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Abstract 

Auxetic structures are designed to be used for producing auxetic materials with 

controllable mechanical properties. The present study treats a design of 

viscoelastic auxetic honeycomb structures using numerical approach and 

mathematical formulation for impact mitigation. In order to increase the energy 

absorption capacity, viscoelastic material has been added into auxetic structure 

as it has capability to dissipate energy under impact loading. Kelvin-Voigt and 

Maxwell models were employed to model viscoelastic components. The auxetic 

structure was then subjected to impact load with linear and nonlinear load 

functions. Dynamic analysis was carried out on a star honeycomb structure 

using continuum mechanics. Influence of different parameters on response 

function was then further studied. The primary outcome of this research is the 

development of viscoelastic auxetic honeycomb structural design for predicting 

the impact resistance under impact loading. 

Keywords: Viscoelastic, Analytical, Auxetic structure, Energy absorption,  

                   Dynamic loading. 

 

 

1.  Introduction 

As opposed to purely elastic materials, a viscoelastic material has both elastic and 

viscous components. Pure elastic materials do not lose energy (heat) under 

dynamic loadings [1, 2]. However, a viscoelastic material loses energy when 

loaded and unloaded. 

There are two types of viscoelastic materials: linear and nonlinear. Linear 

viscoelasticity is used for separable function while nonlinear is used when the 
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Nomenclatures 
 

aG1 Acceleration of point G1 

C Damping of viscoelastic material 

f1(t) Impact loading function, N 

f2(t) Damping coefficient of viscoelastic component 

Fc Damper force, N 

Fs Spring force, N 

h Initial value of Yq with respect to XY coordinate system 

H Initial value of Yn with respect to XY coordinate system 

K Stiffness of viscoelastic material 

K’ Stiffness coefficient of sparing designed for setting θ at θ0 

L1 Length of parts 𝐴𝐵, 𝐴𝐹, 𝐶𝐷  and 𝐷𝐸 , m 

m1 Mass of parts 𝐴𝐵, 𝐴𝐹, 𝐶𝐷  and 𝐷𝐸 , Kg 

(XA,YA) Coordinate of point A with respect to XY coordinate system 

(Xn,Yn) Coordinate of point n with respect to XY coordinate system 
 

Greek Symbols 

 Angle of part  𝐴𝐵 with respect to horizontal direction, deg 

θ0 Initial value of θ deg 

function is not separable. Nonlinear often happens when the deformations are 

large or when mechanical properties of the material change during deformation. 

These materials need to be modelled to obtain their stress or strain interactions. 

These models including the Kelvin-Voigt model, Maxwell model and the 

Standard Linear Solid Model are used to predict a material's response under 

different loading conditions. The Kelvin–Voigt model consists of a Newtonian 

damper and Hookean elastic spring connected in parallel. The Maxwell model can 

be represented by a purely viscous damper and a purely elastic spring connected 

in series. The Standard Linear Solid Model effectively combines the Maxwell 

Model and a Hookean spring in parallel. A viscous material is modelled as a 

spring and a dashpot in series with each other, both of which are in parallel with a 

lone spring. 

Moreover, auxetic materials are new class of materials exhibiting negative 

Poisson’s ratio. Using characteristics of these materials, they are beneficial for 

many applications. Studies and experiments have proven that these materials have 

the ability to improve important mechanical properties such as shear modulus, 

fatigue crack propagation, energy absorption, impact resistance, fracture 

toughness, and indentation resistance [3, 4]. There are two types of auxetic 

materials which are man-made auxetic and natural auxetic [5, 6]. 

For decades, several geometrical structures with the auxetic behaviour have 

been introduced, fabricated and tested for their mechanical properties. These 

geometrical structures are considerably indispensable as they could be used to 

comprehend how auxeticity effects could be achieved and how auxetic materials 

can be manufactured as well as how their properties can be optimized and 

predicted [7]. Most importantly, they can be used to produce auxetic materials 

with controllable mechanical properties. 
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Among the most important classes of auxetic structures are re-entrant 

structures [5-7], chiral structures [8, 9], rotating rigid/semi-rigid units [10-12], 

angle-ply laminates [13, 14], hard molecules [15-17], micro porous polymers [18-

20] and liquid crystalline polymer [21-23]. Re-entrant structures have attracted 

more attention compared to other structures owing to their ability to model 

auxetic materials. Star honeycomb structure is one of the important re-entrant 

structures of auxetic materials [5] and such structure has been tailored in the 

present study. This structure is made of 12 beams with the same length and same 

cross section as shown in Fig. 1(a). 

The most important applications of this structure are to be used as cellular 

structure of an auxetic material with controllable mechanical properties both in 

2D and 3D cases as shown in Fig. 1(b). Energy absorbing potential of viscoelastic 

materials makes them an excellent choice in the man-made auxetic industry [24-

25]. The viscoelastic material is added to the auxetic structure in order to re-

increase the energy absorption capability. Therefore, using viscoelastic materials 

in man-made auxetic industry seems to be a necessity.  

 

Fig. 1. (a) Star-shaped structure in 2D and 3D.                                                              

(b) An element of auxetic material made of 3D star-shaped structures. 

In this present study, a design of viscoelastic auxetic honeycomb structures for 

impact mitigation has been established. In order to increase the energy absorption 

capacity of the auxetic structure, viscoelastic material has been adopted to form 

auxetic structure as it has the ability to dissipate energy under dynamic loading. A 

collection of star honeycomb structures was taken into consideration to act as an 

auxetic structure. Kelvin-Voigt and Maxwell models were employed to model 

viscoelastic component. The auxetic structure was then subjected to impact load 

with linear and nonlinear load functions. Dynamic analysis was carried out on a 

star honeycomb structure using continuum mechanics. Numerical analysis was 
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carried out to solve nonlinear coupled differential equations obtained from 

dynamic analysis. Influence of different parameters on response function was then 

further studied. The primary outcome of this research is the development of 

empirical formulation for calculating the impact resistance of viscoelastic auxetic 

structure under dynamic loading. 

 

2.  Development of Auxetic Model 

2.1.  Definition of the model 

The model is defined as star honeycomb structures in which viscoelastic 

component has been used. To make the structure easier to be analysed, it was 

considered as six rigid parts connected each other by hinge joints as shown in Fig. 

2. In Fig. 2,  𝐴𝐵,  𝐴𝐹, CD  and DE  are straight rigid parts with the same length of 

1L , and the same mass of 1m . Also, parts BC  and EF  are rigid parts made of 

three straight parts. Effect of elasticity and viscosity of the material was also 

considered as a linear spring and damper inside the structure. To analyse the 

structure dynamically, Kelvin–Voigt and Maxwell models were used for 

modelling material’s viscoelasticity (see Fig. 2). The viscoelastic components 

were situated inside the structure, resulting in reducing the impact load, they 

translate the load to another structure using a slender rigid rod passing through 

part EF  as shown in Fig. 2. 

 

 

Fig. 2. Viscoelastic models of auxetic structure                                                          

using rigid parts and linear spring and damper. 

Although attempt has been done to reduce the degrees of freedom by reducing 

the number of hinge joints, the number of freedom's degrees is still three [26]. A 

collection of the defined structure was considered as an auxetic material with 

controllable ability of energy absorption (see Fig. 3). In Fig. 3, the horizontal 

springs were weak enough to be neglected in calculations. The aim of designing 

them is setting initial   at a desired value. However, since any structure has three 

degrees of freedom, the number of degrees of freedom for such a model is great. 

This makes the calculation too much complicated due to the nonlinearity of 

dynamic equations. Therefore, in here, one structure for dynamic analysis was 

considered in which the slender rigid rod was fixed to a foundation as shown in 

Fig. 4. Fixing the rod causes reduction of the degrees of freedom to two. As seen 

in this figure, impact loading,  1f t  was applied to the structure. Then, dynamic 
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analysis was carried out to obtain the function of transmitted load to the 

foundation,  2f t . 

Neglecting the weights of all parts of the structure, body force diagrams of 

them is shown in Fig. 5. In this figure, in the case of Kelvin-Voigt model:             

F = FS + FC, and in the case of Maxwell model: S CF F F  , where SF and CF  

are spring and damper forces, respectively.  

 

Fig. 3. A collection of the defined structure for                                                  

modeling behavior of viscoelastic auxetic material when impacted. 

 

Fig. 4. A structure used for modelling auxetic material. 
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Fig. 5. Body force diagram of all parts of the structure. 

2.2. Dynamic analysis of the model 

In Fig. 6, the following equation is written among different points located on the 

structure in x-y coordinate system: 

n n m B A F p
A F pq m B q

n qY Y Y Y Y Y Y Y Y                                      (1) 

where 1nY Y H  , 2qY Y h  , 1 02 sinH h L   , 1n
m

Y c , 1m
B

Y c  , 

1sinB A
A F

Y Y L   , 1F
p

Y c  and 1p
q

Y c  

After substitution and simplification, the relationship among 1Y , 2Y  and   is 

written as: 

 1 2 1 02 sin sinY Y L                                     (2) 

 

Fig. 6. Coordinate XY system, 𝑌1 , and 𝑌2                                                               

defined for dynamic analysis of the structure. 
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The above equation decreases the degrees of freedom from three (3) to two 

(2). In Fig. 6, coordinates of joint A in x-y coordinate system is also written as: 

1 1 1 1cos 0 0 cos

A A F p q
O F p q O

A

A

X X X X X X

X L c L 

    

       
  

1 2sin

A A F p q
O F p q O

A

A

Y Y Y Y Y Y

Y L Y c

    

   
  

Two times derivation of displacements AX  and AY with respect to y yields 

the acceleration of A along x and y directions as follows: 

   2
1 sin cosA Ax

a X L       
 

      

  2
1 2cos sinA AY

a Y L Y       
 

            

Taking into consideration the S CF F F  rigidity of part AB , the following 

equation can be written: 

       

     

1 1

1

1 1

2 2

2 2

cos sin

cos sin

L L
G A

L L

a a k k i j

k i j

   

  

  
        

 
  

  

               (5) 

where 
1Ga and Aa  are accelerations of points 1G  and A , respectively. This 

equation gives the components of 
1Ga  along x and y directions as follows:  

  1

1

2

2
sin cos

L
G

X
a      

 
                 

  1

1

3 2
22

sin cos
L

G
Y

a Y      
 

      

Similarly, the following equation can be written for part AF  as follows: 

       

     

1 1

2

1 1

2 2

2 2

cos sin

cos sin

L L
G A

L L

a a k k i j

k i j

   

  

  
          

 
   

  

                (7) 

The above equation gives the components 
2Ga  along x and y directions as 

follows: 

  1

2

2

2
sin cos

L
G

X
a      

 
                           

  1

2

2
22

cos sin
L

G
Y

a Y      
 

      

Also, the same equation is written for points A  and B  in part AB : 

     

(3) 

(4) 

(6) 

(8) 



478       M. S. Rad et al. 

 
 
Journal of Engineering Science and Technology        February 2017, Vol. 12(2) 

 

       

     

1 1

1 1

cos sin

cos sin

B Aa a k k L i L j

k L i L j

   

  

         

    

    

       

     

1 1

1 1

2 2

2 2

cos sin

cos sin

L L
F A

L L

a a k k i j

k i j

   

  

  
          

 
   

    

Because of the symmetry of the structure, parts AB  and EF  move along Y

direction. Therefore, using Eq. (9), acceleration of B  and F can be written as: 

  2
1 22 cos sinB B Y

a a L Y       
 

      

  1

22
cos

L
F F Y

a a Y    
 

 

After determining the accelerations, force analysis of parts is dealt with. First, 

using body force diagram of part AB  and obtained acceleration of 1G , dynamic 

equations of this part are written as: 

 
1

1 1

1

2

2
sin cos

X G X X
X

m L

F m a A B

   

   

  
 

 

 
1

1 1

1

3 2
1 22

cos sin

Y G Y Y
Y

m L

F m a A B

m Y   

   

   
 

              (11) 

 

 

 

1

1 1

2
1 1 1

2

2 12

sin

cos

L
G G X X

L m L
Y Y

M I A B

A B

 

 

     

    
             

 

Then, dynamic force equations of part EF  are similarly written as: 

 
2

1 1

1

2

2
sin cos

X G X X
X

m L

F m a F A

   

   

  
 

     

 
2

1 1

1

2
1 22

cos sin

Y G Y Y
Y

m L

F m a F A

m Y   

   

   
 

                                                   (12)
 

   

 

1

2 2

2
1 1 1

2

2 12

sin

cos

L
G G X X

L m L
Y Y

M I A F

A F

 

 

      

     

 

     

(9) 

(10) 
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Now, the system in Eqs. (11) and (12) are written in matrix forms as follows: 

       

   

1 1 1 1

2 2 2 2

1 1

1 0 1 0 0 0

sin sin sin sin 0 0

1 0 0 0 1 0

0 1 0 0 0 1

sin cos 0 0 0 0

X

L L L L Y

X

Y

X

Y

A

A

B

B

F

L L F

   

 

  
  
  
  

  
  
  
  
      

 

 

 

 

1 1

1 1

2
1 1

1 1

1 1

2
1 1

2

2

3 2
1 22

12

2

2

2
1 22

12

sin cos

cos sin

sin cos

cos sin

m L

m L

m L

m L

m L

m L

m Y

m Y

   

   



   

   



 
 
 

  
 
  

  
  

 
 
 

  
 
  

  
  

                                                                           (13)

 

2.3. Dynamic force equations for Kelvin–Voigt model 

In this model, dynamic force equations of part BC  are written as: 

0X X XF C B   
                   

 2 1 1 1 2 12Y B YF m a f t B CY KY m Y      
            (14) 

0 Y YM C B     

Derivation of Eq. (2) with respect to the yields the following equations: 

1 2 12 cosY Y L    

2
1 2 12 cos sinY Y L       

 
      

                   

Using Eqs. (14) and (15) yields: 

   

 

2
2 2 2 1 2 1

1 2 2

2 cos 2 sin

2 Y

m Y m L m L

f t B CY KY

    

    
                           (16)       

Dynamic force equations of part EF  are similarly written as follows: 

0X X XF E F     

(15) 
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2 2 22Y F YF m a F m Y   
                                                      (17)

 

0 Y YM E F     

From the matrix form of Eq.(13), YB  and YF  are obtained as a function of 

 ,  ,  , and 2Y . Using obtained YB  and YF  in Eqs. (16) and (17) yields the 

following matrix form equations: 

      

   

2

1 11 1 1

2

1 1 1 1 1 1 1

sin5 9
2 1 1 212cos 4cos 4

sin 3 cos 3 2
22cos 2 6cos 2

2 cos 2
m Lm L m

m L m L m L m

m L m m

Y
m



 

 

 




  
       

   
  

          
  

 

     

 

1 2 1 2 1

2
1 1 2

2
1 1

2 sin 2 cos

2 sin

2 sin

f t K Y L C Y L

L m m

m L

  

 

 

     
  
       
 
  

                           (18) 

2.4.  Dynamic force equations for Maxwell model 

Unlike parts BC  and EF , dynamic force equations of parts AB  and BF  in this 

model are the same with that of Kelvin–Voigt model. In this model, dynamic 

force equations of EF  and BC  along y direction are written as following: 

Part    2 1 1 3 2 1: 2Y B YBC F m a f t B C Y Y m Y      
 

Part   2 2 2: 2Y F YEF F m a F m Y   
                                                               (19)

 

Viscoelastic components:  3 1 3S CF F KY C Y Y   
      

Similar to Kelvin-Voigt model, using Eqs. (13) And (19) give the following 

matrix form equations:
 

      

   

2

1 11 1 1

2

1 1 1 1 1 1 1

sin5 9
2 1 1 212cos 4cos 4

sin 3 cos 3 3
22cos 2 6cos 2

2 cos 2
m Lm L m

m L m L m L m

m L m m

Y
m



 

 

 




  
       

   
  

          
  

 

     
 

1 2 1 2 1

2
1 1 2

2
1 1

2 sin 2 cos

2 sin

2 sin

f t K Y L C Y L

L m m

m L

  

 

 

     
  
  
   

 
          

                 (20)
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2.5.  General formulation of the models 

2.5.1. Kelvin-Voigt model 

Using system Eq. (18),  and 2Y  can be written as functions of t, 2Y , 2Y , , and 

  as follows. 

 1 2, 2, , ,F t Y Y                          

 2 2 2 2, , , ,Y F t Y Y    

where the boundary conditions are:  2 0 0Y  ,  2 0 0Y  ,   00  , and  0 0   

  

2.5.2. Maxwell model 

Similarly, using system Eq.(20),  and 3Y  can be written as functions of t, 3Y , 3Y , 

, and   as shown below: 

 3 3, 3, , ,F t Y Y       

 3 4 3 3, , , ,Y F t Y Y   

where the boundary conditions are:  3 0 0Y  ,  3 0 0Y  ,   00  , and  0 0  . 

 

3.  Numerical Solution 

In here, a numerical solution for solving Eqs (21) and (22) is presented. After 

solving the equations from this approach, all variables used can be calculated 

numerically. The numerical solution approach is as follows. 

First, the domain of t is divided into n time step, t (in here: n=1000). Then, in 

order to use boundary conditions of the equations, two time step are defined at t < 0 

as shown in Fig. 7. After that, t(i),  i , and  2Y i  are defined as  ,t t , and  2Y t   

at i
th
 time step. Therefore, the following equation can be used to determine  t i :  

   0 3
t

n
t i i                  (23) 

 

Fig. 7. The time step defined for time domain in numerical solution. 

 

(22)

( 

(21) 
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Based on definition of  ,  , 2Y  and 2Y , the following equations were used to 

solve Eq. (21) numerically: 

 
   1 1

2

i i

t
i

 


  


  

 
       

 
2

1 1 2 2

2 4

i i i i

t t
i

   


     

 
        

                 (24) 

 
   2 21 1

2 2

Y i Y i

t
Y i

  


            

 
       

 

2 2 2 2

2

1 1 2 2

2 2 4

Y i Y i Y i Y i

t t
Y i

     

 
   

where the boundary conditions are:       01 2 3      ,      2 2 21 2 3 0Y Y Y    

and      2 2 21 2 3 0Y Y Y   . 

Now, values of   and 2Y  for Kelvin-Voigt model at different times are 

determined using the following steps: 

Step 1: setting 3i   in Eq. (24) yields  4 , and  2 4Y  for Kelvin-Voigt model. 

Step 2: For 3i   to n, the following equations are used to determine  5  to  

 3n   and  2 5Y  to  2 3Y n  : 

       
2

2 4 2i t i i             

                              (25) 

       
2

2 2 22 4 2Y i t Y i Y i         

Obtaining  and 2Y  numerically from the mentioned approach, and using Eqs. 

(2) and (15) and rigid rod body force diagram shown in Fig. 5, f2(t) can be 

calculated as follows: 

 

 

2 1 1

2 1 0 2 12 sin sin 2 cos

f t F KY CY

K Y L C Y L   

  

         

            (26) 

Similarly, the same numerical solution approach has been performed to solve 

Eq. (22) for Maxwell model to obtain numerical functions  and 3Y . Referring to 

body force diagram for rigid rod, after solving the abovementioned equations, f2(t) 

can be calculated numerically using the following equation: 

 2 3f t F KY                                                                                        (27)  
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4.  Dynamic Analysis Using Numerical Prediction 

In this research, dynamic analysis of viscoelastic star honeycomb structure was 

carried out by which eight different cases of the model were taken into 

consideration as shown in Table 1. Using dynamic equation for parts AB , AF , 

BC  and EF , two nonlinear coupled differential equations were obtained. Then, a 

numerical solution was offered to solve the equations during the impact time, [0, 

t0]to calculate 2f  and  as a function of t. A linear impact load function and a 

nonlinear one were used. Graphical representation of results is shown in Fig. 8. 

The values of C, K, and t0 used in this study are 50 N.s/m, 20 kN/m, and 0.05 s, 

respectively. The primary results are outlined as follows 

(i) As the value of initial , increases the impact load transmitted to foundation, 

2f , is reduced as shown in Figs. 8(a) and 8(b). This is due to more auxeticity 

of the structure which results in increasing the ability of impact resistance 

and energy absorption of the structure. 

(ii)  The value of m1, increases as the value of f2 decreases. The reason is that a 

fraction of impact load 1f  is used to accelerate the structure. 

(iii) Two impact load function for  1f t  was taken into consideration which are

    3
1 20000000f t t , and    1 50000f t t . Although the value of  1 0f t  is the 

same for both linear and nonlinear load functions, the value of  2f t  is not the 

same because of the nonlinearity of the system as shown in Figs. 8(c) and 8(d). 

(iv) In this present study, the value of 2f  in Kelvin-Voigt model is less than 

that in Maxwell model 

This present research can be considered as an initial step for designing of 

viscoelastic auxetic structures with controllable impact resistance and energy 

absorption ability. The values of design parameters could be chosen in the way that 

desired transmitted load function would be obtained. It also clarifies that auxetic 

structure has benefit to be used in a compression type of loading, in addition to 

tension type of loading normally done by previous researchers. In this research, the 

technique used for solving nonlinear coupled differential equations can contribute to 

solve too complicated differential equations without any limitations. 

 

Table. 1. Viscoelastic model and values of parameters in 8 different case. 

Model No. Viscoelastic model  (deg) 𝒎𝟏(kg) 𝒇𝟏(𝒕) (N) 

1 Kelvin-Voigt 30 0.1 (20000000)𝑡3 

2 Kelvin-Voigt 60 0.1 (20000000)𝑡3 

3 Kelvin-Voigt 30 0.5 (20000000)𝑡3 

4 Kelvin-Voigt 30 0.1 (50000)𝑡 

5 Maxwell 30 0.1 (20000000)𝑡3 

6 Maxwell 60 0.1 (20000000)𝑡3 

7 Maxwell 30 0.5 (20000000)𝑡3 

8 Maxwell 30 0.1 (50000)𝑡 
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Fig. 8. (a) Case 1 

 
Fig. 8. (b) Case 2 
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Fig. 8. (c) Case 3 

 
Fig. 8. (d) Case 4 
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Fig. 8. (e) Case 5 

 
Fig. 8. (f) Case 6 
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Fig. 8. (g) Case 7 

 
Fig. 8. (h) Case 8 

Fig. 8. Functions of 𝜃(𝑡) and 𝑓2(𝑡) obtained from numerical solution. 
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5.  Conclusion 

This paper has developed a design of viscoelastic auxetic honeycomb structures in 

conjunction with the development of mathematical formulation for structural 

impact application under dynamic loading. Dynamic analysis has been carried out 

for the viscoelastic auxetic honeycomb structures leading to the development of 

empirical formulation to obtain their impact resistance of auxetic structure. 

 The proposed viscoelastic component in auxetic structures has merit since the 

topology allows more degrees of freedom to the auxetic structure such as 

geometrical parameters of the cell, mass, K, C, and type of viscoelastic 

material model.  

 The amount of energy absorption capacity of the auxetic material under 

dynamic loading may numerically been controlled by varying the geometrical 

and material parameters.  

 This pioneer work may be considered as a first attempt in using viscoelastic 

materials in structural impact application and also provides a basis in 

designing auxetic structures. 
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