Universiti Teknologi Malaysia Institutional Repository

Comparison of the performance of artificial neural networks and fuzzy logic for recognizing different partial discharge sources

Bani, N. A. (2017) Comparison of the performance of artificial neural networks and fuzzy logic for recognizing different partial discharge sources. Energies, 10 (7). ISSN 1996-1073

[img]
Preview
PDF
1MB

Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

This paper compared the capabilities of the artificial neural network (ANN) and the fuzzy logic (FL) approaches for recognizing and discriminating partial discharge (PD) fault classes. The training and testing parameters for the ANN and FL comprise statistical fingerprints from different phase-Amplitude-number (f-q-n) measurements. Two PD fault classes considered are internal discharges in voids and surface discharges. In the void class, there are single voids, serial voids and parallel voids in polyethylene terephthalate (PET), while the surface discharge class comprises four different surface discharge arrangements on pressboard in oil at different voltages and angular positioning of the ground electrode on the respective pressboards. Previously, the ANN and FL have been investigated for PD classification, but there is no work reported in the literature that compares their performance, specifically when applied for real time PD detection problem. As expected, both the ANN and FL can recognize PD defect classes, but the results show that the ANN appears to be more robust as compared to the FL, but these conclusions required to be further investigated with complex PD examples. Finally, both the ANN and FL were assessed as practical PD classification. Despite of the limitations of the ANN, it is concluded that the ANN is better suited for practical PD recognition because of its ability to provide accurate recognition values and the severity level of PD defects.

Item Type:Article
Uncontrolled Keywords:Artificial neural network, Fuzzy logic, Partial discharge, Polyethylene terephthalate
Subjects:T Technology > T Technology (General)
Divisions:Razak School of Engineering and Advanced Technology
ID Code:77115
Deposited By: Fazli Masari
Deposited On:31 May 2018 09:36
Last Modified:31 May 2018 09:36

Repository Staff Only: item control page