired design approaches and decide the
associated technology platforms tailored to the actual
deployment environment. Further research interest may
focus on service interface design techniques from both
interoperability and maintainability perspectives.

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 20:39 from IEEE Xplore. Restrictions apply.

7. References

[1] K. Bennett and V. Rajlich, "Software maintenance and
Evolution: A Roadmap," in Proceedings of the Conference
on the Future of Software Engineering. Limerick, Ireland:
ACM Press, 2000, pp. 73-87.

[2] K. Bennett, M. Munro, N. Gold, P. J. Layzell, D.
Budgen, and O. P. Brereton, "An Architectural Model for
Service-Based Software with Ultra-Rapid Evolution," in
Proceedings of ICSM’01. Florence: IEEE Computer Society
Press, 2001, pp. 292-300.

[3] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H.
Ngu, and A. K. Elmagarmid, "Business-to-Business
Interactions: Issues and Enabling Technologies," The VLDB
Journal, vol. 12, pp. 59-85, 2003.

[4] M. Acharya, A. Kulkarni, R. Kuppili, R. Mani, N.
More, S. Narayanan, P. Patel, K. W. Schuelke, and S. N.
Subramanian, "SOA in the Real World - Experiences," in
Service-Oriented Computing - ICSOC 2005, Third
International Conference, vol. 3826, Lecture Notes in
Computer Science. Amsterdam, The Netherlands: Springer,
2005, pp. 437-449.

[5] M. Turner, D. Budgen, and P. Brereton, "Turning
Software into a Service," Computer, vol. 36, pp. 38-44, 2003.

[6] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, "A
Note on Distributed Computing," Sun Microsystems Labs
SMLI TR-94-29, November 1994.

[7] Google, "Google SOAP Search API," 2006;
http://www.google.com/apis/.

[8] S. R. Ponnekanti and A. Fox, "Application-Service
Interoperation without Standardized Service Interfaces," in In
IEEE International Conference on Pervasive Computing and
Communications (PerCom '03). Fort Worth, Texas, 2003, pp.
30-37.

[9] B. Verheecke and M. A. Cibrán, "AOP for Dynamic
Configuration and Management of Web Services," in The
International Conference on Web Services - Europe, 2003.

[10] P. Henderson and J. Yang, "Reusable Web Services,"
in Proceedings, 8th International Conference on Software
Reuse, 2004, pp. 185-194.

[11] L. Melloul and A. Fox, "Reusable Functional
Composition Patterns for Web Services " in IEEE
International Conference on Web Services (ICWS'04), 2004,
pp. 498.

[12] M. Turner, F. Zhu, I. Kotsiopoulos, M. Russell, D.
Budgen, K. Bennett, O. P. Brereton, J. Keane, P. J. Layzell,
and M. Rigby, "Using Web Service Technologies to create an
Information Broker: An Experience Report," presented at

26th International Conference on Software Engineering
(ICSE'04), 2004.

[13] R. T. Fielding, "JSR 170 Overview: Standardizing the
Content Repository Interface," Day Management AG
(www.day.com), Switzerland 13 March 2005.

[14] G. Feuerlicht, "Application of Data Engineering
Techniques to Design of Message Structures for Web
Services," in Proceedings of the First International
Workshop on Design of Service-Oriented Application
(WDSOA'05). Amsterdam, The Netherlands: IBM Research
Division, RC23819, 2005.

[15] RosettaNet, "RosettaNet Standards," 2006;
http://www.rosettanet.org/.

[16] OTA, "The OpenTravel Alliance," 2006;
http://www.opentravel.org/.

[17] M. Baker, "Towards truly document oriented Web
services," 18 July 2005; http://www.coactus.com/blog/
2005/07/towards-truly-document-oriented-web-services/.

[18] R. T. Fielding, "Architectural Styles and the Design of
Network-based Software Architectures," Ph.D. dissertation,
University of California, Irvine, 2000.

[19] M. Henkel and J. Zdrakovic, "Approaches to Service
Interface Design," in Proceedings of the Web Service
Interoperability Workshop, First International Conference
on Interoperability of Enterprise Software and Applications
(INTEROP-ESA'2005). Geneva, Switzerland: Hermes
Science Publisher, 2005.

[20] S. A. Tanenbaum and V. M. Steen, Distributed Systems
- Principles and Paradigms. Upper Saddle River, New
Jersey: Prentice-Hall, Inc, 2002, pp. 647-677.

[21] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L.
Masinter, P. J. Leach, and T. Berners-Lee, Hypertext
Transfer Protocol – HTTP/1.1, IETF RFC 2616, HTTP
Working Group, June 1999.

[22] del.icio.us, "del.icio.us online bookmark system API,"
2006; http://del.icio.us/help/api/.

[23] Amazon, "Amazon Web Services: Amazon S3," 1 Mar.
2006; http://docs.amazonwebservices.com/
AmazonS3/2006-03-01/.

[24] OMG, Common Object Request Broker Architecture
(CORBA) Core Specification, Version 3.0.3, Mar. 2004;
http://www.omg.org/technology/documents/
corba_spec_catalog.htm.

[25] E. Yourdon and L. L. Constantine, Structured Design:
Fundamentals of a Discipline of Computer Program and

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 20:39 from IEEE Xplore. Restrictions apply.

Systems Design. Englewood Cliffs, New Jersey: Prentice-
Hall, Inc., 1979.

[26] G. Feuerlicht, "Data Engineering Approach to Design
of Web Services," in Lecture Notes in Computer Science,
2005, pp. 766-767.

[27] G. Booch, Object-Oriented Analysis and Design: with
applications, Second Edition ed. United States of America:
Addison Wesley Longman, Inc, 1994, pp. 81-143.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software. United State of Ameria: Addison-Wesley
Publishing Company, 1994, pp. 17.

[29] B. Venners, "Designing Fields and Methods: How to
Keep Fields and Methods Decoupled," Mar. 1998;
http://www.artima.com/designtechniques/coupling3.html.

[30] M. Baker, An Abstract Model for HTTP Resource
State, Internet-Draft draft-baker-http-resource-state-
model.txt, IETF, Nov. 2001;
http://www.markbaker.ca/2001/09/
draft-baker-http-resource-state-model-01.txt.

[31] Google, "Google Search," 2006;
http://www.google.com/search.

[32] G. Feuerlicht and S. Meesathit, "Design Method for
Interoperable Service Interfaces," in Proceedings of the 2nd
international conference on Service oriented computing.
New York, NY, USA: ACM Press, 2004.

[33] S. R. Ponnekanti and A. Fox, "Interoperability among
Independently Evolving Web Services," in Proceedings of
the 5th ACM/IFIP/USENIX international conference on
Middleware. Toronto, Canada: Springer-Verlag New York,
Inc., 2004.

[34] T. Kindberg, J. Barton, J. Morgan, G. Becker, D.
Caswell, P. Debaty, G. Gopal, M. Frid, V. Krishnan, H.
Morris, J. Shchettino, B. Serra, and M. Spasojevic, "People,
Places, Things: Web Presence for the Real World," ACM
MONET (Mobile Networks & Applications Journal), vol. 7,
2000.

[35] J. Barton, T. Kindberg, H. Dai, N. B. Priyantha, and F.
A. Ali, "Sensor-enchanced Mobile Web Clients: An XForms
Approach," presented at Proceedings of the 12th
International Conference on World Wide Web (WWW'03),
2003.

[36] I. Radusch, S. Steglich, and S. Arbanowski, "Evolvable
Services for the Ubiquitous Information Society based on
Cooperating Objects Platforms," presented at Proceedings of
IEEE International Conference on Systems, Man and
Cybernetics (IEEE SMC 2004), The Hague, Netherlands,
2004.

[37] OASIS, Web Services Reliability Messaging TC (WS-
Reliability 1.1), OASIS Standard, 15 Nov. 2004;
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1.

[38] M. P. Papazoglou and W. J. van den Heuvel, "Service-
Oriented Design and Development Methodology," to appear
in Int'l Journal of Web Engineering and Technology
(IJWET), 2006.

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 20:39 from IEEE Xplore. Restrictions apply.

