
1. INTRODUCTION

The solutions of one or more partial differential equations 

(PDEs), which are subjected to relatively simple limits, can be 

tackled either by analytical or numerical approach. There are 

two common techniques available to solve PDEs analytically, 

namely the variable separation and combination of variables. 

A heat exchanger is a device used for transferring heat from 

one fluid to another. The fluid may not be allowed to mix by 

separating them by a solid wall or they may be in direct contact. 

They are operated in numerous industries such as power 

generation, petroleum refineries, chemical and processing 

plants and HVACs [1]. The heat transfer process associated 

with natural convection is extensively involved in numerous 

engineering applications due to its diverse applications in 

geophysics, nuclear reactor system, energy efficient buildings, 

cooling of electronics system, solar system etc [2]. Convection 

is one of the heat transfer modes in addition to conduction and 

radiation, this transfer type can be arises between solid and 

flowing fluid. Heat transfer convection is divided into: forced 

convection caused by external forces like pumps and fans, and 

natural (free) convection when the motion is due only to the 

temperature difference between the wall and the fluid [3]. 

The Graetz problem describes the temperature (or 

concentration) field in fully developed laminar flow in a 

circular tube where the wall temperature (or concentration) 

profile is a step-function [4]. The simple version of the Graetz 

problem was initially neglecting axial diffusion, considering 

simple wall heating conditions (isothermal and isoflux), using 

simple geometric cross-section (either parallel plates or 

circular channels), and also neglecting fluid flow heating 

effects, which can be generally denoted as Classical Graetz 

Problem [5]. Min et al. [6] presented an exact solution for a 

Graetz problem with axial diffusion and flow heating effects 

in a semi-infinite domain with a given inlet condition. Later, 

the Graetz series solution was further improved by Brown [7]. 

Ebadian and Zhang [8] analyzed the convective heat transfer 

properties of a hydrodynamically, fully developed viscous 

flow in a circular tube. Lahjomri and Oubarra [9] investigated 

a new method of analysis and an improved solution for the 

extended Graetz problem of heat transfer in a conduit. An 

extensive list of contributions related to this problem may be 

found in the papers of Papoutsakis et al.[10] and Liou and 

Wang [11]. In addition, the analytical solution proposed 

efficiently resolves the singularity and this methodology 

allows extension to other problems such as the Hartmann flow 

[12], conjugated problems [13] and other boundary conditions. 

Recently, Belhocine [14] developed a mathematical model to 

solve the classic problem of Graetz using two numerical 

approaches, the orthogonal collocation method and the method 

of Crank-Nicholson.  

In this paper, the Graetz problem that consists of two 

differential partial equations will be solved using separation of 

variables method. The Kummer equation is employed to 

identify the confluent hypergeometric functions and its 

properties in order to determine the eigenvalues of the infinite 

series which appears in the proposed analytical solution. In 

addition, the exact analytical solution presented in this work 

was validated by the numerical value data previously 

published by Shah and London.  
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2. THE HEAT EQUATION IN CYLINDRICAL 

COORDINATES

The general equation for heat transfer in cylindrical 

coordinates developed by Bird, Stewart and Lightfoot [15] is 

as follows; 
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Considering that the flow is steady, laminar and fully 

developed flow (Re < 2400), and if the thermal equilibrium 

had already been established in the flow, then 0
T

t





. The 

dissipation of energy would also be negligible. Other physical 

properties would also be constant and would not vary with 

temperature such as ρ, µ, Cp, k.  
This assumption also implies incompressible Newtonian 

flow. 

Axisymmetric temperature field 
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T , where we are 

using the symbol θ for the polar angle. 

By applying the above assumptions, Equation (2) can be 

written as follows: 

Z

p

T k
u

z C






1 T
r

r r r

   
  

   
 (3) 

Given that the flow is fully developed laminar flow 

(Poiseuille flow), then the velocity profile would have 

followed the parabolic distribution across the pipe section, 

represented by  
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where 2�̅�  is the Maximum velocity existing at the centerline 

By replacing the speed term in Equation (3), we get: 
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Solving the equations requires the boundary conditions as 

set in Figure 1, thus 
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It is more practical to study the problem with standardized 

variables from 0 to 1. To do this, new variables without 

dimension (known as adimensional) are introduced, defined as 
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adimensional variables in Equation (5) gives 

2 2 2

0 0 0

2 2 2

( ) ( ) ( )1
2 1

p

T T T T T Tx R k
u

L y xR R xR c R x

    



       
    

     

(7) 

After making the necessary arrangements and 

simplifications, the following simplified equation is obtained. 
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where the term 
2 pu R C

k


 is the dimensional number known as 

the Peclet number (Pe), which in fact is the Reynolds number 

divided by the Prandtl number. In steady state condition, the 

partial differential equation resulting from this, in the 

adimensional form can be written as follows: 
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This equation, if subjected to the new boundary conditions, 

would be transformed to the followings: 

@ z=0, 0T T  @ y =0, 1 , 

@ r = 0, 

 0

r
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@ x=0, 0),0(0 

 y
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, 

@ r =R, T T  @ x=1, 0 (1, ) 0y    . 

It is hereby proposed that the separation of variables method 

could be applied, to solve Equation (9). 

3. ANALYTICAL SOLUTION USING SEPARATION

OF VARIABLES METHOD

As a good model problem, we consider the steady state heat 

transfer of fluid in a fully developed laminar flow through a 

circular pipe. The fluid enters at z=0 at a temperature of T0 and 

the pipe walls are maintained at a constant temperature of 

Tω.We will write the differential equation for the temperature 

distribution as a function of r and z , and then express this in a 

dimensionless form and identify the important dimensionless 

parameters. Heat generation in the pipe due to the viscous 
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dissipation is neglected, and a Newtonian fluid is assumed. 

Also, we neglect the changes in viscosity in the temperature 

variation. A sketch of the system is shown below. 

Figure 1. Schematics of the classical Graetz problem and the 

coordinate system 

In both qualitative and numerical methods, the dependence 

of solutions on the parameters plays an important role, and 

there are always more difficulties when there are more 

parameters. We describe a technique that changes variables so 

that the new variables are “dimensionless”. This technique will 

lead to a simple form of the equation with fewer parameters. 

Let the Graetz problem is given by the following governing 

equation 
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where the initial conditions are as follows; 

IC :         y = 0  ,   1   

BC1 :      x=0     ,  0



x


BC2 :      x=1   ,    0  

Introducing dimensionless variables [16], as follows: 
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By substituting Equation (13) into Equation (12) then it 

becomes: 
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Notice that the term 
2 pu c R

k


  in Equation (15) is similar to 

the Peclet number, P. 

Thus, Equation (15) can be written as 

yL

PeR
   (16) 

Based on Equations (11)-(16), ones can write the following 

expressions; 
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Now, by replacing Equations (17)-(19) into Equation (10) 

the governing equation becomes: 
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by eliminating 
𝐿

𝑃𝑒𝑅
 the term, Equation (20) will be reduced to: 
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The right term in Equation (21) can be simplified as follows: 
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Finally, the equation that characterizes the Graetz problem 

can be written in the form of:   
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Now, using an energy balance method in the cylindrical 

coordinates, Equation (23) can be decomposed into two 

ordinary differential equations. This is done by assuming 

constant physical properties of a fluid and neglecting axial 

conduction and in steady state. By imposing initial conditions 

as given below: 
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and dimensionless variables are defined by: 
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while the separation of variables method is given by 
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Finally, Equation (23) can be expressed as follows: 
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where 
2
 is a positive real number and represents the intrinsic 

value of the system. 

The solution of Equation (25) can be given as: 
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where 1c is an arbitrary constant. In order to solve Equation 

(26), transformations of dependent and independent variables 

need to be made by taking: 
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Thus, Equation (17) is now given by; 
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Equation (19) is also called as confluent hypergeometric [17] 

and it is commonly known as the Kummer equation. 

A homogeneous linear differential equation of the second 

order is given by 
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If P(Z) and Q(Z) admit a pole at point Z=Z0, it is possible to 

find a solution developed in the whole series provided that the 

limits on and exist. 

The method of Frobenius seeks a solution in the form of 
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where, 𝜆 is a coefficient to be determined whilst properties of 

the hypergeometric functions are defined by; 
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Using derivation against Z, the function is now become 
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From Equation (32), ones will get; 
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Thus, the solution of Equation (26) can be obtained by: 
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Where n = 1, 2, 3, ... and eigenvalues 
n are the roots of 

Equation (35). Since the system is linear, the general solution 

can be determined using superposition approach: 
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The constants in Equation (36) can be sought using 

orthogonality property of the Sturm-Liouville systems after 

the initial condition is being applied as stated below; 
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The integral in the denominator of Equation (37) can be 

evaluated using numerical integration. 

For the Graetz problem, it is noticed that; 
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where is the function of the weight / n  eigenvalues  
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Sturm-Liouville problem. 
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Relation of orthogonality  
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By considering 
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By combining Equations (48), (49) and (50), the equation 

can be reduced to;  
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Let’s multiply Equation (10) by Equation (52) and then 

integrate Equation (53), 
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The outcomes of multiplication and integration process will 

produce the following: 

(i) If (n ≠ m)the result is equal to zero (0)  

(ii) If (n = m) the result is 
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Substituting Equation (51) into Equation (54), the equation 

becomes; 
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And the constants Cn can be obtained by; 
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4. RESULTS AND DISCUSSION  

4.1. Evaluation of the first four eigenvalues and the 

constant Cn  

A few values of the series coefficients are given in Table 1 

together with the corresponding eigenvalues. The results of the 

calculated values of the center temperature as a function of the 

axial coordinate ζ are also summarized in Table 2.  

 

Table 1. Eigenvalues and constants for Graetz’s problem 

 

n Eigenvalues βn Coefficient Cn ( 0)nG    

1 2.7044 
 

0.9774 
 

1.5106 

2 6.6790 
 

0.3858 
 

-2.0895 

3 10.6733 
 

-0.2351 
 

-2.5045 

4 14.6710 
 

0.1674 
 

-2.8426 

5 18.6698 
 

-0.1292 
 

-3.1338 

 

Table 2. Results of the center temperature functions θ (ζ) 

 

ζ Temperature (θ) ( ,0)   

0 1.0000000 1.0000000 

0.05 0.93957337 1.02424798 

0.1 0.70123412 0.71053981 

0.15 0.49191377 0.49291463 

0.25 0.23720134 0.2372129 

0.5 0.03811139 0.03811139 

0.75 0.0061231 0.0061231 

0.8 0.00424771 0.00424771 

0.85 0.00294671 0.00294671 

0,9 0.00204419 0.00204419 

0.95 0.00141809 0.00141809 

0.96 0.00131808 0.00131808 

0.97 0.00122512 0.00122512 

0.98 0.00113871 0.00113871 

0.99 0.0010584 0.0010584 

1 0.00098376 0.00098376 

 

The leading term in the solution for the center temperature 

is there for: 

 
2.704

( ,0) 0.9774 (0)e G
  

                                            (57) 

4.2. Graphical representation of the exact solution of the 

Gratez problem  

The center temperature profile is shown in Figure 2 using 

five terms to sum the series. As seen in this figure, the value 

of dimensionless temperature (θ) decreases with increasing 

values of dimensionless axial position (ζ). Note that the five-

term series solution is not accurate for ζ<0.05 More terms 

needed here for the series to converge. 
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Figure 2. Variation of dimensionless temperature profile (θ) 

with dimensionless axial distance (ζ) 

 

4.3. Comparison between the analytical model and the 

previous model simulation results 

 

In order to compare the previous numerical results carried 

out previously by Shah and London [4] with the analytical 

model of our heat transfer problem, we chose to present the 

results of the numerical distribution of temperature with the 

numerical solution approached by these authors which gives 

the best results. Figure 3 plots the comparison results. It is 

clear from Figure 3 that there is a good agreement between 

numerical results and center analytical solutions  of the Graetz 

problem.  
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Figure 3. A comparison between the present analytical 

results with the solution given by Shah and London [4] 

 

 

5. CONCLUSIONS 

 

In this paper, an exact solution of the Graetz problem is 

successfully obtained using the method of separation of 

variables. The hypergeometric functions are employed in 

order to determine the eigenvalues and constants, Cn and later 

with a find solution for the Graetz problem. The mathematical 

method performed in this study can be applied to the 

prediction of the temperature distribution in steady state 

thermally laminar heat transfer based on the fully developed 

velocity for fluid flow through a circular tube. In future work 

extensions, we recommend performing the Graetz solution by 

separation of variables in a variety of ways of accommodating 

non-Newtonian flow, turbulent flow, and other geometries 

besides a circular tube. It will be also interesting to solve the 

equation of the Graetz problem using numerical methods such 
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as finite difference or orthogonal collocation for comparison 

purposes with the proposed exact solution. These numerical 

works will be carried out and included in the upcoming papers. 
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NOMENCLATURE 

 

a parameter of confluent hypergeometric 

function 

b parameter of confluent hypergeometric 

function 

cp  heat capacity 

Cn 

F (a;b;x) 

K 

L 

r 

 

r1 

T 

 

T0 

Tω 

 

υmax 

coefficient of solution defined in Equation 

(28) 

standard confluent hypergeometric function 

thermal conductivity 

length of the circular tube 

radial direction of the cylindrical 

coordinates 

radius of the circular tube 

temperature of the fluid inside a circular 

tube 

temperature of the fluid entering the tube 

temperature of the fluid at the wall of the 

tube 

maximum axial velocity of the fluid 

 

Greek symbols 

 

 

βn eingenvalues 

ζ dimensionless axial direction 

θ dimensionless temperature 

ξ dimensionless radial direction 

ρ  

µ 

density of the fluid 

viscosity of the fluid 
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