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Abstract 

Recent@, Component-Based Sof iare Enxineering 
(CBSE) has becoming a poptrlar approach.for developing 
embedded sofiare. In CBSE, a component model is 
required to specifY the standards and conventions 
imposed on developers of components. Indushial 
cornponent models such as CORBA, CUM and JavaBeans 
are  general!^ not stritable for embedded real-time (ERT) 
Vstenis. Consequently, a number o f  component models 
slritahle for CBSE ofERT so f iare  such 0.7 PBO, Koala, 
PECOS and ReFIex are introduced. Assessments o f  the 
PECOS component model were conducted to evaltrate the 
suitabiliw o f  PECOS component model for adoption in 
CRSE o f  autonomous mobile-robot (AMR) software. The 
as.~e.ssments emphasize on three requirentent.y: facilitates 
predictable real-time performance, support for resource 
constraint systems, and support plarfonn-independent 
implementation. Three enhancemenlr were proposed for 
the PECOS component model. These enhancements were 
implemented on a real m-wheeled mobile robot. and 
resul~f show that, the PECOS cornponent model together 
with the proposed modifications can generate application 
siritable for resource constrained AMR vstem.r, the new 
mapping of component behavior to tash  process can be 
used to guarantee the nm-time predictabili(v and 
perjormance, and the new irnplenientation pamework 
proposed enable plarform independent development o f  
AMR sofiare. 

1. Introduction 

Developing software for Autonomous Mobile Robot 
(AMR) is challenging since it requires knowledge in 
embedded systems, real-time software issues, control 
theories and anificial intelligence aspects. Component 
Based Software Engineering (CBSE) approach has been 
recognized as a way to alleviate these challenges. A 
component-based solution is expected to help robotic 
research groups in the following aspects [I]: 1) exchange 
of software parts or components between robotics 
laboratories. allowine s~ecialists to focus on their 

would be possible from the available components; 3) 
startup in robot research can be accelerated using the 
available components; and 4) speed up the transfer of 
research laboratories works in robotics to commercial 
business application. 

There have been some efforts on providing CBSE of 
robot software [2-41; however, most of these works do 
not address the issues of embedded real-time (ERT) 
software requirements for resource constraint AMR and 
predictable real-time behavior of the robot. Furthermore, 
only platform-dependent components were considered in 
those works. 

In CBSE, the choice of a component model is very 
important as it specifies the standards and conventions 
imposed on developers of components in order to achieve 
uniform composition, appropriate quality attributes and 
deployment of components and applications [S]. 
Industrial component models currently available such as 
OMG's CORBA Component Model (CCM), Microsoft's 
(D)COM/COM+, .NET, SUN Microsystems' JavaBeans 
and Enterprise JavaBeans, are generally complex, require 
large resources such as memory and computation power, 
and are platform dependent [6, 71. Furthermore, they do 
not address the non-functional properties such as how 
much memory it consumes and timing constraints which 
are important in ERT systems such as AMR. 

Consequently, a number of component models such as 
ReFlex [ S ] ,  PB0 [9], Koala [lo] and PErvasive 
Component Systems (PECOS) [I I], have been developed 
to address requirements of ERT software. All these ERT 
component models have their own unique strengths to 
sumon their nature of ERT ~r0blem domain. Evaluation 
oc these  component models against the industrial 
requirements of heavy vehicle sector shows that PECOS 
is the most complete component technology with good 
suppon for industrial requirements [12]. 

The main objective of this paper is to assess the 
PECOS component model for adoption in CBSE of AMR 
software with particular emphasize on three requirements: 
1) facilitates predictable real-time performance of the 
components assembly; 2) support for resource constraint 
embedded AMR systems; and 3) support high-degree of - .  

particular field; 2) comparison of different solutions platform-independence. 
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The layout of this paper is as follows. In Section 2, the 
PECOS component model is briefly described. In Section 
3, the PECOS model is assessed using a case study of an 
AMR software development based on PECOS. As the 
results of the assessment, in Section 4, some 
enhancements to the PECOS component model are 
proposed and implemented on an actual AMR. Some 
results on the real-time implementation of are also 
described. Finally, the conclusion is presented in Section 
5. 

2. PECOS Component Model 

PECOS component model was originally developed 
for field device systems. PECOS component consists of 
two main parts, i.e. the static structure model which 
describes the entities included in the model, their features 
and properties; and the execution model which defines 
the behavior of the component execution. 

2.1. Static structure model 

There are three main entities in the PECOS model: 
components, ports and connector [13]. Components are 
used to organize the computation and data into parts that 
have well-defined semantics and behavior. A port is a 
reference to data that can be read and written by a 
component and enables a component to be connected to 
another component through a connector. Data passed over 
the port is specified with name, type, range and direction 
(in, out or inout). Only compatible ports can be connected 
with connectors. 

Components can be any of three types: active, passive 
or event component. Active components have their own 
thread of control; passive components do not have their 
own thread of control; and an event component is a 
component that is triggered by event. 

In PECOS components can be hierarchically built 
from other subcomponents. A component which contains 
subcomponents or children is called a composite 
component or a parent component, and these 
subcomponents are not visible outside the composite 
component. A component without subcomponents is 
called a leaf component. A property bundle which 
describes the nonfunctional aspects such as timing or 
memory usage is associated with this static structure of 
component. 

The components composition using PECOS static 
structural model is performed by connecting the 
compatible ports between components. Figure 1 illustrates 
integration of four components in PECOS for a motor 
speed control application. MotorSpeedControl is a 
composite component with three subcomponents, i.e. PI, 
Encoder, and Motor. Two connections in the composition 
are connection between output port speed to input port 

actualspeed and connection between output port 
controlSignal and input port signal. 

Figure 1 also shows two active components: 
MotorSpeedControl and PI marked with "a" at the 
upper right comer, and two passive components: Encoder 
and Motor. 

- 
Figure 1. PECOS structure model for a motor 

speed control application 

2.2. Execution model 

There are two different behaviors associated with 
active and event components: execution behavior and 
synchronization behavior. Execution behavior determines 
the action that is performed when the component is 
executed while the synchronization behavior is 
responsible for synchronizing the data space of the active 
or event component with that of the parent [13]. 

In PECOS, data synchronization between two 
connected active or event components' ports is required 
to assure that data cannot get corrupted due to two 
simultaneous write operations from components in 
different thread. To solve this data synchronization 
problem, every active and event component is equipped 
with its own private data space where the data can be 
updated independently by the component. At specific 
intervals, this private data space is then synchronized its 
parent or composite component. 

The execution behavior is based on the following 
runtime rules [13]: 1) The behavior of passive component 
is executed in the thread of its parent component; 2) 
Synchronization behavior for active and event 
components is executed in the thread of the parent 
component; 3) Active and event components execute their 
own execution behavior in their own thread of control; 
and 4) Every composite component has to provide a 
schedule for its children. 

3. Assessment of PECOS Component Model 

Software design using components involves 
connecting sets of component to create a software system 
capable of performing some useful function [14]. This 
activity consists of component integration and component 
composition. The goal the design activity is to find the 
most appropriate and feasible combination of the 
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component candidates. Based on the design, the 
implementasion of the software is performed. 

Assessment of PECOS component model is conducted 
during component integration, component composition 
and implementasion stages. The design process of an 
AMR software case study using PECOS model is 
illustrated and the model is assessed on the following 
aspects: I)  facilitates predictable real-time performance of 
the components assembly; 2) support for resource 
constraint embedded AMR systems; and 3) support high- 
degree of platform-independence. 

The AMR used in the case study is a differential drive 
wheeled mobile robot, capable of traversing in a 
structured environment. The goal of the robot software is 
to control the movement the robot while avoiding 
obstacles in its environment. The AMR consists of a body 
and a pair of wheels. Each drive wheel is move by a 
direct-current (DC) motor. The speeds of the motors are 
sensed using shaft encoders and fed back to the embedded 
controller for computation of control signal to the DC 
motor every 50 milliseconds using the proportional- 
integral (PI) control algorithm. The embedded controller 
also monitors the robot environment using four infrared 
(IR) proximity sensors and communicates with human 
using Liquid Crystal Display (LCD) and switches. 

3.1. Component  integration using P E C O S  

Components integration is the mechanical task of 
wiring components together by matching the needs and 
services of one component with the services and needs of 
others [14]. PECOS model supports component 
integration with static structure and execution model. 

The components integration using PECOS static 
structural model is performed by connecting the 
compatible ports between components. Figure 2 illustrates 
integration of fifteen components in PECOS for the AMR 
system. The integration consists of seven active 
components and eight passive components. In Figure 2 
two composite components are shown: motorctrLright 
and motorctrl-iefl. 

Figure 3 shows the hierarchical view of components 
and the private data spaces derived from integration in 
Figure 2. The data spaces used by each component during 
execution behavior (shown in solid arrow) and 
synchronization behaviors (shown in dotted arrow) are 
also illustrated in the figure. 

Based on static structure and execution model, it can 
be concluded that component integration using PECOS 
model can explicitly describes the real-time behavior of a 
component using static structure and execution model. 
PECOS integration, using static structure and execution 
model also supports static binding of components at 
design-time composition; this allows optimization of the 

design and code toward resource constraint of AMR 
systems. 

Figure 2. Componen t s  integration using PECOS 
m o d e l  

I.YI_.* 

I I h 
Figure 3. Hierarchical view of t h e  AMR 

componen t s  

Currently, PECOS does not allow connection of 
constant value to input port in their static structure. We 
proposed to further enhance PECOS reusability by 
allowing connection of constant value to input port in 
their static structure. 

3.2. Component  Composition using P E C O S  

Once the real-time behavior and data synchronization 
has been specified in the integration stage, the next stage 
in PECOS assembly process is to consider the reasoning 
of the integration in component composition activity. 
Component composition supports means of determining 
the properties of assemblies in order to predict their 
runtime compatibility [14]. The properties of assemblies 
are specified using property bundle in PECOS model. The 
timing property in the property bundle can be predicted 
using Rate Monotonic Analysis (RMA) based on PECOS 
component composition approach [I 51. 

RMA verification in PECOS is to check whether the 
entire components involved in the composition meet their 
deadlines. To use RMA to verify the component 
composition in Figure 2, a mapping of the composed 
components to RMA tasks is performed. In the original 
PECOS mapping of component behavior to tasks, the 
following mapping processes are performed: 1) passive 
component is treaded as a periodic task and is associated 
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with period as defined by its parent; 2) active or event 
component is decomposed into two tasks: execution task 
and synchronization task, in which the period of the 
synchronization task inherits its parent period; and 3) 
mapping aperiodic behavior to periodic task using 
sporadic servers. 

Based on the above PECOS mapping process, the 
resulting tasks for the MobileRobot components used in 
this case study are tabulated in Table 1. The tasks in the 
table are ordered from highest to lowest priority. The 
result from the table is used as input for RMA analysis of 
timing properties. The tasks worst-case execution times 
(WCET) and period are examples of property bundle in 
PECOS model. The tasks WCET are measured at run- 
time, and tasks periods are obtained from the AMR 
requirements. 

Table 1. The result of PECOS component 
mapping for the AMR system 

Theorem 1 from RMA [I61 is then use to determine 
whether the deadline for each task in Table 1 can be met. 
Since, there are eighteen tasks derived from the AMR 
component composition, the theorem were applied for 
values of i ranging from 1 to 18. For each i at least one 
possible pair of (k, I) that satisfies the equation in the 
theorem were found. This indicates that the design 
composition of components in Figure 2 is predicted to be 
schedulable according to RMA theory. Thus, PECOS 
approach and real-time theory such as RMA can be used 
to guarantee the AMR system predictability and 
performance. 

Task 
EncoderRightexec 
PlDRightexec 
motorctrl_rightexec 
EncoderLeftexec 
PIDLeftexec 
rnotorctrl-leftexec 
lRProximityexec 
DistanceSensorexec 
AvoidSynC 
Cruisesync 
Subsumptionsync 
rnotorctrl_rightsync 
rnotorctrl-leftsync 
rnanrobotintfsync 
Avoidexec 
Cruiseexec 
Subsumptionexec 
rnanrobolintfexec 

Theorem 1: A set of n independent periodic tasks will 
always meet its deadlines, for all task phasing, if and only 
if 

where Ci, and T, are the WCET and period of task i, 
respectively, and 

Period (ms) 
SO 
SO 
50 
SO 
50 
SO 
SO 
SO 
SO 
SO 
SO 
50 
50 
SO 

300 
300 
300 
500 

- - 

PECOS also use constraint solving approach to 
perform the schedule verification, since, it is claimed that 
the timing verification using RMA alone is not enough 
when not all tasks run concurrently and hence schedule 
verification is needed to check the possibility to fit 
execution and synchronization behavior sequentially in 
each task [15]. Our experiment with PECOS shows that 
the used of RMA alone is enough to reason about the 
component composition due to the way the event 
components are mapped to active components in a time 
triggered execution such that all tasks run concurrently. 
This is further discussed in Section 4.2. 

WCET (ms) 
0.64 
0.48 

19.20 
0.64 
0.48 

19.20 
0.03 
0.70 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 

17.00 
0.02 
0.04 

16.00 

3.3. Implementation of PECOS model 

To support the implementation of PECOS component 
model, the PECOS consortium has developed some tools 
such as Component Composition (CoCo) description 
language for specifying components, code generator for 
generating JavalC++ code skeletons from CoCo and 
runtime environment (RTE) which interfaces generated 
code from the real-time operating system used. However, 
many of these tools are incomplete and information on 
the RTE is not publicly accessible as it is a proprietary of 
the ABB Company [I 71. 

After experimenting with the PECOS component 
model in the AMR application and implementing it, it is 
found that the assembling activities of components at 
design stage are simple but the implementation of the 
components is complex without the support from PECOS 
tools. With the absence of PECOS supporting tools and 
RTE, there are at least three options in which the PECOS 
component model can be used effectively in the AMR 
software development: 1) develop our own supporting 
tools and RTE; 2) seek alternative from other existing 
tools such as real-time Unified Modeling Language 
(UML) tools [IS]; or 3) propose an alternative 
implementation framework for CBSE of AMR embedded 
software development. 

Option three has been selected in this work, where a 
simple implementation framework is proposed and has 
been used to implement PECOS component model for 
component based development of AMR embedded 
software. 
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4. Enhancements of PECOS Component 
Model and an Implementation Framework 

Based on the assessment conducted in Section 3, three 
modifications or enhancements were identified for the 
PECOS component model for adoption in AMR 
embedded software development. These proposed 
modifications or enhancements are in the aspects of: I) 
allowing connection of constant values to input ports; 2) 
mapping component behavior to tasks and 3) new simple 
implementation framework. 

4.1. Allowing constant connection to input ports 

The components integration using PECOS structural 
model is performed by connecting the compatible input 
and output ports between components. To increase 
reusability and flexibility in PECOS model, connection 
between input ports with constant values is allowed. This 
gives flexibility for testing and debugging of components 
and also useful for AMR software to reconfigure 
components for use with specific hardware or application. 

As an example, consider motor control components 
such as motorctrl-right from the AMR application case 
study as shown in Figure 4. Depending on the type of 

motor and the algorithm for calculating the motor control 
signal, the connection of PlDSetting input port (IP02) for 
motor control component will vary. By allowing constant 
values connection, the PlDSetting input port can he 
connected to other output port or constant values. Figure 
4 shows an example of connecting PlDSetting input port 
(IP02) from motorctrl-right with constant values of 1000, 
20.0 and 50. 

4.2. Mapping of component behavior to tasks 

In our integration process only passive and active 
components are supported, and each event component is 
converted to an active component with cycle time 
determined experimentally. 

This mapping was applied to the MobileRobot 
components used in this case study. The results are 
tabulated in Table 2, where the tasks in the table are 
ordered from highest to lowest priority. The results from 
Table 2 are used as input for RMA analysis of timing 
properties using Theorem 1. It can be shown that, this 
new mapping process also resulted in a composition of 
components which is predicted to be schedulable 
according to RMA theory. 

\ Y 

Figure 4. Components  integration of a n  AMR application case s tudy  

886

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 19:10 from IEEE Xplore.  Restrictions apply.



The MobileRobot component of Figure 4 is mapped to 
a task which executes sequentially two passive 
components IRSensor and Distancesensor; and six 
synchronization parts of its child components, i.e. Avoid, 
Cruise, Subsumption, motorctrl-right, motorctrl-lefl and 
manrobotintf, Note that, in the original PECOS mapping 
these six synchronization parts are mapped to six tasks, 
and the two passive components are mapped to two tasks. 
Thus more tasks results from the original PECOS 
mapping. As shown in Table 2, a smaller number of tasks 
(seven tasks) results from this new mapping process 
compare to the mapping process originally proposed by 
PECOS (eighteen tasks) as tabulated in Table 1. This has 
an advantage in our AMR application, since, small 
number of tasks means less memory is required for 
context storage during preemption, making this mapping 
process suitable for memory constrained embedded 
systems. However, this has a small disadvantage, since, 
the synchronization of all child tasks are handled by 
parent component, the whole software become less 
reactive. In our implementation this is solved by 
assigning the parent component with higher priority than 
its child tasks. 

Table 2. The result of proposed component 
mapping for the AMR application 

4.3. A new implementation framework 

This new framework was originally intended for 
development of ERT software for AMR systems. The 
target audience is the mechatronic and robotics 
researchers which are not from software engineering 
background and do not have extensive programming 
experience. Experience shows that, however, the new 
framework is generally suitable for developing reactive 
embedded systems which typically use 8-bit or 16-bit 
microcontrollers with memory constraints and developed 
with C language. 

In this framework, instead of using the CoCo 
language, graphical visualization of components is use for 
components definition and composition. Currently, codes 
have to be written manually from this graphical 
visualization. The graphical composition environment and 

code generation tools based on the graphical visualization 
are part of our on going work. Figure 4 shows block 
diagram integration of the AMR case study using the 
proposed graphical visualization. The input ports and 
output ports are defined in the block. Each port is 
numbered accordingly for easy reference. Arrows on the 
ports indicate the direction or whether they are inports or 
outports. Bidirectional ports are not allowed in this 
framework. In the figure, composite components are 
shown by blocks with shadow and components with 
period and priority fields are active components and 
components without the filed are passive components. 

The framework target for C language since, optimized 
C compilers are available for most micro-controllers, and 
C is portable across many platforms. Furthermore, C is a 
familiar language and has been use extensively by the 
target audience. The dependency on RTE is minimized by 
targeting the codes to standard calls for minimal real-time 
kernel. Consequently, this will enable platform 
independent development of AMR software. 

The results of component integration and component 
composition are the creation of a configuration file 
pecos-cfg.h for inclusion in the main program. This 
file specifies the components to be included in the project 
and periods of execution and priorities of active 
components. The effect of this file is to include only the 
required components source codes in the final code and to 
confi-wre periods and priorities of active components for 
the real-time kernel use. The code as follows shows a 
fragment of the configuration definitions in the 
pecos-cfg. h file: 
// ********  CONFIG PECOS COMPONEKTS : . . 
// REQUIRE (1) o r  NOTREQUIRE (0) 

Ydefi ne COMPJIOTORREQ 1 
#define COMP-IRPROLREQ 1 
#define COMP-DISTSENSORREQ 1 
#define COMP-SUBSUMPTIOFCREQ 1 
#define COMP-BEHAVIORBASED-CTRLREO 1 

// ""*""* CONFIG REAL-TIME PARAMETERS FOR A C T I V E  
//COMWNENTS ********  
//-- MANROBOTIKTF 
#define M R L P E R I O D  
#define M R L P R I O  

//-- MOTORCTRLRIGHT 
#define MOTORCTRLRIGHT-PERIOD 5 0  
#define MOTORCTRLRIGHT-PRIO 5 

The connections between the compatible input ports 
and output ports are achieved by assignments of data 
defined by the components interface. For example the 
following code shows how connection between the output 
ports of Avoid component and the input ports of 
IRProximity component are made: 
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//-- Connect a l l  inports t o  outports 
Avoid.IPO0 = IRProximity.OPO0; 
Avoid.IPO1 - IRProximi ty.OPO1; 

As shown in Figure 4, the top level component in this 
composition is the Mobil eRobot component which has 
the period of execution of 50 ms and priority of 1, i.e. the 
highest priority. Thus, the main program for this 
composition is the execution behavior of MobileRobot 
component. The template for this main file is shown in 
Figure 5. 

. ~ -~ 
#include "pec0s.h" 
// TOP LEVEl COMPONENT 
void MobileRobot (void* data) I . - 
I****** INITIALIZATION PART ****** / 

//-- i n i t i a l i z e  a l l  child components 
- -  a l l  ACTIVE tasks w i l l  be created 

INITmanrobotintf 0 : 

:etc 
for ( ; ; I  

/**"*'" EXECUTION PART ****** / 
//-- Execute a l l  passive components 
//-- Active components already executed 

MECIRProximity() ; 
:etc 

SYNCHRONIZATION PART *"*'"* / 
//-- Synchronous a l l  inports & outports 

SYNCmanrobotintf 0 : 
:etc 

//-- Connect a l l  inports t o  outports 
Avoid.IPO0 - 1RProximity.OPOO; 
Avoid.IPO1 = IRProximity.OPO1: 
Subsumption.IPO0 = Avoid .OPOO; 
Subsumption.IPO1[0] - Avoid.OPO1[0] ; 

:etc I //-- ca l l  ~ K t o  create periodic execution 
OSTimeDelay (MOBILEROBOT-PERIOD): 

1 
void main(void) { 

//-- i n i t i a l i z e  hardware dependent par ts  
//-- i n i t i a l i z e  Real-time kernel 
//-- create  MobileRobot task 
//-- s t a r t  the Real-time kernel 
while (1) : // run endlessly 

I 

Figure 5. The code template for MobileRobot 
component task execution 

4.4. Implementation Results 

Following the modifications previously described and 
PECOS component definitions, the AMR software 
composed as in Figure 4 was implemented on a real two 
wheeled-mobile robot with behavior-based intelligence 
system. The target board consists of a 16-bit AMDl88ES 
microcontroller with 64Kb ROM and 128Kb RAM. The 
software tools used for the software development are 

Paradigm C compiler [19] for generating ROMable code 
and pC/OS-11 real-time kernel [20] for multitasking 
support. The total code size for the resulting application is 
about 21Kb with RAM usage of about 15Kb. This 
indicates that, the PECOS component model together 
with the proposed modifications can generate application 
with minimal memories requirements, suitable for other 
resource constrained embedded systems. 

The implementation also shows that the new mapping 
of component behavior to tasks process can be used to 
guarantee the AMR system predictability and 
performance. The process is simpler and the number of 
tasks obtained is reduced because the synchronization and 
passive parts of the component are executed sequentially 
in their parent execution task. Therefore, the used of 
constraint solving approach as proposed by PECOS 
consortium to check the possibility to fit execution and 
synchronization behavior sequentially in each task is not 
required in our component composition activity. 

5. Conclusion 

Assessments of the PECOS embedded real-time 
component model were conducted to evaluate the 
suitability of PECOS component model for adoption in 
CBSE of AMR software. The assessments were 
conducted on an AMR case study with emphasize on 
three important requirements: 1) facilitates predictable 
real-time performance of the components assembly; 2) 
support for resource constraint embedded AMR systems; 
and 3) support high-degree of platform-independence. 

Based on the assessments conducted, three 
modifications or enhancements were identified for the 
PECOS component model. The enhancements proposed 
are in the aspects of: 1) allowing connection of constant 
values to input ports; 2) mapping component behavior to 
tasks and 3) new simple implementation framework. 

These enhancements were implemented on a real two- 
wheeled mobile robot with behavior-based intelligence 
system. Results show that, the PECOS component model 
together with the proposed modifications can generate 
application with minimal memories requirements, suitable 
for resource constrained embedded systems. The 
implementation also shows that the new mapping of 
component behavior to tasks process can be used to 
guarantee the AMR system predictability and 
performance, and the new implementation framework 
proposed enable platform independent development of 
AMR software by removing the dependency on run-time 
environment, targeting the codes to standard calls for 
minimal real-time kernel, and the use of C language. 
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