Lau, Chew Ping and Abdul Wahab, Mohd. Firdaus and Jaafar, Jafariah and Chan, Giek Far and Rashid, Noor Aini Abdul (2017) Toxic effect of high concentration of sonochemically synthesized polyvinylpyrrolidone-coated silver nanoparticles on Citrobacter sp.A1 and Enterococcus sp.C1. Journal Of Microbiology Immunology And Infection, 50 (4). pp. 427-434. ISSN 1684-1182
|
PDF
1MB |
Official URL: http://dx.doi.org/10.1016/j.jmii.2015.08.004
Abstract
Background/Purpose: Currently, silver nanoparticles ()AgNPs) have gained importance in various industrial applications. However, their impact upon release into the environment on microorganisms remains unclear. The aim of this study was to analyze the effect of polyvinylpyrrolidone-capped AgNPs synthesized in this laboratory on two bacterial strains isolated from the environment, Gram-negative Citrobacter sp. A1 and Gram-positive Enterococcus sp. C1. Methods: Polyvinylpyrrolidone-capped AgNPs were synthesized by ultrasound-assisted chemical reduction. Characterization of the AgNPs involved UVevisible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. Citrobacter sp. A1 and Enterococcus sp. C1 were exposed to varying concentrations of AgNPs, and cell viability was determined. Scanning electron microscopy was performed to evaluate the morphological alteration of both species upon exposure to AgNPs at 1000 mg/L. Results: The synthesized AgNPs were spherical in shape, with an average particle size of 15 nm. The AgNPs had different but prominent effects on either Citrobacter sp. A1 or Enterococcus sp. C1. At an AgNP concentration of 1000 mg/L, Citrobacter sp. A1 retained viability for 6 hours, while Enterococcus sp. C1 retained viability only for 3 hours. Citrobacter sp. A1 appeared to be more resistant to AgNPs than Enterococcus sp. C1. The cell wall of both strains was found to be morphologically altered at that concentration. Conclusion: Minute and spherical AgNPs significantly affected the viability of the two bacterial strains selected from the environment. Enterococcus sp. C1 was more vulnerable to AgNPs, probably due to its cell wall architecture and the absence of silver resistance-related genes. Copyright | 2015, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Citrobacter sp A1, Enterococcus sp C1, silver nanoparticles, tolerance level, toxic effect |
Subjects: | Q Science > Q Science (General) |
Divisions: | Biosciences and Medical Engineering |
ID Code: | 77342 |
Deposited By: | Narimah Nawil |
Deposited On: | 28 Jan 2019 04:45 |
Last Modified: | 28 Jan 2019 04:45 |
Repository Staff Only: item control page