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Abstract Carbon-based catalysts are gained significant interest for improving a number of

catalytic processes due to their unique set of benefits. However, a few of such catalysts are proper

for synthesis of organic compounds in water. Therefore, there is a strong need for developing

water-tolerant and dispersible catalysts. Here, we demonstrate a simple and efficient method for

the preparation of highly dispersible phosphonic acid functionalized carbocatalyst. The applied

functionalization method was flexible in controlling the functionalization level. The prepared

nanocatalyst exhibited superior catalytic performance toward multicomponent synthesis of

pyrano[2,3-c]pyrazole, with 80–90% yield within 15 min in water. Moreover, this water-tolerant

solid acid catalyst could be simply retrieved and after 6 successive cycles of reactions, the reaction

time and yield still keeps within the same level.
� 2017 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Minimizing environmental risks and designing new eco-safe
procedures are becoming an urgent priority in chemistry. On
the other hand, it is highly desirable to develop environmen-
tally benign processes that can be conducted in aqueous media

(Chanda and Fokin, 2009; Simon and Li, 2012a). Conse-
quently, the design of new, efficient water-based organic reac-
tions with low-cost, step-saving and low-waste production has

attracted tremendous research interest in recent years (Ameta
een syn-
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Fig. 1 Synthesis route of phosphonated GO.

Fig. 2 XRD pattern of graphite, exfoliated GO and

phosphonated GO.

2 M. Zakeri et al.
and Ameta, 2014; Sangshetti et al., 2017; Simon and Li,
2012b). In addition, there is a strong need for water-tolerant

catalysts due to the severe poisoning of the catalytic active sites
by water. Typically, most of the solid acids lose their catalytic
activities in aqueous media (Okuhara, 2002). In addition,

accessibility to the acidic sites is restricted mainly due to the
high molecular weight or size and active-site ratios (Cole
et al., 2002; Ji et al., 2011) Therefore, there has been a growing

interest on the development of new water-tolerant solid acid
catalysts with accessible catalytic sites (Chen et al., 2016,
2014; Gromov et al., 2017; Ji et al., 2011; Karimi and
Zareyee, 2008; Lin et al., 2015; Liu et al., 2013; Shen et al.,

2017).
Nanostructured carbon materials such as activated car-

bons,(Antonyraj et al., 2014; Jamil et al., 2017; Lv et al.,

2015) carbon nanotubes (Hajipour and Khorsandi, 2016; Li
et al., 2015), carbon nanofibers (Chinthaginjala et al., 2007;
Xie et al., 2016a), and graphene oxides (GO) (Georgakilas

et al., 2016) are widely used catalyst supports due to their
low cost, superior high surface area and excellent stability
(Gupta and Paul, 2014; Su et al., 2013) Particularly, GO has
become one of the most widely used catalyst supports due to
Please cite this article in press as: Zakeri, M. et al., Phosphoric acid functionalized gr
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its thermodynamic stability, large surface area of up to 2630

m2 g�1 and high density of oxygen containing functional
groups (Al-Marri et al., 2016) The presence of hydroxyl, car-
bonyl, epoxide and carboxylic acid groups make GO as a fas-

cinating support to provide covalent attachment of various
functional groups while its highly hydrophilic nature stabilizes
the dispersion (Garg et al., 2014; Ji et al., 2011; Liu et al., 2016;

Navalon et al., 2014; Sengupta et al., 2014; Sun et al., 2013;
Tang et al., 2016) In the majority of reports, graphene deriva-
tives have been used as supports for nano-metal catalysts and

there are a few examples of graphene-based solid acid catalyst
(GSAC) (Narayanan et al., 2017) GSACs are mainly devel-
oped by sulfonic acid functionalization and successfully
employed in several reactions including biomass conversion

(Zhu et al., 2015), etherification of glycerol (Zhou et al.,
2014), biodiesel production (Mahto et al., 2016), cyclization
of hydrazides (Brahmayya et al., 2017), hydrolysis of ethyl

acetate (Ji et al., 2011) and ester-exchange (Garg et al., 2014;
Wang et al., 2013).

Phosphonic acid derivatives are superior to the sulfonated

one in catalyzing specific reactions of hydrolysis, isomerization
and dehydration mainly to the reduced tendency for reaction
with organic materials (Dehn and Jackson, 1933) However,
there are few reports on the phosphonated graphene substrates

(Ghafuri and Talebi, 2016; Kim et al., 2016, 2014; Some et al.,
2015) mainly due to the limited synthetic procedures associated
with the phosphonic acid groups (Abouzari-lotf et al., 2011;

Abouzari-Lotf et al., 2016) and difficult in controlling the
functionalization level (Ghafuri and Talebi, 2016) Multi-step
preparation procedure is used (Ghafuri and Talebi, 2016;

Kim et al., 2016) and in some cases the functionalized catalyst
becomes water soluble (Ghafuri and Talebi, 2016) which
results in the inherent difficulty to recover the catalyst in the

aqueous medium. Therefore, simple synthetic procedure with
control over functionalization level is highly required to pre-
pare proper phosphonated solid acid catalyst.

In this study, we prepared the phosphoric acid

functionalized graphene oxide in a simple synthetic procedure
capable of controlling the acid content. Following our recent
efforts to use of heterogeneous catalysts in one-pot and multi-
aphene oxide: A highly dispersible carbon-based nanocatalyst for the green syn-
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Fig. 3 FT-IR spectra of GO and phosphonated GO.

Fig. 4 High-resolution XPS spectra of phosphonated catalyst:

(a) C 1s; (b) O 1s.

Phosphoric acid functionalized graphene oxide 3
component reactions (Nasef et al., 2016; Zakeri et al., 2015a,

2015b, 2014), the catalytic performance of the developed
nanocatalyst was evaluated in the similar reactions. The cata-
lyst was used in the synthesis of biologically active
Please cite this article in press as: Zakeri, M. et al., Phosphoric acid functionalized gr
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dihydropyrano[2,3-c]pyrazole derivatives in aqueous medium.
To the best of our knowledge, this is the first example of using

such functionalized solid acids in the multicomponent synthe-
sis. The reaction is advantageous in terms of simple experimen-
tal and work-up procedure, excellent yields without need for

column purification as well as short reaction time and eliminat-
ing the use of any toxic organic solvent.

2. Material and method

2.1. Materials

Graphite flakes (325 mesh), polyphosphoric acid (PPA, 105%
H3PO4 basis) and phosphoric acid (PA, analytical grade) were

purchased from Sigma-Aldrich. All common reagents for the
preparation of pyranopyrazoles were obtained from commer-
cial suppliers and used without further purifications.

2.2. Characterizations

The chemical composition of the catalyst was characterized
with Raman spectrometer (LabRAM HR Evo, Horiba), Four-

ier Transform Infrared attenuated total reflection spectroscopy
(FTIR-ATR Thermo Fisher Scientific Nicolet iS50 spectrome-
ter) and X-ray photoelectron spectroscopy (XPS, PHI Quan-

tera II Scanning XPS Microprobe). The localized chemical
composition (O/C and P/C ratios) and surface morphology
were evaluated by Scanning Electron Microscope (SEM/

EDX, Gemini SEM500). XRD diffraction pattern was
obtained with the PANalytical Empyrean diffractometer with
PIXcel3D detector over a range of 2h = 4 � 70�. The peak
position was used to calculate interlayer spacing according to

Bragg’s equation (k = 2dsinh).
The structure of the prepared pyrazoles was confirmed with

1H and 13C NMR spectroscopy at 400 and 100 MHz, respec-

tively (BrukerAQS-AVANCE spectrometer using TMS as an
aphene oxide: A highly dispersible carbon-based nanocatalyst for the green syn-
10.1016/j.arabjc.2017.11.006
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internal standard in DMSO-d6 or CDCl3), FTIR-ATR and ele-
mental analysis (Perkin Elmer 2004 (II) CHN analyzer). The
melting points were measured using a capillary tube method

with a Barnstead Electrothermal 9200 apparatus.

2.3. Preparation of phosphonated catalyst

The catalyst was prepared in a high yield procedure with three
steps.

2.3.1. Synthesis of GO

Oxidization of graphite flakes to graphite oxide and subse-
quent exfoliation were performed to achieve GO. Well-
established modified Hummers and Offeman method was used

to prepare graphite oxide (Kovtyukhova et al., 1999) Exfolia-
tion to GO was achieved by ultrasonication of purified gra-
phite oxide suspension using a Branson digital sonifier

(SFX150, 150 w 40 kHz, 75% amplitude). Unexfoliated resid-
ual was removed by centrifugation at 4000 r.p.m in 10 �C for
15 min with a micro refrigerated centrifuge (model 3700, Kub-
ota). The GO powder was obtained after drying in a vacuum

oven at 70 �C for 24 h.
Fig. 5 SEM and EDX analysis of

Table 1 Elemental and functional characteristics of various acid fu

Sample Compositiona ID/IG Dispersibility

O/C P/C

GO 0.498 0 0.815 Fine dispersed

GO-acid-I 0.31 0.07 0.952 Well dispersed

GO-acid-II 0.37 0.115 0.960 Long-term sta

by centrifugin

GO-acid-III 0.44 0.125 0.984 Almost solub

a Based on the EDX elemental analysis.

Please cite this article in press as: Zakeri, M. et al., Phosphoric acid functionalized gr
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2.3.2. Synthesis of phosphonated GO

The sonication was used to homogenize a 10 ml mixture of

polyphosphoric acid and phosphoric acid (1/5, wt%/wt%).
0.4 M NaOH solution was added to adjust the pH of the solu-
tion to around 5. The solution was transferred into a 1 L 3-

necked flask equipped with condenser, mechanical stirrer and
thermometer. Finely dispersed GO in 50 mL deionized water
(0.5 wt%) was added and the mixture was heated to 95 �C
for 5, 10 and 15 h. The prepared samples are termed as GO-
acid-I, GO-acid-II, and GO-acid-III, respectively. Finally,
the highly-dispersed phosphonated GO was precipitated by
ultra-high-speed centrifuge (at 11,000 rpm) at 2 �C and washed

repeatedly with deionized water and dried under vacuum. The
reaction was optimized by varying reaction time and compar-
ing their C/P atomic ratios.

2.4. General procedure for the synthesis of dihydropyrano[2,3-c]

pyrazole derivatives

A mixture of aromatic aldehydes (2 mmol), malononitrile
(0.13 g, 2 mmol), ethyl acetoacetate (0.26 g, 2 mmol), hydra-
zine hydrate (2.5 mmol) and phosphonated GO nanocatalyst
GO (a, c) and GO-PO3H2 (b, d).

nctionalized nanocatalysts.

in water

in water with short-term stability

in water and could be collected by centrifuging at low temperature

bility of dispersed sample in water and could be collected

g at low temperature

le in water and solution become clear

aphene oxide: A highly dispersible carbon-based nanocatalyst for the green syn-
10.1016/j.arabjc.2017.11.006

https://doi.org/10.1016/j.arabjc.2017.11.006


Phosphoric acid functionalized graphene oxide 5
(5 mol% – of aldehydes) was refluxed at water media for an
appropriate period of time. After completion of the reaction
which was monitored by thin layer chromatography (TLC),

the reaction mixture was cooled to room temperature and
the precipitated organic product was decanted, washed with
water (3 � 10 ml) and recrystallized from proper solvents to

give the pure products. Then, the separation of the catalyst
was carried out by centrifugation. The recycled catalyst was
washed with ethanol (5 ml), dried in an oven under vacuum

and used again for a sequential run under similar reaction
conditions.

3. Result and discussion

3.1. Synthesis and characterization of the nanocatalyst

Phosphonated GO was prepared from graphite in a three-step
procedure of oxidation, exfoliation and phosphonation as
shown in Fig. 1. The oxidation and exfoliation steps are well

established methods to prepare graphene oxide (Hummers
and Offeman, 1958; Kovtyukhova et al., 1999) Parameters of
phosphonation step could be varied to achieve desired level

of functionalization.
Successful exfoliation of Graphite was confirmed with

XRD analysis as shown in the Fig. 2. The representative peaks

of exfoliated GO and phosphonated GO was seen around 2h
= 9.7. The magnitude of XRD interlayer spacing shows that
the distance among carbon layers have been increased slightly

upon phosphonation and the value is around 1 nm. This
enhancement can be due to the non-planar nature of phospho-
nic acid groups. The broad peak at 2h around 25� of phospho-
nated graphene is due to the sample preparation as the

nanocatalyst was deposited on a glass substrate.
Fig. 3 shows the changes in the IR spectrum upon phospho-

nation. As shown, the characteristic peaks for OAH stretching

at 3400 cm�1, C‚O stretching at around 1690 cm�1, C‚C at
1580 cm�1 and CAO stretching at 1220 cm�1 have been seen
for GO. Upon phosphonation, PAO, CringAP and P‚ O

peaks have been overlapped and seen as a broad peak centered
at 1040 cm�1. Peak around 1350 cm�1 may also be related to
Fig. 6 Raman spectra of the G

Please cite this article in press as: Zakeri, M. et al., Phosphoric acid functionalized gr
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phosphoric acid groups. In addition, C‚O stretching peak
was shifted to around 1715 cm�1 upon phosphonation due
to less involvement of carboxylic acids in the hydrogen bond-

ing as the phosphonic acid groups are more involved in the
stronger hydrogen bonds. Extended easily polarizable hydro-
gen bonding in phosphonated GO resulted in a broad bond

around 2900–3600 cm�1. Additionally, a weak-broad peak
ending around 620 cm�1 could be attributed to the PAC
stretching.

As shown in Fig. S1, phosphonation reaction further con-
firmed by the XPS spectra as the P 2p and P 2 s peaks were
clearly found in the narrow scan at around 133.5 and 191.0
eV, respectively. To confirm the detailed structure, narrow

scan of the C 1s and O 1s were deconvoluted as shown in
the Fig. 4. C 1s revealed a peak at 284.4 eV which is attributed
to the presence of CAC bond in the carbon structure of GO.

The other peaks centered at 287 and 288.4 eV are assigned to
C‚O and C(O)OH. The small peak at 285.9 eV is assigned
for CAP bond which indicates that the phosphonate groups

have been attached to C atoms from the P sides. Deconvoluted
O 1s revealed 3 peaks centered at 531.8, 532.8 and 535.8 eV
corresponding to the C‚O and P‚O, CAO and PAO, and

C(O)OH, respectively. It could be concluded that both forms
of hydrolytically stable PAC bond and PAOAC of limited sta-
bility are formed during phosphonation.

EDX elemental analysis was used to calculate the phospho-

nation level. As shown in the Fig. 5 and summarized in the
Table 1, the ratio of O/C has changed from 0.498 in GO to
0.31 in GO-acid-I and increased to 0.44 in GO-acid-III. On

the other hand, the ratio of P/C has been increased from 0
in pristine graphene oxide to 0.125 in GO-acid-III. As shown
in the SEM micrographs, as-prepared phosphonated catalyst

and GO have almost the same graphene-like structures.
The calculated ration of ID/IG bands intensity in the

Raman spectroscopy is another indication of the extent of

defects on graphene materials. Fig. 6 shows the Raman spectra
of the GO and GO-PO3H2 with two clear broad peaks at 1355
and 1580 cm�1 attributed to D and G bands, respectively. As
seen, the intensity of D band (representing symmetry A1g mode

typically results from the presence of sp3 carbons or defects on
O and phosphonated GO.

aphene oxide: A highly dispersible carbon-based nanocatalyst for the green syn-
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the graphene sheets) is increasing in compared to G band (rep-
resenting the E2g mode of pristine sp2 carbon atoms). In addi-
tion, such broad D and G bands are clear indicative of a

disordered chemical environment. An increment of the ID/IG
ratio upon phosphonation from 0.815 to almost 1 (in Table 1)
indicates the formation of large edges and defects on the phos-

phonated substrates. In addition, the other peaks assigned to
2D (two-phonon double resonance process) and S3 can be also
seen at 2697 and 2947 cm�1. In the expanded 2D band area in

Fig. S2, sharp band centered at 2697 cm�1 was seen for GO
with a full width half maximum (FWHM) of around 60
cm�1. This peak is indication of 2–3 layers GO. Upon phos-
phonation, the FWHM of the peak is clearly decreasing to

around 40 cm�1. Such changes could be also considered as
an indication of enhanced interlayer spacing.

3.2. Catalytic investigation of phosphonated GO nanocatalyst

The catalytic activity of the developed acid catalyst was evalu-
ated in the synthesis of pyrano[2,3-c]pyrazoles. Such pyrazoles

play an essential role as biologically active compounds and
represent an interesting template in medicinal chemistry and
pharmaceutical ingredients, such as anti-microbial, analgesic,

anti-inflammatory, vasodilator and anti-fungicidal activities
(Maity et al., 2017; Xie et al., 2016b) Varying grades of success
have been reported for catalyzing the preparation of pyrano
[2,3-c]pyrazoles using zirconium oxide,(Saha et al., 2015) ionic

liquids,(Zakeri et al., 2017) silica-supported polyphosphoric
Fig. 7 The preparation of pyrano[2,3-c]pyrazole

Table 2 Optimization of reaction parameters.

Entry Mol% of catalyst Solvent

1 1 H2O

2 3 H2O

3 5 H2O

4 7 H2O

5 5 EtOH

6 5 CH3CN

7 5 CHCl3
8 5 CH2Cl2
9 5 THF

10 5 DMF

11 5 –b

12 5 –b

a Isolated yield.
b The mixture was stirred for 30 min then water was added and followe

washed with water and recrystallized.
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acid (Vekariya et al., 2016) and NH4H2PO4/Al2O3 (Maleki
and Ashrafi, 2014) However, numerous limitations of low
yields, use of expensive reagents, long reaction times, tedious

work-up procedures with homogeneous catalyst, and co-
occurrence of several side reactions have been reported. Con-
sequently, the development of a general multicomponent reac-

tion using an inexpensive, cleaner and green procedure leading
to the pyrano[2,3-c]pyrazole derivatives is highly desirable.

Among the developed catalyst with various phosphonic

acid content, GO-acid-II was selected for evaluation of the cat-
alytic activity due to the easier recycling compared to GO-acid-
III and more active sites compared to GO-acid-I. Fig. 7 repre-
sents the schematic of the multicomponent reaction assisted

with GO-acid-II nanocatalyst.
The catalytic activity of the prepared nanocatalyst was eval-

uated in different conditions for the reaction of hydrazine

hydrate, ethyl acetoacetate, benzaldehyde and malononitrile.
As summarized in Table 2, several reactions were carried out
to optimize the amount of required catalyst, best solvent and

reaction time. The reaction under solvent-free condition at
80 and 120 �C afforded the products in low yields and reflux
in water was drastically enhanced the yield. The screening of

different solvents revealed that the phosphonated GO is more
effective in polar-protic solvents such as ethanol and water
compared to organic solvents (e.g. CHCl3, CH2Cl2, DMF,
THF and CH3CN). The optimized conditions of 5 mol% cat-

alyst, water as a reaction media and 15 min reaction time was
achieved.
s using phosphonated GO as a nanocatalyst.

Temperature (�C) Time (min) Yielda (%)

Reflux 30 45

Reflux 30 65

Reflux 15 90

Reflux 15 90

Reflux 30 75

Reflux 30 55

Reflux 30 50

Reflux 30 45

Reflux 30 Trace

Reflux 30 Trace

80 30 60

120 30 75

d by stirring. Finally, the precipitated organic product was decanted,

aphene oxide: A highly dispersible carbon-based nanocatalyst for the green syn-
10.1016/j.arabjc.2017.11.006
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Table 3 Reusability and recovery of the phosphonated GO

nanocatalyst in water in the model reaction.

Cycle Recovered catalyst (%) Reaction yield (%)

1 95 90

2 97 90

3 97 89

4 98 88

5 98 90

6 98 89

Fig. 8 Plausible mechanism for the formation of pyrano[2,3-c]pyrazole derivatives.

Phosphoric acid functionalized graphene oxide 7
To explore the activity of the catalyst toward different sub-
stitutes, the generality of the multicomponent reaction was

extended to a library of pyrano[2,3-c]pyrazole derivatives 5a-
l under the optimized reaction conditions. As summarized in
Table S1 in supporting information, a variety of aryl aldehydes

(e.g. ANO2, ACN, AF, ACl, ABr, AOMe, AOH) containing
either electron withdrawing or electron donating groups
afforded 5a-l in good to excellent yields. The spectroscopy

details of the prepared pyrazoles were summarized in the sup-
porting information. The high yield of 90% in short reaction
time of 15 min was achieved due to presence of concerted func-
Please cite this article in press as: Zakeri, M. et al., Phosphoric acid functionalized gr
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tional sites on the catalysts: both hydrophilic phosphoric acid
and hydrophobic carbon sites together with acidic and basic

sites of phosphate groups. As can be seen in Table S1, the elec-
tronic effects of the substituent were not considerably altered
the yields of the products. However, relatively low yields of

the products were observed in case of phenyl hydrazine.
In a plausible mechanism, the formation of pyrano[2,3-c]

pyrazole derivatives proceeds via the simultaneous formation

of two intermediates, pyrazolone A via cyclo condensation
and arylidenemalononitrile B by Knoevenagel condensation
reaction as shown in Fig. 8. Intermediate A was formed by
the attack of phenylhydrazine to carbonyl group of the acti-

vated ethyl acetoacetate followed with the loss of water and
continued with intramolecular nucleophilic attack by another
amine group of phenylhydrazine to the next carbonyl group

of ethyl acetoacetate. In the next step, formation of the inter-
mediate B was occurred via Knoevenagel condensation
between malononitrile and activated benzaldehyde, followed

by loss of water molecules. Subsequently, intermediate A
undergoes Michael addition with B in the presence of catalyst.
The reaction was followed by intramolecular nucleophilic
attack and cyclization to afford the expected dihydropyrano

[2,3-c]pyrazole derivative. As shown, the amphoteric nature
aphene oxide: A highly dispersible carbon-based nanocatalyst for the green syn-
10.1016/j.arabjc.2017.11.006
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of the phosphonic acid is playing a role in the proposed mech-
anism and both of.

3.3. Reusability study of the phosphonated catalyst

The recovery and reusability are among the most important
criteria in developing alternative catalysts. Even though the

catalyst dispersion is one of the important advantages of phos-
phonated materials, it can negatively affect the catalyst recov-
ery. In the synthesis of pyrazoles, the catalyst was collected

after each reaction by centrifuging at low temperature and
amount of retrieved catalyst was taken as an indication of
the recovery. The recovered catalyst was tested for the similar

reaction under the identical conditions and the reaction yield
was considered as an indication of catalyst stability. As sum-
marized in the Table 3, the catalyst can be reused at least six
times with retention of its catalytic performance. However, a

slight decrease in recovery was observed mainly after the first
run. It could be due to the solubility of highly functionalized
and/or small sized nanocatalysts.

4. Conclusion

A new type of highly dispersible phosphoric acid functional-

ized carbon based nanocatalysts was prepared in a simple syn-
thetic procedure. The catalytic activity of developed catalyst
was evaluated toward the synthesis of pyrano[2,3-c]pyrazoles

in one-pot, four-component reaction of hydrazines, malonon-
itrile, ethyl acetoacetate and aldehydes in water. The reaction
afforded pyrazoles with excellent yield of 80–90% which is
an indication of high catalyst activity. Moreover, it was found

that the catalyst is highly stable, could be recovered easily and
the catalyst activity remained almost unchanged after 6 cat-
alytic cycles. The newly prepared phosophoric acid functional-

ized graphene oxide catalyst has multi-functions with both
hydrophilic acid and hydrophobic carbon sheet sites as well
as functional groups with acidic and basic sites. Such multi-

functional catalysts can be applicable for large-scale green syn-
thesis of wide variety of chemical reactions of multi-
components with different characteristics.
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