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Abstract— This paper deals with automatic phonetic 
segmentation for Malay continuous speech. This study 
investigates fast and automatic phone segmentation in preparing 
database for Malay concatenative Text-to-Speech (TTS) systems. 
A 35 Malay phone set has been chosen, which is suitable for 
building Malay TTS. The segmentation experiment is based on 
this phone set.  HMM based segmentation approach which uses 
Viterbi force alignment technique is adapted. We use continuous 
density HMM (CDHMM) with Gaussian mixture which is 
performs well in speech recognition to prevent large 
segmentation errors. Besides, this paper presents an implicit 
boundary refinement method that is incorporated in the Viterbi 
phonetic alignment. In this approach, the HMM model is trained 
with phone tokens with their boundaries extended to the be-side 
phones. This increases the ability of the HMM in modeling phone 
boundaries and provides effect of implicit boundary refinement 
when used in phonetic alignment thus reduce segmentation 
errors. This approach improves increase the performance of 
baseline HMM segmentation from 42.39%, 74.83%, 84.34% of 
automatic boundary marks within error smaller than 5, 15, and 
25ms to 47.75%, 76.38%, 85.55%. 
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I.  INTRODUCTION 
Segmenting the phone boundaries in speech waveforms is 

essential for a corpus based concatenative TTS system. The 
most precise way of phonetic segmentation is manually. 
However, manual segmentation is very costly and requires 
much time and effort. Thus, it is desirable to have an automatic 
approach for segmentation, especially when the speech corpus 
is very large. Many phonetic segmentation tools have existed, 
but not suitable for building inventories for Malay TTS because 
these tools are based on other language. Speech in different 
language domain is characterized by different phone set, thus it 
is improper to represent Malay speech with other language 
phone set. Identifying own phone set for Malay speech is 
crucial for accurate phone modeling. This study provides a 
basis in developing an automatic Malay phone segmentation 
system for Malay TTS. 

In this study, forced alignment, an HMM-based approach 
[1,2,3] is used. This approach which adopted from automatic 
speech recognition (ASR) is most widely used for automatic 
segmentation in speech synthesis, providing consistent and 
accurate phone segmentation. In this approach, forced 
alignment using Viterbi algorithm is applied to find out the 
most probable boundaries for the known sequences of phone 
units. However, such boundaries are not necessary the best 

concatenation points for these units. Its limited ability to 
remove discontinuities at concatenation points is because of the 
Viterbi alignment tries to find the best HMM sequence when 
given a phonetic transcription and a sequences of HMM 
parameters, not the optimal boundaries between adjacent 
phones. Usually a post-refinement technique [1,4] is performed 
to search for the most suitable locations for all boundaries, in 
which a small amount of manually labeled boundaries have to 
be provided for learning the characteristics of the preferred 
boundary locations. Thus, extra boundary modeling procedure 
and boundary feature extraction is needed. This increase the 
mathematical complexity and computational time. 

This paper proposes an implicit boundary refinement (IBR) 
method that embedded in the Viterbi forced alignment. First the 
start and end point of the training tokens are extended to their 
adjacent phones. Thus, the extended training tokens take 
consideration on a wider range of boundaries located between 
them and their adjacent phones. The HMM phone models 
trained on these extended tokens will better modeling the 
phonetic boundaries. The Viterbi alignment using these models 
implicitly refines the boundaries and reduces segmentation 
errors. 

This paper is organized as follows: Section 2 elaborates the 
HMM based approach for phonetic segmentation. Section 3 
presents the proposed implicit boundary refinement method. 
Section 4 presents the evaluation experiments and results. 
Finally section 5 given conclusions and outlines for the future 
work. 

II. HMM FOR PHONETIC SEGMENTATION 
The most frequent approach for automatic phonetic 

segmentation is to modify an HMM based phonetic recognizer 
to adapt it to the task of automatic phonetic segmentation. The 
main modification needed consists in letting the recognizer 
know the phonetic transcription of the sentence to segment by 
building a recognizer’s grammar for that transcription and 
performing forced alignment. The segmentation system used in 
this study consists of two phases; training HMMs, and phone 
segmentation using Viterbi alignment of shown in Figure 1. 
The system uses speaker-dependent HMMs – SDHMMs which 
built from labeled and segmented training data set. The model 
is used to segment the speech waveform from the same 
speaker. SD HMMs are generally used for automatic 
segmentation in speech synthesis, but have the drawback of 
consuming much time to prepare. 
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Figure 1.  Block diagram of automatic segmentation system. 

 
Figure 2.  Representation of left-to-right HMM. 

For acoustic modeling, 3-state left-to-right with no skips 
CDHMM with Gaussian mixture density [6] as shown at Figure 
2 is used to represent a phone. The parameters which 
characterize the CDHMM of Figure 2 are the following: (1) 

[ ]ijaA = , Nji ≤≤ ,1 , the state transition matrix where 

ija is the probability of making a transition from state i to state 
j; and (2) B, the observation probability function associated 
with each state j. The observation probability distribution of 
CDHMM is modeled by continuous probability density 
function, { })(xbB j= , for Nj ≤≤1  and x represents 
continuous observations  of K-dimensional random vectors. 
The most general representation of the pdf of CDHMM, is a 
finite Gaussian mixture density of the form 

∑
=
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M
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,where x is vector being modeled, jmc  is the mixture 
coefficient for the mth mixture component in state j and N is 
Gaussian density, with mean vector jmµ = ][ jmdµ  and 

covariance matrix jmΣ = ][ jmdeΣ  for the mth mixture 

component in state j, for Ded <≤ ,1 , where D is the number 
of dimensions in feature vectors. Diagonal matrices are used.  

The reason for using 3 states is to incorporate coarticulatory 
effects implicitly into the model. The first part and third part 
are assumed to account for coarticulary effects due to the 
transitions to the neighboring phonemes, whereas the second 
part stands for the middle part of the phoneme which is known 
to be less affected by phonetic context. The essential advantage 
of the mixture density is that several maxima in the density 
function can be modeled, which may correspond to different 

acoustic realizations of the same phoneme due to coarticulary 
effects. This model which provides good recognition accuracy 
in ASR is used to prevent very large segmentation errors. It is 
common practice to use context independent HMMs for speech 
segmentation [2,5]. Context-independent HMMs, trained with 
realizations of phone in different context are able to 
discriminate between the phone to model and its context which 
varies. They produce more precise segmentation than its 
context-dependent counterparts which are trained with phone in 
same context and unable to discriminate between the phone and 
its context. 8 iterations of Viterbi re-estimation procedure is 
used to train the acoustic models. 

III. IMPLICIT BOUNDARY REFINEMENT 
Most of the segmentation systems introduce the post 

refinement method on the initial phone boundaries obtained 
from the Viterbi alignment. This paper proposes an implicit 
refinement method when doing phonetic alignment; this will 
save time and reduce complexity. The proposed automatic 
segmentation system with implicit boundary refinement is 
shown in Figure 3.  

Figure 4 shows the concepts of start and end point extension of 
the training tokens. The figure shows the waveform segment of 
three phonemes in adjacent, /a/-/n/-/a/, which was manually 
segmented and labeled (indicated by the solid lines). Actually 
there is fuzziness in determining the location of the boundary 
between adjacent phones, even the manual-boundary is an 
approximation. The boundaries of the manually segmented 
phone token is extended from the manual-boundary to the be-
side phones (the new start and end point of token shown by 
dotted lines in Figure 4) to take consideration of a wider range 
of probable boundaries. The HMMs trained from the extended 
training tokens are more capable in modeling the phone 
boundaries with its first and final states. There is a smooth 
transition form one phone model to another for the 
concatenated sentences HMM which is used for alignment of 
the speech feature patterns. Thus the Viterbi phonetic 
alignment using these models will implicitly refine the phone 
boundaries and reduce segmentation errors. This technique also 
provides better modeling of contextual effects. 

 
Figure 3.  Block diagram of automatic segmentation system with implicit 

boundary refinement. 
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Figure 4.  Start and end point extension of the training phone tokens for three 

adjacent Malay phonemes /a/-/n/-/a/. 

IV. EXPERIMENTS AND RESULTS 
This section describes a series of segmentation experiments 

to evaluate the effectiveness of HMM-based approach in 
segmenting Malay phone units. Experiments were also done to 
compare the baseline system with the newly proposed system 
which incorporates implicit boundary refinement in terms of 
segmentation accuracy. 

A. Database and Analysis Condition 
The database consists of 71 phonetically balanced Malay 

continuous speech sentences, uttered by a Malay female 
speaker. 39 utterances were used for training purpose. The 
results presented are evaluation on the other 32 utterances. All 
the sentences have been hand labeled and segmented according 
to the chosen Malay phone set in Tabel 1. 

TABLE I.  LIST OF MALAY PHONES ACCORDING TO CATEGORIES 

Category Malay Phones 
Vowels /a/, /e/, /eh/, /i/, /o/, /u/ 
Plosives /b/, /d/, /g/, /p/, /t/, /k/ 
Affricates /j/, /c/ 
Fricatives /s/, /h/, /f/, /z/, /sy/, /kh/, /gh/, /v/. 
Nasal /m/, /n/, /ng/, /ny/ 
Trill /r/ 
Lateral /l/ 
Semi-vowel /w/, /y/ 
 

In Malay language, there are 24 pure phonemes and about 6 
borrowed phonemes, divided into 8 categories [7]. Among the 
pure phonemes, there are 18 consonants and 6 vowels. The 
borrowed consonantal phonemes are /f, z, sy, kh, gh, v/. There 
are 5 diphthongs in Malay language: /ai/, /au/, /oi/, /ua/, /ia/. 
This Malay phone set cover all Malay phoneme unit in Malay 
language and thus suitable for characterize Malay speech 
corpus for building TTS system. The segmentation experiment 
is based on the 35 phones above and a garbage model for 
pausing /pau/. The /gh/ was folded to /g/ due to limited training 
tokens. 

The speech was sampled at 16 KHz. Our front end 
computed mel-frequency cepstral coefficients (MFCCs) and 
enegy value with 15ms windows at a 5 ms frame rate. We 
retained 12 MFCC coefficients and a normalized power value 
for each frame, along with their first and second order 
derivatives. 

B. Performance Evaluation Method 
To evaluate the segmentation system, the objective method 

is used, which measures the agreement with manual 
segmentation. The automatically segmented boundaries are 
compared with the manually segmented boundaries. The 
percentage of boundaries whose error is within a tolerance is 
measured for a range of tolerances. In this study, we calculated 
the percentage of boundaries within a set of tolerances which 
are 5, 10, 15, 20, and 25ms. 

C.  Effect of Different Feature Set and Varying Number of 
Gaussian Mixture Components. 
A series experiments were done using various combination 

of features along with varying number of Gaussian mixture 
components to investigate its effect on segmentation 
performance. This experiment is based on HMM based 
segmentation without IBR. The number of Gaussian mixtures, 
M was varied from 1 to 4 in steps of 2 to investigate its effect 
on accuracy. The segmentation result is given in Table 2. 

Table 2 shows an interesting pattern behavior that at three 
different tolerance zones, certain HMMs behave better than the 
others. When the varying number of mixtures is concerned and 
when the Delta (D) and Delta-Delta (DD) feature is used,, the 
result shows that, for small tolerance (5-10ms), HMMs with 
fewer Gaussians perform better. For large tolerances (>20ms) 
HMMs with more Gaussians perform better generally. For 
medium tolerances (15ms), the result shows an intermediate 
change in segmentation result between small and large 
tolerances where increasing the Gaussian start to perform 
better. This result is consistent with the result in [1] which uses 
almost the same feature set of 12MFCC and normalized log 
energy (E), and first and second order differences. Very large 
segmentation errors are highly correlated with phone 
misrecognitions. Therefore, the segmentation results in this 
range of tolerance are expected to follow the expected results 
for phonetic recognition: HMM with more Gaussian tend to 
behave better. The tendency to produce better results with 
fewer Gaussians in the ranges of small tolerances could be 
explained by the inherent variance of the spectrum in the 
vicinity of a phonetic transition [1], which could make a 
simpler model more adequate. The features without delta 
features are showed not to follow consistently this trend 
compared to with delta features. This is because the delta 
features take consideration of the contextual effect and more 
Gaussians will provide more maxima in the density function 
which can model better different acoustic realizations of the 
same phoneme. 

As the different feature set is concerned. Generally, for very 
small tolerances, incorporation of delta features deteriorates the 
segmentation performance. For immediate and large tolerances, 
the use of delta feature increases the accuracy. 

D. Implicit Boundary Refinement Result 
The HMM based segmentation system described in 

previous experiment is chosen as baseline system for 
comparison with segmentation system with implicit boundary 
refinement (IBR). The training tokens are extended 5ms of its 

 

/a/ /n/ /a/ 
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TABLE II.  PERCENTAGE OF BOUNDARIES WITHIN DIFFERENT 
TOLERANCES (IN MS) WITH VARYING NUMBER OF MIXTURE COMPONENTS USING 

DIFFERENT FEATURE SET S. 

HMM Set <5 <10 <15 <20 <25 

MFCC+E 
- 1 Gaussian 45.24 62.80 72.14 77.85 82.18 

(MFCC+E)+D 
- 1 Gaussian 50.87  66.52 73.36 76.99 80.97 

(MFCC+E)+D+DD 
- 1 Gaussian 46.19 66.78 74.22 78.37 82.70 

MFCC+E 
- 2 Gaussian 46.63 64.01 73.36 78.98 83.30 

(MFCC+E)+D 
- 2 Gaussian 43.43 64.45 75.35 80.62 84.86 

(MFCC+E)+D+DD 
- 2 Gaussian 42.39 64.79 74.83 80.54 84.34 

MFCC+E 
- 4 Gaussian 47.15 64.01 72.92 78.29 82.70 

(MFCC+E)+D 
- 4 Gaussian 37.54 60.47 73.18 79.84 84.17 

(MFCC+E)+D+DD 
- 4 Gaussian 37.89 62.02 73.62 80.54 84.86 

 
both end manual-labeled boundary to the adjacent phone, 
which corresponding to one feature frame extension. The 
models trained from these tokens used in Viterbi alignment. 
The Number of Gaussians is fixed to 2. The comparison results 
for different feature set are shown in Table 3. 

The result shows improvement by using IBR compared to 
the baseline for all range of tolerances and different feature set. 
It can also be seen that improvement produced by IBR tend to 
be more important in the zone of small tolerances. This means 
that IBR is capable of increasing the precision of segmentation 
(reducing small errors). There is a slight increase of 
performance in range of large tolerances. This can be can be 
explained by the improved modeling of contextual effect of 
context-independent HMM trained from the extended tokens 
improve the recognition accuracy. 

V. CONCLUSION AND FUTURE WORK 
In this study, automatic Malay phone segmentation is 
described. This provides the basis for preparing segmented 
speech database for Malay TTS. HMM based approach using 
Viterbi alignment is used for the segmentation. This paper also 
proposed an implicit boundary refinement method for auto-
segmentation tasks. The refinement ability of IBR is due to 
increasing capability of HMM in finely modeling boundaries 
which trained from extended tokens. The method is simple and 
save computational time compared to the conventional post-
refining method. The IBR is shown to be able to increase the 
precision of the segmentation without increase or even decrease  

TABLE III.  PERFORMANCE COMPARISON BETWEEN BASELINE 
SEGMENTATION AND WITH IBR WITHIN DIFFERENT TOLERANCES (MS). 

Segmentation system <5 <10 <15 <20 <25 

MFCC+E 
- Baseline (BL) 46.63 64.01 73.36 78.98 83.30 

(MFCC+E)+D 
- Baseline (BL) 43.43 64.45 75.35 80.62 84.86 

(MFCC+E)+D+DD 
- Baseline (BL) 42.39 64.79 74.82 80.54 84.34 

MFCC+E 
- BL with IBR 48.10 65.31 73.88 79.41 83.56 

(MFCC+E)+D 
- BL with IBR 50.26 68.08 76.21 80.28 85.03 

(MFCC+E)+D+DD 
- BL with IBR 47.75 67.73 76.38 81.75 85.55 

 

the gross segmentation errors. This approach improves increase 
the performance of baseline HMM segmentation from 42.39% 
to 47.75% in 5ms tolerances. Future work will combine the 
IBR with those post-refining method [1,4] to increase 
segmentation precision. Context-dependent will be used. The 
extension of the training tokens will be tested on more frames. 
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