
1-4244-1355-9/07/$25.00 @2007 IEEE

International Conference on Intelligent and Advanced Systems 2007

1324 ~

Implementation of Embedded Web Server for Mobile
Robot System

Noor Azurati Ahmad @ Salleh
Centre for Advanced Software Engineering,
Universiti Teknologi Malaysia City Campus

Jalan Semarak, 54100 Kuala Lumpur. MALAYSIA.

Rosbi Mamat
Faculty of Electrical Engineering,

Universiti Teknologi Malaysia
81310 UTM Skudai, Johor. MALAYSIA.

Abstract— With the rapid growth of the Internet¸ the interest for
connecting small devices such as sensors or embedded system
appliances into an existing network infrastructure has increased.
Web browser is used by remote operator to control and monitor
the devices via Internet and these applications are widely utilized
in tele-operation, space exploration and tele-training systems.
Such devices often have very limited CPU and memory resources
and may not be able to run a complete TCP/IP protocol suite.
This paper described an implementation of embedded Web server
for a mobile robot using minimal TCP/IP stack. The minimal
TCP/IP stack has to minimize the standard TCP/IP, in terms of
code size and resources to be embedded into minimal systems such
as small mobile robots. The performance of the embedded Web
server for tele-control of a mobile robot was evaluated and
presented.

Keywords—minimal TCP/IP stack, mobile robot, embedded
system, embedded Web server,

I. INTRODUCTION
Web-based embedded systems started with the Cambridge
coffee pot Webcam project that appeared in 1991 by using a
standard browser. By early 1998 – 1999, there were many
solutions based on embedded PCs. In year 2000 many
researchers focused on developing standalone embedded Web
server that has its own IP address and connected to the Internet
independently without PC. Currently, only a limited number of
Internet devices are available in the commercial marketplace
but much documentation has been written describing the key
features and problem areas in the development of embedded
Web servers. Nevertheless, some companies and electronic
industries have developed an add-on network interface, or a
single chip solution for embedding network connectivity into
devices.

The use of the Internet as link of telecommunications in
Telerobotics enable the control of robots in places where
previously was economically unviable. Using Web interface,
people can interact with the robot in real time, they can control
its movement, observe the state of the different magnitudes and
receive the images and sound that robot captures from the
environment.

In order to be able to communicate over the Internet, an
implementation of the TCP/IP protocol stack is needed. Since
many mobile robots are often required to be physically small
and inexpensive; typically implemented with 8-bit or 16-bit
microcontrollers with few kilobytes of memories, an
implementation of the Internet protocols will have to deal with

having limited computing resources and memory. The TCP/IP
implementation should be sufficiently small in terms of code
size and resource demands to be used in minimal systems such
as small mobile robots.

This paper described an implementation of embedded Web
server for a mobile robot using minimal TCP/IP stack. The
embedded Web server was implemented using an Intel i386EX
microprocessor board with PC/104 interface. The server stores
the available information including the network protocols such
as HTTP, TCP/IP, UDP and ICMP, and the application codes.
The end user can control the robot by sending data through the
Web browser. The HTML codes from embedded Web server
are sent out in response to HTTP requests from remote
browsers.

II. RELATED WORKS
A. Telerobotics using Web server

Previous Web server systems make used a PC to store all the
network protocols starting from the physical layer towards
application layer. Those projects used separate microcontroller
and microprocessor for processing the robot instruction and the
TCP/IP protocol.

Malinowski and Wilamowski [1] reviewed several client-
server systems to control the robot movement over the World
Wide Web, which were developed at Bradley University in
years 1998 to 2001. Robot manipulators performed robust real
time manual control over the Internet connection characterized
by varying bandwidth and latency. A Web server was used to
provide the client application to the operator while the client
used custom TCP/IP protocol to connect to the server. Sensors
and a video camera provide the feedback to the client.

Different controllers were used in tele-operation projects.
For example, the “Lego Robot” was controlled with a parallel
port and with a stationary camera located off side. While
another project, the Florida Robot [2] utilized a Motorola
HC11 microprocessor on the board that implemented motor
controllers and collected data from sensors. In this project, the
microprocessor connects to the server computer via a serial
link.

The Mercury Project [3] and The Telerobotics Experiment
via Internet project [4], for instance, were developed to control
the robotic arm via Internet. In these projects the robots used
by the telerobotics experiment, were attached to the desktop PC
that acts as a server.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 11, 2009 at 20:02 from IEEE Xplore. Restrictions apply.

International Conference on Intelligent and Advanced Systems 2007

~ 1325

In the above projects, the main concern is how to control
the robot through Internet, not how big the system will it be.
Therefore, the traditional Web server has no constraints with
limited processing power and memory.

In general, a robot is a portable device and more reliable if
it can be stand alone device to perform as robotic embedded
Web server. Many robot designers use small embedded PC
boards for supporting main PC functions including network,
I/O ports and data storage.

RW1[1] used Hitachi microcontroller which was connected
to a PC/104 computer to control the Magellan robot. The
PC/104 provided a microcontroller based upon the Intel 386,
486 or Pentium processor and connects to the Internet using a
wireless network card. The use of a PC/104 compliant
microcontroller offers a remarkable power and simplicity to the
robot control architecture.

The legOS project used Dunkles’s TCP/IP stack [5], uIP
and embedded in Lego’s RCX Mindstorm platform powerd by
a h8300 Hitachi microcontroller. The code size of uIP TCP/IP
stack is an order of a magnitude smaller than generic TCP/IP.
It was used to take care of the packet transmission using LNP
integrity packets. The LNP protocol is a quite simple like UDP
protocol, and specifically designed for LegOS. This system
stored the uIP TCP/IP stack in the embedded PC.

As a summary, many of previous works used standard
TCP/IP to enable the Internet connectivity for robot system and
they used serial and parallel ports as medium to connect the
robot and the PC. Many Web server systems were developed
using high end onboard computer such as laptop and PC/104
that can run Java and support WLAN functions.

In this paper, the Web server was developed using PC/104
that does not has those high end capabilities so that we can
identify the actual minimum hardware requirements for
maintaining the Internet robotic system.

The LegOS project seems to be similar to our project due to
the usage of the lean TCP/IP, uIP [6]. The major different
between LegOS project and our work is that the Hitachi H8
microcontroller runs LegOS operating system while our system
used embedded DOS operating systems which is pported by
PC/104.

III. EMBEDDED WEB SERVER IMPLEMENTATION
Implementing the embedded Web server on small mobile

robot requires very small TCP/IP to suite with the size of
memory in the embedded microprocessor. Versatile TCP/IP
stack facilities such as an SMTP (Simple Mail Transfer
Protocol) client to send emails or a POP3 (Post Office Protocol
3) client to fetch emails from a server are not required. The
main requirement of Web server is that it must accept a request
string in hypertext transfer protocol (HTTP) format. The
HTTP protocol essentially works by exchanging text messages
followed by transfer of web data across TCP connection.

A. Designing the Minimal TCP/IP Stack
There are exists numerous tiny TCP/IP implementations.

One of the most notable implementations is the iPic web server
[7], which was implemented on a PIC 12C509A. TCP/IP stack
is 256 bytes of code. The files for the web server are stored on

an EEPROM chip. The source code for the TCP/IP stack is
however, is not available.

LwIP, the small TCP/IP stack, was developed by Dunkles
and has a small code size. It was designed for embedded
systems with little RAM. A simple tests have shown that it can
operate in an environment with very little RAM available.
Operating system dependencies is moved into a separate
module to simplify porting of lwIP to other operating systems.
It consists of several modules and apart from the modules
implementing the TCP/IP protocols (IP, ICMP, UDP, and
TCP). A number of supported modules are implemented. The
supported modules consists of the operating system emulation
layer, the buffer and memory management subsystems,
network interface functions and functions for computing the
Internet checksum. LwIP includes an abstract API which is
very similar to the BSD socket API. LwIP was designed so
that it is possible to run lwIP without the API presented, thus it
saved the memory usage. However, Dunkles’s work did not
include any performance analysis of the proxy based scheme.
Furthermore, performance testing of the lwIP with respect to
memory consumption and execution time were not conducted.

The uIP stack is specifically designed for very small
systems such as the RCX mobile robot. The stack has very
small code size and low RAM usage, configurable at compile
time. It uses 23 bytes of RAM for each TCP connection and 2
bytes of RAM for each listening TCP port. Even though it has
well documented source code, procedure in building its
software and hardware systems were not completely explained.

Another well-known small TCP/IP stack is the TCP/IP
Lean [8]. TCP/IP Lean was designed by Bentham and the
source code was well organized in his book. This book
explained how to develop a protocol from the beginning. He
also provides techniques to minimize the TCP/IP in designing
miniature Web server. His objective is to create a miniature
Web server in C that is potentially useful, in that it can monitor
and control real world devices connected to the system’s I/O
line. The Web server used only 256 bytes of read only
memory (ROM) for TCP stack. He used microcontroller
PIC16C76 in his project. This microcontroller has 8K words
of ROM, 368 bytes of RAM and (flash) programmable
memory.

The PICDEM.net/Packet Whacker firmware constructed by
Fred Eady [9,10]. The PIC flash memory filing system was
programmed successfully to allow the PICDEM.net [11] and
Packet Whacker [12] combination to be an embedded Web
server.

Base on the studies, it is found that TCP/IP lean and Eady’s
design were suitable for adoption because of the following
reasons:
1. TCP/IP lean provides well-documented TCP/IP
development and the source code is available with the book.
2. It is free and simple to understand the development of
network protocol from scratch.
3. Eady’s work shows some examples of writing TCP/IP
programming by using EDTP Packet Whacker which is
suitable for small embedded Web server.

B. Software Implementation
The development of minimal TCP/IP software involves

designer to analyze almost the four layers (Application,

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 11, 2009 at 20:02 from IEEE Xplore. Restrictions apply.

International Conference on Intelligent and Advanced Systems 2007

1326 ~

Transport, Network Access and Physical) of TCP/IP stack
model. Each Internet appliance is assigned an IP address so
that the networks can identify which node the packet is
addressed to and where it is coming from. The protocol field
determines the type of upper layer service required by the data
packet. The upper layer protocols such as UDP, TCP and
ICMP are encapsulated into IP packets.

I. IP Processing

IP packets received by the network interface have to be
filtered into ICMP, TCP, or UDP packets. It then depends on
the 8 bit value inside protocol field. A value of 1 is for ICMP,
number 6 indicates TCP and 17 is for UDP.

Previously, the system was tested in local area network that
based on the Eady’s design. However, the system needs some
modification upon the incoming packet was received.
Conceptually, the Ethernet frame brings the data from physical
layer and then the data will be sorted into different packet
groups. But before that, the source IP address should be
filtered to determine either that packet requires IP routing or
not. The routing algorithm for embedded Web server is
uncomplicated. If the packet arrives from the lower layer, the
source IP address (client IP) must be checked to see it is on the
same subnetwork (i.e. on the same LAN) with the destination
IP address (Web server IP). If it is in the same LAN, the
packets will be sent back directly to the client IP; if not, the
packets will be sent to a gateway or router, which will forward
them to the actual destination.

To design routing process for this system, four components
are needed; destination IP address, source IP address, subnet
mask and router IP address. Source IP address will be ANDed
with subnet mask and the results will determine where the
packets should go next. This operation eliminates the host IP
address so that the rest of the address field can be compared.

When the incoming datagram is received, the embedded
Web server will take the following steps [13].

If ARP request was received, send back the ARP
response to client.
If a nonbroadcast datagram was received, check the
client’s IP address and take one of the following steps.
a. If the client’s IP address of the datagram is on the
local area network, the datagram does not require
routing.
b. If the client’s IP is on a different subnet, forward
the datagram to the gateway.

For example, the embedded Web server has the network
information as follows,

subnet mask : 255.255.255.0
IP address : 161.139.16.2
Gateway : 161.139.16.250

Once the system received the datagram, the operation
should check the client’s IP address whether the IP is on its
LAN or others. For instance, if the client’s IP address is
161.139.16.156, and the logical AND with subnet mask value,
255.255.255.0, will obtain 161.139.16.0. This means that the
datagram (ARP reply or ICMP) can be sent directly to the
client. Otherwise, if the system received a datagram with

source IP is 218.111.94.13 (A Digital Subscriber Line, DSL),
the system will detect that the client’s IP was not on the same
LAN and requires forwarding the datagram to the router.
Figure 1 illustrates the example of routing process.

To forward the datagram from embedded Web server to
router, the device needs to send the datagram using router’s
MAC address as Ethernet destination address. The 48-bit
Ethernet address corresponding to router’s IP can be obtained
using ARP. It is important to realize that the destination IP
address does not change until the packets is received by the
recipient. In this case, the destination IP address is the final
destination with IP 218.111.94.13 but the link layer address is
the 48 bit Ethernet address of gateway1’s Ethernet interface.
The link layer destination address always contains the link
layer address of the next node.

Figure 1. Routing packet

When Gateway 1 receives the datagram, it realizes that the
destination IP address is not destined to itself, so it forwards
the datagram. Its routing table is searched and the default entry
is used. All the routing decisions are based on the destination
IP address. The software design does not consider the routing
mechanisms or routing policy implementation, but only to
address the datagram to go to the router if the destination IP
address was not on the same subnet.

In the network layer, IP header is pointed to IP destination
address, 218.111.94.13 (client’s IP address). On the recipient
network, the datagram is received through Gateway 2 as shown
in Figure 1. Gateway 2 then realizes that the datagram is
destined to one of the nodes on its network. The datagram
finally received by the client and the next packets will be
traveled using the same way as the first datagram was sent.

During routing process, the router may receive datagrams
where the destination IP address does not match its own and
send datagrams using a source IP address that is equally alien.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 11, 2009 at 20:02 from IEEE Xplore. Restrictions apply.

International Conference on Intelligent and Advanced Systems 2007

~ 1327

Hence, the router must filter incoming datagrams based on
their Ethernet addresses rather than their IP addresses. Any
datagram sent to the router’s Ethernet address that does not
match its own IP address is considered a potential candidate for
routing. In this case packets will require multiple hops to make
the journey due to the source and destination is not on the same
network.

II. TCP Implementation

The toughest part in implementing the network
communication protocol is TCP protocol. TCP is a connection
oriented protocol which means, a connection must be
established between two ends, and in this case we call them as
a client and server. In contrast, UDP send the data to the IP
layer, does not guarantee either they reach to their destination
or not. The TCP provides reliable transmission of data, stream
data transfer, efficient flow control, sequencing, error checking
and retransmission. Therefore it requires acknowledgement
message (ACK) of transmitted and received data across the
link.

The TELNET program is the best program for testing TCP
packets data movement to the embedded Web server. The
PC/104 and Packet Whacker combination will echo the data
back to the TELNET session and close the session. By using
the TELNET application, the TELNET client must negotiate
with TELNET server before establishing a connection between
them. An ephemeral port number is applied to get around the
negotiation data stream of the well-known TELNET Port 23.
Ordinary TELNET port was not used because its negotiation
part concerns about some impractical tasks to do with
miniature embedded Web server such as terminal parameters
and what each side of the TELNET session is expected to do or
react to.

III. HTTP design and analysis

The HTTP protocol consists of two different groups of
data; the set of requests from browsers to servers, and the set of
responses return from servers to browsers.

These groups involve in the replacement of text messages
throughout the data transmission between the client and server.
This protocol was implemented by using the simplest request
of HTTP text messages. Fundamentally, when the clients
attempt to access the Web page for the first time, they must
enter the IP address of the Web server, for example:

http://10.1.1.13

The browser locates the IP address and opens a TCP
connection to server port 80, then uses HTTP protocol to send
a request consist of a single GET line:

GET / HTTP/1.0

The GET method is one of the HTTP commands that is
used to fetch a Web document. The server replies with a
response line containing the HTTP version, status code and
description, such as HTTP/1.0 200 OK.

If the request succeeded, the Web page will be sent. The
user can control two major application systems, the LED
system and Robot system. There are seven different

instructions including ON, OFF in LED system, and
FORWARD, REVERSE, RIGHT, LEFT and STOP, in Robot
system.

Figure 2 shows all commands involved in this research.
These commands is transformed to the logical value to execute
the system application depends on what the user wishes. For
instance, if the FORWARD button was pushed on the
displayed Web page; the software system will find which
system is called and obtain the value of the instruction. The
client sends a GET request together with the significant
command such as

GET /robot.egi?INSTRUCTION=FORWARD

Figure 2. The commands to control the system application

In this case, the robot system has been called and the value
is ‘FORWARD’. HTTP response to this request by sending out
command to the robot and LCD, the robot will move ahead
from where it is, while LCD will display the command words.
The easiest way to implement the embedded interfaces is that
by finding a unique character of the command for a system,
purposely to distinguish it from others, and match it with
command value of the HTTP request. We used ‘F’ to identify
forward command, ‘R’ for reverse, ‘R’ for right, ‘L’ for left,
‘S’ for stop, ‘N’ to turn on the LED and ‘F’ to turn off the
LED. The details of HTTP request and HTTP response for
right and left command are shown in Figure 3.

Figure 3. HTTP request to control the system applications

 Once the software system found the two suite characters of
each command, the application will be executed immediately.
This system can serve only one client at a time; hence if other
clients would like to browse the Web page, they have to wait
until the previous client terminates the communication. The
client can control every single instruction as revealed.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 11, 2009 at 20:02 from IEEE Xplore. Restrictions apply.

International Conference on Intelligent and Advanced Systems 2007

1328 ~

IV. SYSTEM PERFORMANCE
Video streaming allows the reception of images and sounds

in a continuous ways through the network [14]. Unlike other
formats of audio and video in which it is necessary to
download a complete file before displaying it, streaming
technology allows initiating the visualization while the file is
downloading. Teleoperated systems remotely need data or
images from the control object, as well as, the transmission of
commands through a communication link, that is based upon
connection through Internet protocol. The Internet presents a
width of heterogeneous band with variable rates of
transmission that vary from 10 Kbps (wireless connection) to
more than 10Mbps in local net, depending on the Internet
connection and the traffic.

With the limitation of bandwidth, applications in real time
for video capture present serious restrictions. To overcome
these restrictions it is necessary to use data compression and
connection to a great speed Internet. Typical rates for video
transmission with compression need 20 Kbps (Real Video) and
without compression, of 100 Kbps (sequence of images JPEG)
with 5 frames/sec [14]. Another limitation is the delay inherent
to the protocol TCP, because the packages sent are not
necessarily in the same order of the packages received by the
client that is not desirable for applications in real time. For
application such as audio and video transmission, it does not
matter much if the packets take 20 ms or 30 ms to be delivered,
as long as the transit time is constant. Having some packets
taking 20 ms and other taking 30 ms will give an uneven
quality to the sound or image [15].

To determine whether the system can be used for the video
transmission via Internet, an example of monochromatic image
(black and white) with 53x53 pixels will be used in this
analysis. This scheme using 1 bit per pixel, it is also called a 1-
bit image. The reason for using this scheme is because of the
low bit rate that the embedded Web server can support while
transferring data through live network environment. The
acceptable frame rate to be at least five frames per second on
an embedded Web server to allow a stop-action affect that can
be interpreted easily by casual observer. The bandwidth
needed to transfer this image by using a 5 frames a second
streaming scheme is 14 Kbps [15].

Ethereal software [16] was used for evaluating the
performance of embedded Web server. This programs that run
on client machine can capture all the data, including HTTP
requests and HTTP responses that flow over Internet. By
analyzing these data, the performance of embedded Web server
can be measured in certain metrics. Performance metrics
include items such as request latency (how long it took for an
individual response to come back from the server) and
throughput (how many responses a server can generate per
second).

From Figure 4, it can be seen that throughput is the highest
with 1800 bytes per second (14.4 Kbps). The smallest number
of throughput is 950 bytes per second. An average throughput
of these transmissions is around 1400 bytes per second. In
video streaming case study, the total bandwidth available for
video is 14 Kbps. This shows that the developed Web server
can support the minimum bandwidth of video transmission
speed. At the lowest network traffic load, the maximum video
streaming speed that can be supported is 14 Kbps at 5

frames/sec. At other time to support video streaming, a much
lower rate or less than 5 frame/sec will have to be used.

Figure 4. Traffic analysis

This system gave good results for remote robot’s control
through its communication protocol, which requesting from 2
to 3 K bytes of data. However the feedback through video
demands larger bandwidth for applications in real time which
is about 64 Kbps (minimum) to make the graphic feedback,
through video on-line possible.

Latency is basically the delay or time consumed sending a
packet from a node and receiving a response from the recipient.
This value is also referred to as the round trip time (RTT).
Round trip time (RTT) is an important metric in determining
the behavior of a TCP connection.

Figure 5. Average RTT for every command

As mentioned above, it is important for video transmission
to have a constant transit time to reduce the amount of jitter.
Figure 5 illustrates that all commands has almost similar RTT
value. It is about 80 percent of the packets be delivered with a
delay range of 0.145 sec to 0.15 sec. This could give a good
quality to the image transmission via Internet.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 11, 2009 at 20:02 from IEEE Xplore. Restrictions apply.

International Conference on Intelligent and Advanced Systems 2007

~ 1329

V. DISCUSSION
Software design of embedded Web server required

consideration of certain parameters such as power consumption,
code efficiency in terms of execution time, code size and
memory utilization. Results on software and hardware
implementation of our embedded Web server are as follows:

A. Power consumption

In autonomous robot application, it is important to prolong
the battery life so that the robot can operate in longer time
without having to recharge the battery. Thus, a single
microprocessor board PC/104 was used for processing both
embedded Web server and robot application. This could reduce
the power consumption of the system. Previous projects used
separate microprocessor for robot system and Web server.
Therefore, the power consumption is much higher than using
single processor board.

B. Code efficiency in terms of execution time

This has not been analyzed in the current system. But the
measurement of Web server performance indicates this
indirectly.

C. Code size

From the file.exe file, the total number of code size can be
obtained. In designing embedded Web server, the main
constraint is to minimize the number of code size for TCP/IP
stack. In fact, the number of code size for this system
(embedded Web server and robot system) is 48 kilobytes. The
functional space of 1 Mbytes FLASH memory in AIM104 is
768 kilobytes because the ROM-DOS has used 256 kilobytes to
run its utilities software. Hence, there is 720 kilobytes remain
to run the extension of robot application software.

D. Memory utilization

The minimal RAM utilization is very important in
developing the small system which has limited memory
resources. The number of RAM usage was shown in file.map
linker file. In the DATA portion, it stated that the embedded
Web server needs only 7220 bytes of RAM to run.

Overall, the miniature Web server has been successfully
designed with optimizations of the factors mentioned above.
The software system of this project requires very minimal
resources in term of RAM and ROM, and this is suitable for
small embedded system to enable Web server functionality.

ACKNOWLEDGMENT

A number of people have assisted in this research endeavors
over the years and collectively contributed in making this paper,
especially Dr Rosbi and my colleagues.

REFERENCE
[1] Malinowski, A. and Wilamowski, B. Controlling Robots via Internet. 1st

International Conference on Information Technology in Mechatronics,
Istanbul, Turkey. 2001. 101-107.

[2] Ramos, J.G, Mirisola, G.B, Faria, G. and Bruciapaglia, H. Internet Based
Solutions in the Development and Operation of an Unmanned Robotic
Airship, Proceeding of the IEEE. Vol. 91. 2003.

[3] Goldberg, K., Gentner, S., Sutter, K., and Wiegley, J. The Mercury
Project: A Feasibility Study for Internet Robots. UC Berkeley and
University of Southern California. 1998.

[4] Hu, Hosheng, Yu, Lixiang, Tsui, P.W and Zhou, Quan. Internet-based
Robotic Systems for Teleoperation Department of Computer Science,
University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
International Journal of Assembly Automation, Vol. 21, No. 2. 1-10.

[5] Dunkles, A. Design and Implementing of the LwIP TCP/IP Stack. Master
Thesis. Swedish Institute of Computer Science. February 20, 2001.

[6] Christ, O. TCP/IP Enabled LegOS. Student research project. University
of Applied Sciences Hamburg; 2002.

[7] Shrikumar, H. IPic - a match head sized web-server. Web page. 2000-11-
24.Available: http://www-ccs.cs.umass.edu/~shri/iPic.html

[8] Bentham, J. TCP/IP Lean, Web Servers for Embedded Systems. 2nd Ed.
Lawrence,Kansas, USA.: CMP Books. 2002.

[9] Eady, F. Introducing the Packet Whacker. Part 1: Hitching a Ride on the
PICDEM.NET. Circuit Cellar Online: Feature Article. October 2001.

[10] Eady, F. Introducing the Packet Whacker. Part 2: Setting a Course with
Code. Circuit Cellar Online: Feature Article. November 2001.

[11] Microchip Technology Inc. PICDEM.net Internet/Ethernet
Demonstration Board DM163004. Chandler. 2001.

[12] Edinger, J., EDTP Electronics.Homepage
[13] Stevens, W. Richard. TCP/IP Illustrated, Volume 1: The protocols.

Indianapolis, IN: Addison-Wesley. 1994.
[14] Tanenbaum, Andrew S. Computer Networks. 3rd Ed. Vrije Universiteit,

Amsterdam, The Netherlands.: Prentice-Hall International, Inc. 1996.
[15] Ferwon A., Lu W., Optimizing for Video and Telerobotic Control on

Palm OS PDAs. Ryerson University, Toronto, ON Canada. Network-
Centric Applied Research Group.

[16] Sharpe, R. and Warnicke, E. Ethereal User’s Guide: V1.1 for Ethereal
0.8.19. : User’s Guide. 2001.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 11, 2009 at 20:02 from IEEE Xplore. Restrictions apply.

