
Enhancements of PECOS Embedded Real-Time Component Model for
Autonomous Mobile Robot Application

Dayang Norhayati Abang Jawawi, Safaai Deris and *Rosbi Mamat
Faclrlty of Computer Science and Information Systems

* Factrlty of Electrical Engineering
Universiti Teknologi Malaysia, 81310 UTM, Johor, Malaysia.

dayang@fsksm. utm. my

Abstract

Recent@, Component-Based Sof iare Enxineering
(CBSE) has becoming a poptrlar approach.for developing
embedded sofiare. In CBSE, a component model is
required to specifY the standards and conventions
imposed on developers of components. Indushial
cornponent models such as CORBA, CUM and JavaBeans
are general!^ not stritable for embedded real-time (ERT)
Vstenis. Consequently, a number o f component models
slritahle for CBSE ofERT so f iare such 0.7 PBO, Koala,
PECOS and ReFIex are introduced. Assessments o f the
PECOS component model were conducted to evaltrate the
suitabiliw o f PECOS component model for adoption in
CRSE o f autonomous mobile-robot (AMR) software. The
as.~e.ssments emphasize on three requirentent.y: facilitates
predictable real-time performance, support for resource
constraint systems, and support plarfonn-independent
implementation. Three enhancemenlr were proposed for
the PECOS component model. These enhancements were
implemented on a real m-wheeled mobile robot. and
resul~f show that, the PECOS cornponent model together
with the proposed modifications can generate application
siritable for resource constrained AMR vstem.r, the new
mapping of component behavior to tash process can be
used to guarantee the nm-time predictabili(v and
perjormance, and the new irnplenientation pamework
proposed enable plarform independent development o f
AMR sofiare.

1. Introduction

Developing software for Autonomous Mobile Robot
(AMR) is challenging since it requires knowledge in
embedded systems, real-time software issues, control
theories and anificial intelligence aspects. Component
Based Software Engineering (CBSE) approach has been
recognized as a way to alleviate these challenges. A
component-based solution is expected to help robotic
research groups in the following aspects [I]: 1) exchange
of software parts or components between robotics
laboratories. allowine s~ecialists to focus on their

would be possible from the available components; 3)
startup in robot research can be accelerated using the
available components; and 4) speed up the transfer of
research laboratories works in robotics to commercial
business application.

There have been some efforts on providing CBSE of
robot software [2-41; however, most of these works do
not address the issues of embedded real-time (ERT)
software requirements for resource constraint AMR and
predictable real-time behavior of the robot. Furthermore,
only platform-dependent components were considered in
those works.

In CBSE, the choice of a component model is very
important as it specifies the standards and conventions
imposed on developers of components in order to achieve
uniform composition, appropriate quality attributes and
deployment of components and applications [S].
Industrial component models currently available such as
OMG's CORBA Component Model (CCM), Microsoft's
(D)COM/COM+, .NET, SUN Microsystems' JavaBeans
and Enterprise JavaBeans, are generally complex, require
large resources such as memory and computation power,
and are platform dependent [6, 71. Furthermore, they do
not address the non-functional properties such as how
much memory it consumes and timing constraints which
are important in ERT systems such as AMR.

Consequently, a number of component models such as
ReFlex [S] , PB0 [9], Koala [lo] and PErvasive
Component Systems (PECOS) [I I], have been developed
to address requirements of ERT software. All these ERT
component models have their own unique strengths to
sumon their nature of ERT ~r0blem domain. Evaluation
oc these component models against the industrial
requirements of heavy vehicle sector shows that PECOS
is the most complete component technology with good
suppon for industrial requirements [12].

The main objective of this paper is to assess the
PECOS component model for adoption in CBSE of AMR
software with particular emphasize on three requirements:
1) facilitates predictable real-time performance of the
components assembly; 2) support for resource constraint
embedded AMR systems; and 3) support high-degree of - .

particular field; 2) comparison of different solutions platform-independence.

8821-4244-0212-3/06/$20.00/©2006 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 19:10 from IEEE Xplore. Restrictions apply.

The layout of this paper is as follows. In Section 2, the
PECOS component model is briefly described. In Section
3, the PECOS model is assessed using a case study of an
AMR software development based on PECOS. As the
results of the assessment, in Section 4, some
enhancements to the PECOS component model are
proposed and implemented on an actual AMR. Some
results on the real-time implementation of are also
described. Finally, the conclusion is presented in Section
5.

2. PECOS Component Model

PECOS component model was originally developed
for field device systems. PECOS component consists of
two main parts, i.e. the static structure model which
describes the entities included in the model, their features
and properties; and the execution model which defines
the behavior of the component execution.

2.1. Static structure model

There are three main entities in the PECOS model:
components, ports and connector [13]. Components are
used to organize the computation and data into parts that
have well-defined semantics and behavior. A port is a
reference to data that can be read and written by a
component and enables a component to be connected to
another component through a connector. Data passed over
the port is specified with name, type, range and direction
(in, out or inout). Only compatible ports can be connected
with connectors.

Components can be any of three types: active, passive
or event component. Active components have their own
thread of control; passive components do not have their
own thread of control; and an event component is a
component that is triggered by event.

In PECOS components can be hierarchically built
from other subcomponents. A component which contains
subcomponents or children is called a composite
component or a parent component, and these
subcomponents are not visible outside the composite
component. A component without subcomponents is
called a leaf component. A property bundle which
describes the nonfunctional aspects such as timing or
memory usage is associated with this static structure of
component.

The components composition using PECOS static
structural model is performed by connecting the
compatible ports between components. Figure 1 illustrates
integration of four components in PECOS for a motor
speed control application. MotorSpeedControl is a
composite component with three subcomponents, i.e. PI,
Encoder, and Motor. Two connections in the composition
are connection between output port speed to input port

actualspeed and connection between output port
controlSignal and input port signal.

Figure 1 also shows two active components:
MotorSpeedControl and PI marked with "a" at the
upper right comer, and two passive components: Encoder
and Motor.

-
Figure 1. PECOS structure model for a motor

speed control application

2.2. Execution model

There are two different behaviors associated with
active and event components: execution behavior and
synchronization behavior. Execution behavior determines
the action that is performed when the component is
executed while the synchronization behavior is
responsible for synchronizing the data space of the active
or event component with that of the parent [13].

In PECOS, data synchronization between two
connected active or event components' ports is required
to assure that data cannot get corrupted due to two
simultaneous write operations from components in
different thread. To solve this data synchronization
problem, every active and event component is equipped
with its own private data space where the data can be
updated independently by the component. At specific
intervals, this private data space is then synchronized its
parent or composite component.

The execution behavior is based on the following
runtime rules [13]: 1) The behavior of passive component
is executed in the thread of its parent component; 2)
Synchronization behavior for active and event
components is executed in the thread of the parent
component; 3) Active and event components execute their
own execution behavior in their own thread of control;
and 4) Every composite component has to provide a
schedule for its children.

3. Assessment of PECOS Component Model

Software design using components involves
connecting sets of component to create a software system
capable of performing some useful function [14]. This
activity consists of component integration and component
composition. The goal the design activity is to find the
most appropriate and feasible combination of the

883

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 19:10 from IEEE Xplore. Restrictions apply.

component candidates. Based on the design, the
implementasion of the software is performed.

Assessment of PECOS component model is conducted
during component integration, component composition
and implementasion stages. The design process of an
AMR software case study using PECOS model is
illustrated and the model is assessed on the following
aspects: I) facilitates predictable real-time performance of
the components assembly; 2) support for resource
constraint embedded AMR systems; and 3) support high-
degree of platform-independence.

The AMR used in the case study is a differential drive
wheeled mobile robot, capable of traversing in a
structured environment. The goal of the robot software is
to control the movement the robot while avoiding
obstacles in its environment. The AMR consists of a body
and a pair of wheels. Each drive wheel is move by a
direct-current (DC) motor. The speeds of the motors are
sensed using shaft encoders and fed back to the embedded
controller for computation of control signal to the DC
motor every 50 milliseconds using the proportional-
integral (PI) control algorithm. The embedded controller
also monitors the robot environment using four infrared
(IR) proximity sensors and communicates with human
using Liquid Crystal Display (LCD) and switches.

3.1. Component integration using P E C O S

Components integration is the mechanical task of
wiring components together by matching the needs and
services of one component with the services and needs of
others [14]. PECOS model supports component
integration with static structure and execution model.

The components integration using PECOS static
structural model is performed by connecting the
compatible ports between components. Figure 2 illustrates
integration of fifteen components in PECOS for the AMR
system. The integration consists of seven active
components and eight passive components. In Figure 2
two composite components are shown: motorctrLright
and motorctrl-iefl.

Figure 3 shows the hierarchical view of components
and the private data spaces derived from integration in
Figure 2. The data spaces used by each component during
execution behavior (shown in solid arrow) and
synchronization behaviors (shown in dotted arrow) are
also illustrated in the figure.

Based on static structure and execution model, it can
be concluded that component integration using PECOS
model can explicitly describes the real-time behavior of a
component using static structure and execution model.
PECOS integration, using static structure and execution
model also supports static binding of components at
design-time composition; this allows optimization of the

design and code toward resource constraint of AMR
systems.

Figure 2. Componen t s integration using PECOS
m o d e l

I.YI_.*

I I h
Figure 3. Hierarchical view of t h e AMR

componen t s

Currently, PECOS does not allow connection of
constant value to input port in their static structure. We
proposed to further enhance PECOS reusability by
allowing connection of constant value to input port in
their static structure.

3.2. Component Composition using P E C O S

Once the real-time behavior and data synchronization
has been specified in the integration stage, the next stage
in PECOS assembly process is to consider the reasoning
of the integration in component composition activity.
Component composition supports means of determining
the properties of assemblies in order to predict their
runtime compatibility [14]. The properties of assemblies
are specified using property bundle in PECOS model. The
timing property in the property bundle can be predicted
using Rate Monotonic Analysis (RMA) based on PECOS
component composition approach [I 51.

RMA verification in PECOS is to check whether the
entire components involved in the composition meet their
deadlines. To use RMA to verify the component
composition in Figure 2, a mapping of the composed
components to RMA tasks is performed. In the original
PECOS mapping of component behavior to tasks, the
following mapping processes are performed: 1) passive
component is treaded as a periodic task and is associated

884

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 19:10 from IEEE Xplore. Restrictions apply.

with period as defined by its parent; 2) active or event
component is decomposed into two tasks: execution task
and synchronization task, in which the period of the
synchronization task inherits its parent period; and 3)
mapping aperiodic behavior to periodic task using
sporadic servers.

Based on the above PECOS mapping process, the
resulting tasks for the MobileRobot components used in
this case study are tabulated in Table 1. The tasks in the
table are ordered from highest to lowest priority. The
result from the table is used as input for RMA analysis of
timing properties. The tasks worst-case execution times
(WCET) and period are examples of property bundle in
PECOS model. The tasks WCET are measured at run-
time, and tasks periods are obtained from the AMR
requirements.

Table 1. The result of PECOS component
mapping for the AMR system

Theorem 1 from RMA [I61 is then use to determine
whether the deadline for each task in Table 1 can be met.
Since, there are eighteen tasks derived from the AMR
component composition, the theorem were applied for
values of i ranging from 1 to 18. For each i at least one
possible pair of (k, I) that satisfies the equation in the
theorem were found. This indicates that the design
composition of components in Figure 2 is predicted to be
schedulable according to RMA theory. Thus, PECOS
approach and real-time theory such as RMA can be used
to guarantee the AMR system predictability and
performance.

Task
EncoderRightexec
PlDRightexec
motorctrl_rightexec
EncoderLeftexec
PIDLeftexec
rnotorctrl-leftexec
lRProximityexec
DistanceSensorexec
AvoidSynC
Cruisesync
Subsumptionsync
rnotorctrl_rightsync
rnotorctrl-leftsync
rnanrobotintfsync
Avoidexec
Cruiseexec
Subsumptionexec
rnanrobolintfexec

Theorem 1: A set of n independent periodic tasks will
always meet its deadlines, for all task phasing, if and only
if

where Ci, and T, are the WCET and period of task i,
respectively, and

Period (ms)
SO
SO
50
SO
50
SO
SO
SO
SO
SO
SO
50
50
SO

300
300
300
500

- -

PECOS also use constraint solving approach to
perform the schedule verification, since, it is claimed that
the timing verification using RMA alone is not enough
when not all tasks run concurrently and hence schedule
verification is needed to check the possibility to fit
execution and synchronization behavior sequentially in
each task [15]. Our experiment with PECOS shows that
the used of RMA alone is enough to reason about the
component composition due to the way the event
components are mapped to active components in a time
triggered execution such that all tasks run concurrently.
This is further discussed in Section 4.2.

WCET (ms)
0.64
0.48

19.20
0.64
0.48

19.20
0.03
0.70
0.02
0.02
0.02
0.02
0.02
0.02

17.00
0.02
0.04

16.00

3.3. Implementation of PECOS model

To support the implementation of PECOS component
model, the PECOS consortium has developed some tools
such as Component Composition (CoCo) description
language for specifying components, code generator for
generating JavalC++ code skeletons from CoCo and
runtime environment (RTE) which interfaces generated
code from the real-time operating system used. However,
many of these tools are incomplete and information on
the RTE is not publicly accessible as it is a proprietary of
the ABB Company [I 71.

After experimenting with the PECOS component
model in the AMR application and implementing it, it is
found that the assembling activities of components at
design stage are simple but the implementation of the
components is complex without the support from PECOS
tools. With the absence of PECOS supporting tools and
RTE, there are at least three options in which the PECOS
component model can be used effectively in the AMR
software development: 1) develop our own supporting
tools and RTE; 2) seek alternative from other existing
tools such as real-time Unified Modeling Language
(UML) tools [IS]; or 3) propose an alternative
implementation framework for CBSE of AMR embedded
software development.

Option three has been selected in this work, where a
simple implementation framework is proposed and has
been used to implement PECOS component model for
component based development of AMR embedded
software.

885

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 19:10 from IEEE Xplore. Restrictions apply.

4. Enhancements of PECOS Component
Model and an Implementation Framework

Based on the assessment conducted in Section 3, three
modifications or enhancements were identified for the
PECOS component model for adoption in AMR
embedded software development. These proposed
modifications or enhancements are in the aspects of: I)
allowing connection of constant values to input ports; 2)
mapping component behavior to tasks and 3) new simple
implementation framework.

4.1. Allowing constant connection to input ports

The components integration using PECOS structural
model is performed by connecting the compatible input
and output ports between components. To increase
reusability and flexibility in PECOS model, connection
between input ports with constant values is allowed. This
gives flexibility for testing and debugging of components
and also useful for AMR software to reconfigure
components for use with specific hardware or application.

As an example, consider motor control components
such as motorctrl-right from the AMR application case
study as shown in Figure 4. Depending on the type of

motor and the algorithm for calculating the motor control
signal, the connection of PlDSetting input port (IP02) for
motor control component will vary. By allowing constant
values connection, the PlDSetting input port can he
connected to other output port or constant values. Figure
4 shows an example of connecting PlDSetting input port
(IP02) from motorctrl-right with constant values of 1000,
20.0 and 50.

4.2. Mapping of component behavior to tasks

In our integration process only passive and active
components are supported, and each event component is
converted to an active component with cycle time
determined experimentally.

This mapping was applied to the MobileRobot
components used in this case study. The results are
tabulated in Table 2, where the tasks in the table are
ordered from highest to lowest priority. The results from
Table 2 are used as input for RMA analysis of timing
properties using Theorem 1. It can be shown that, this
new mapping process also resulted in a composition of
components which is predicted to be schedulable
according to RMA theory.

\ Y

Figure 4. Components integration of a n AMR application case s tudy

886

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 19:10 from IEEE Xplore. Restrictions apply.

The MobileRobot component of Figure 4 is mapped to
a task which executes sequentially two passive
components IRSensor and Distancesensor; and six
synchronization parts of its child components, i.e. Avoid,
Cruise, Subsumption, motorctrl-right, motorctrl-lefl and
manrobotintf, Note that, in the original PECOS mapping
these six synchronization parts are mapped to six tasks,
and the two passive components are mapped to two tasks.
Thus more tasks results from the original PECOS
mapping. As shown in Table 2, a smaller number of tasks
(seven tasks) results from this new mapping process
compare to the mapping process originally proposed by
PECOS (eighteen tasks) as tabulated in Table 1. This has
an advantage in our AMR application, since, small
number of tasks means less memory is required for
context storage during preemption, making this mapping
process suitable for memory constrained embedded
systems. However, this has a small disadvantage, since,
the synchronization of all child tasks are handled by
parent component, the whole software become less
reactive. In our implementation this is solved by
assigning the parent component with higher priority than
its child tasks.

Table 2. The result of proposed component
mapping for the AMR application

4.3. A new implementation framework

This new framework was originally intended for
development of ERT software for AMR systems. The
target audience is the mechatronic and robotics
researchers which are not from software engineering
background and do not have extensive programming
experience. Experience shows that, however, the new
framework is generally suitable for developing reactive
embedded systems which typically use 8-bit or 16-bit
microcontrollers with memory constraints and developed
with C language.

In this framework, instead of using the CoCo
language, graphical visualization of components is use for
components definition and composition. Currently, codes
have to be written manually from this graphical
visualization. The graphical composition environment and

code generation tools based on the graphical visualization
are part of our on going work. Figure 4 shows block
diagram integration of the AMR case study using the
proposed graphical visualization. The input ports and
output ports are defined in the block. Each port is
numbered accordingly for easy reference. Arrows on the
ports indicate the direction or whether they are inports or
outports. Bidirectional ports are not allowed in this
framework. In the figure, composite components are
shown by blocks with shadow and components with
period and priority fields are active components and
components without the filed are passive components.

The framework target for C language since, optimized
C compilers are available for most micro-controllers, and
C is portable across many platforms. Furthermore, C is a
familiar language and has been use extensively by the
target audience. The dependency on RTE is minimized by
targeting the codes to standard calls for minimal real-time
kernel. Consequently, this will enable platform
independent development of AMR software.

The results of component integration and component
composition are the creation of a configuration file
pecos-cfg.h for inclusion in the main program. This
file specifies the components to be included in the project
and periods of execution and priorities of active
components. The effect of this file is to include only the
required components source codes in the final code and to
confi-wre periods and priorities of active components for
the real-time kernel use. The code as follows shows a
fragment of the configuration definitions in the
pecos-cfg. h file:
// ******** CONFIG PECOS COMPONEKTS : . .
// REQUIRE (1) o r NOTREQUIRE (0)

Ydefi ne COMPJIOTORREQ 1
#define COMP-IRPROLREQ 1
#define COMP-DISTSENSORREQ 1
#define COMP-SUBSUMPTIOFCREQ 1
#define COMP-BEHAVIORBASED-CTRLREO 1

// ""*""* CONFIG REAL-TIME PARAMETERS FOR A C T I V E
//COMWNENTS ********
//-- MANROBOTIKTF
#define M R L P E R I O D
#define M R L P R I O

//-- MOTORCTRLRIGHT
#define MOTORCTRLRIGHT-PERIOD 5 0
#define MOTORCTRLRIGHT-PRIO 5

The connections between the compatible input ports
and output ports are achieved by assignments of data
defined by the components interface. For example the
following code shows how connection between the output
ports of Avoid component and the input ports of
IRProximity component are made:

887

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 19:10 from IEEE Xplore. Restrictions apply.

//-- Connect a l l inports t o outports
Avoid.IPO0 = IRProximity.OPO0;
Avoid.IPO1 - IRProximi ty.OPO1;

As shown in Figure 4, the top level component in this
composition is the Mobil eRobot component which has
the period of execution of 50 ms and priority of 1, i.e. the
highest priority. Thus, the main program for this
composition is the execution behavior of MobileRobot
component. The template for this main file is shown in
Figure 5.

. ~ -~
#include "pec0s.h"
// TOP LEVEl COMPONENT
void MobileRobot (void* data) I . -
I****** INITIALIZATION PART ****** /

//-- i n i t i a l i z e a l l child components
- - a l l ACTIVE tasks w i l l be created

INITmanrobotintf 0 :

:etc
for (; ; I

/**"*'" EXECUTION PART ****** /
//-- Execute a l l passive components
//-- Active components already executed

MECIRProximity() ;
:etc

SYNCHRONIZATION PART *"*'"* /
//-- Synchronous a l l inports & outports

SYNCmanrobotintf 0 :
:etc

//-- Connect a l l inports t o outports
Avoid.IPO0 - 1RProximity.OPOO;
Avoid.IPO1 = IRProximity.OPO1:
Subsumption.IPO0 = Avoid .OPOO;
Subsumption.IPO1[0] - Avoid.OPO1[0] ;

:etc I //-- ca l l ~ K t o create periodic execution
OSTimeDelay (MOBILEROBOT-PERIOD):

1
void main(void) {

//-- i n i t i a l i z e hardware dependent par ts
//-- i n i t i a l i z e Real-time kernel
//-- create MobileRobot task
//-- s t a r t the Real-time kernel
while (1) : // run endlessly

I

Figure 5. The code template for MobileRobot
component task execution

4.4. Implementation Results

Following the modifications previously described and
PECOS component definitions, the AMR software
composed as in Figure 4 was implemented on a real two
wheeled-mobile robot with behavior-based intelligence
system. The target board consists of a 16-bit AMDl88ES
microcontroller with 64Kb ROM and 128Kb RAM. The
software tools used for the software development are

Paradigm C compiler [19] for generating ROMable code
and pC/OS-11 real-time kernel [20] for multitasking
support. The total code size for the resulting application is
about 21Kb with RAM usage of about 15Kb. This
indicates that, the PECOS component model together
with the proposed modifications can generate application
with minimal memories requirements, suitable for other
resource constrained embedded systems.

The implementation also shows that the new mapping
of component behavior to tasks process can be used to
guarantee the AMR system predictability and
performance. The process is simpler and the number of
tasks obtained is reduced because the synchronization and
passive parts of the component are executed sequentially
in their parent execution task. Therefore, the used of
constraint solving approach as proposed by PECOS
consortium to check the possibility to fit execution and
synchronization behavior sequentially in each task is not
required in our component composition activity.

5. Conclusion

Assessments of the PECOS embedded real-time
component model were conducted to evaluate the
suitability of PECOS component model for adoption in
CBSE of AMR software. The assessments were
conducted on an AMR case study with emphasize on
three important requirements: 1) facilitates predictable
real-time performance of the components assembly; 2)
support for resource constraint embedded AMR systems;
and 3) support high-degree of platform-independence.

Based on the assessments conducted, three
modifications or enhancements were identified for the
PECOS component model. The enhancements proposed
are in the aspects of: 1) allowing connection of constant
values to input ports; 2) mapping component behavior to
tasks and 3) new simple implementation framework.

These enhancements were implemented on a real two-
wheeled mobile robot with behavior-based intelligence
system. Results show that, the PECOS component model
together with the proposed modifications can generate
application with minimal memories requirements, suitable
for resource constrained embedded systems. The
implementation also shows that the new mapping of
component behavior to tasks process can be used to
guarantee the AMR system predictability and
performance, and the new implementation framework
proposed enable platform independent development of
AMR software by removing the dependency on run-time
environment, targeting the codes to standard calls for
minimal real-time kernel, and the use of C language.

888

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 19:10 from IEEE Xplore. Restrictions apply.

10. References

[I] A. Oreback. "Components in Intelligent Robotics",
MRTC report ISSN 1404-3041 ISRN MDH-MRTC-
15/2000-I-SE Component Rased Sqftware Engineering -
State o f the Art, Malardalen Real-Time Research Centre,
Malardalen University, January 2000, pp. 233-243.

[2] S. Blum. "Towards a Component-based System
Architecture for Autonomous Mobile Robots", Proc.
IASTED International Coqkrence Robotics and
Applications (R4 '01). Tampa, 2001, pp. 220-225.

[3] E. Messina, J. Horst, T. Kramer, H. Huang, and J.
Michaloski. "Component Specifications for Robotics
Integration", Autonomous Robots, 6, 1999, pp. 247-264.

[4] iRobot Corporation, Mobility Robot Integration
Sof iare User's Guide, 2002.

[5] F. Bachman, L. Bass, S. Buhman, L. S. Comella-
Dorda, R.C. Seacord, and K. C. Wallnau. "Technical
Concept of Component-Based Software Engineering".
Technical Report CMULTEI-2000-TR-008, Software
Engineering Institute, Camegie Mellon University, 2000.

[6] U. Rastofer, and F. Bellosa, "Component-based
Software Engineering for Distributed Embedded Real-
time Systems", IEE Proceedinp Sorware, 148(3). 2001,
pp. 99-103.

[7] F. Luden, "Adopting a Software Component Model
in Real-Time Systems Development", Proceedings. 28th
Annual NASA Goddard Sof iare Engineering Workshop,
2003, pp. 114- 119.

[8] A. Wall. "Architectural Modeling and Analysis of
Complex Real-Time Systems", Ph.D. Thesis o f
Malardalen University, 2003.

[9] D. B. Stewart, R. A. Volpe, and P. K. Kbosla.
"Design of Dynamically Reconfigurable Real-time
Software Using Port-Based Objects", IEEE Transaction
on Software Engineering, 23(12), 1997, pp. 759 -776.

[I I] 0. Nierstrasz, G. Arkvalo, S. Ducasse, R. Wuyts, A.
Black, P. Muller, C. Zeidler, T. Genssler, R. van den
Bom. "A Component Model for Field Devices",
Proceedings First International IFIP/ACM Working
Conkrence on Component Deplo.wnent, Springer-Verlag
Heidelberg, Berlin, 2002, pp. 200-209.

[I21 A. Moller, Akerholm M., Fredriksson J., Nolin M.,
"Evaluation of Component Technologies with Respect to
Industrial Requirements", Proceedings o f the 30th
EUROMICRO Conference on Componenr-Based
Sof iare Engineering Track, Rennes, France, August
2004, pp. 56-63.

[I31 Genssler T. et. al., "PECOS in a Nutshell",
Technical Report, PECOS Project, September 2002.

[I41 Cmkovic, I., and M. Larsson, Building Reliable
Component-bared S o f i r e Systems, Artech House, 2002.

[IS] R. Wuyts, S. Ducasse and 0 . Nieetrasz. "A Data-
centric Approach to Composing Embedded, Real-time
Software Components", The Jotrrnal o f Systems and
Sqfhyare, 74,2005, pp. 25-34.

[I61 Klien, M., T. Ralya, B. Pollak and R. Obenza, A
Practitioner's Handbookfor Real-time Analysis, Kluwer
Academic Publisher. 1993.

[17] B. Bouyssounouse, J. Sifakis, "Embedded Systems
Design: The ARTIST Roadmap for Research and
Development", Lecture Notes in Compi~ter Science,
Volume 3436 / 2005, Springer-Verlag GmbH, 2005, pp.
160- 194

[IS] Douglass, B. P., "Real-Time UML". Addison
Wesley. 2004.

[I91 Paradigm Systems, Paradigm C++ Rekrence
Mani~al Version 5.0, Endwell, 2000.

[20] Labrosse, I. J., MicroC/OS-I1 The ReaCTime Kernel,
2"dedirion, R&D Books, USA, 1999.

[lo] R. Ommering, F. Linden, J. Kramer, and J. Magee,
"The Koala component model for consumer electronics
software", IEEE Computer, 33(3), 2000, pp. 78 -85.

889

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 19:10 from IEEE Xplore. Restrictions apply.

