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Abstract—This paper proposes an approach to determine a
pair of power-flow solutions associated with the voltage stability
of unbalanced three-phase networks. The approach is derived
from the observations of the multiple three-phase power-flow
solutions of a two-bus network. It is found that there are two pairs
of solutions at the load bus. The plot of the voltage magnitude of
each pair against the power demand at the load bus shows that
two possible �� curves can be constructed for each phase. Each
of the two curves is a combination of the two pairs of solutions.
One of these curves is associated with the voltage stability of
the system whereas the other is associated with the imbalance
of the three-phase network. Based on the above observations, a
constant impedance load model is utilized to calculate the solution
associated with the voltage stability of the study system. Then the
equivalent complex power load demand is used to calculate the
two pairs of solutions, i.e., the multiple three-phase power-flow
solutions. Simulation studies have been carried out for the multiple
solutions. The results show that there is a point which is directly
proportional to the imbalance in the power demand at the load
bus. This point is used to set a criterion to differentiate between
the two �� curves. Hence, the �� curve which is related to the
voltage stability can be determined without the assumption of the
linear load model at the start of the study.

Index Terms—Multiple solutions, neutral voltage, �� curves,
three-phase power-flow, voltage stability.

I. INTRODUCTION

V OLTAGE STABILITY is an important aspect of power
systems operation and control. The continuous growth

of loads with a limited reserve capacity and economical con-
straints force both transmission and distribution networks to
operate close to their voltage stability limits. Traditionally, the
voltage stability problem involves the calculation of the multiple
power-flow solutions at all possible loading conditions. This is
referred to as the continuation power-flow method [1]–[6].

In balanced three-phase or positive-sequence networks, the
voltage stability problem involves the calculation of a pair of
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power-flow solutions [1]–[3]. One of the two power-flow so-
lutions is the stable one whereas the other is the unstable one.
Recently, the continuation power flow method has been used to
study the voltage stability in the case of unbalanced three-phase
networks [4]–[6]. In the proposed methods, multiple solutions
which are associated with the imbalance in the system [7], [8]
are not considered, and hence only a pair of solutions is calcu-
lated at each phase as in case of balanced networks.

However, in unbalanced power systems, with zero-sequence
blocking transformers [7] or ungrounded loads [8], additional
pair of solutions exists which is related to the degree of the im-
balance of the system. Hence, it will be challenging to study the
voltage stability due to the existence of more than one pair of
the power-flow solutions. The multiple solutions phenomenon
requires further understanding and investigation to differentiate
between power-flow solutions related to the voltage stability and
those related to the system imbalance [4]–[8].

The aim of the current paper is to investigate the multiple so-
lutions phenomenon in case of unbalanced networks with zero-
sequence blocking transformer [4] or ungrounded load [5]. The
proposed study is performed for a two-bus network with an un-
grounded unbalanced load. The study shows that there are two
possible pairs of solutions for the terminal voltage at the load
bus. Consequently, there are four possible solutions at the load
bus. Two of these solutions are related to the degree of the im-
balance in the load whereas the other two solutions are related
to the classical voltage stability of the study system. Based on
the two pairs of solutions, two curves can be constructed for
each phase. Each curve is a combination of two solutions at
the load bus. One of the two curves is related to the voltage
stability of the system.

An important observation in course of the proposed study is
that there is a unique point on the locus of the terminal voltage
solutions at which two curves can be constructed. It has
also been observed that this point is a function of the degree of
imbalance of the load. Based on this observation, a criterion is
set to differentiate between the two curves. The criterion is
found out from the ratios among the complex power demands
of the three phases.

The paper is organized as follows. In Section II, the load
model and basic equations are presented. Determination of
the two curves from the multiple solutions is discussed in
Section III. A criterion to differentiate between the two
curves is presented in Section IV. In Section V, the application
to real problems is proposed. The conclusions are drawn in
Section VI.
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Fig. 1. Two-bus network. �� � ��� � , �� � ��� � ��� ��	�, �
 � ��� ��� ��	�� � ������ ��	�, and � � � � � � ����� � ������� ��	�.

II. LOAD MODEL, TEST SYSTEM, AND BASIC EQUATIONS

It is well known that the multiple solutions exist in case of
the constant complex power load model [8]. However, if a con-
stant impedance load model is assumed, a direct solution for the
voltage at the neutral point is possible.

The two-bus networks shown in Fig. 1(a)-(b) are for constant
impedance and constant complex power models respectively,
each of them represent a practical system. Hence, the voltage at
the neutral node in both the networks will be the same. The se-
ries impedance may represent the source, line, or Thévenin’s
equivalent of a network [9].

The calculation of the neutral voltage in each network is as
follows.

A. Constant Impedance Load Model

The following Kirchhoff’s current law equation can be ob-
tained at the neutral node:

(1)

Substituting the loads and source voltages yields

(2)

where , refers to nodes “a,” “b,” or “c,”
refers to nodes “A,” “B,” or “C,” is the load impedance, is
the line impedance, is the total impedance, and

. Rewriting (2), the voltage at the neutral node is calculated
as follows:

(3)

where the subscript “0” in refers to solution “0,” and

The solution “0” of the line current and the terminal
voltage can be calculated as follows:

(4)

(5)

B. Constant Complex Power Load Model

Equation (1) shown above is valid in case of this model also.
Therefore

(6)

where

(7)

Equation (6) can be reduced to the following equation:

(8)

where

and

Equation (8) can be solved directly as follows:

(9)

Equation (9) gives two solutions for the voltage at the neutral
node. Consequently, there are two solutions for the line currents
and terminal voltages, which can be calculated using (4)–(5).
Table I illustrates the results obtained from the solutions of the
models shown in Fig. 1.

III. MULTIPLE POWER-FLOW SOLUTIONS

The aforementioned models are used to calculate the profiles
of terminal voltages when the load impedance is varied from
short to open circuit states. The linear load model in Fig. 1(a)
will give a single solution which is referred to as solution “0” in
Table I. However, the nonlinear load model shown in Fig. 1(b)
gives two solutions of the terminal voltages, which are referred
to as solution “1” and solution “2,” respectively. One of these
two solutions, or a combination of them, should be identical to
solution “0.”

A. Procedure to Calculate the Multiple Solutions

The power-flow solutions shown in Table I are calculated ac-
cording to the process illustrated in Fig. 2. The solutions loci
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TABLE I
MULTIPLE POWER-FLOW SOLUTIONS DUE TO THE UNBALANCE IN THE NETWORKS SHOWN IN FIG. 1

Fig. 2. Procedure for multiple solutions.

can be obtained by varying the impedance from 0 to infinity.
This means that the complex power demand at phase “a” will
vary from zero to its maximum value. The impedances of phases
“b” and “c” are kept constant at their nominal values. The vari-
ation of the impedance will in turn cause variation in the
total complex power demand for the three-phases. This means

with varying will not guarantee similar changes in
the complex power demands , , and due to the nonlin-
earity in the system.

The solution “0” locus of the load terminal voltage, shown in
Fig. 3, is calculated from the linear impedance load model. This

Fig. 3. Locus of the solution “0” at the load terminal.

locus represents the curve of phase “a.” Similar results are
obtained for phases “b” and “c” as shown in Fig. 3.

B. Loci of Multiple Power-Flow Solutions

The loci of the terminal voltage solutions “1” and “2” in
Table I are shown in Fig. 4. The locus for each solution com-
prises of two solutions as shown in Fig. 4(a) and (b), respec-
tively, for the three-phase voltages. Consequently, in all, there
will be four possible solutions for the terminal voltages. Two
out of these solutions are related to the degree of the imbalance
in the system whereas the other two solutions are related to the
voltage stability problem.

C. Observations on the Loci of Multiple Power-Flow Solutions

The points to on the loci of the terminal voltage are
shown in Fig. 4 for the three-phases. Amongst these seven
points, there are three distinct points: , , and , and
they are marked for each phase. At these points, two of the
four possible power-flow solutions merge into one solution.
The three points represent the boundaries of the study system.
Therefore, they are classified as bifurcation points [10]–[12].

1) Points and : The points and represent the
nose curve of the traditional voltage stability limits. At these
points, the critical power , i.e., the maximum power demand,
is the same in case of the two solutions: solution “1” and solu-
tion “2,” with different critical voltage values. Consequently, for
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Fig. 4. Multiple three-phase power-flow solutions, locus of terminal voltage at the load bus.

each phase, the two critical voltages occur at the same maximum
power demand. The coordinates for the points and are as
follows:

(10a)

(10b)

where refers to the phases “a,” “b,” and “c.”
2) Point : The third point of importance is . At this

point, two of the four possible solutions merge into one. For ex-
ample, at the locus of phase “a,” the point in Fig. 4(a) is the
same as the point in Fig. 5(b). This is also valid for phases
“b” and “c.” The coordinates for the point are expressed as
follows:

(11)

where is the power at which the two different solutions, i.e.,
solution “1” and solution “2” merge into one.

As has been discussed in the previous section, the points
and exhibit the traditional stability limits, the third point

needs further investigation. The importance as well as the
derivation of the point will be discussed in detail in the fol-
lowing sections.

IV. THREE-PHASE CURVES

Based on the aforementioned distinct points, two independent
curves can be constructed as shown in Fig. 5. The two

curves, for the three phases, have two different noses, viz.: the
points and . In addition, the two curves should pass
through the point . The first curve has the path

, while the second curve has the path
as shown in Fig. 5.

A. Combined Solution 1: The Path

The tracing direction of the first curve, shown in Fig. 5(a)
for phase “a” and phase “b,” is clockwise similar to the classical
positive sequence network curve. Therefore, the upper part
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Fig. 5. �� curves of three-phase system “a.”

of this curve corresponds to the stable power-flow solutions and
the lower part corresponds to the unstable power-flow solutions.
On the other hand, the tracing direction of the curve, shown
in Fig. 5(a) for phase “c,” is anti-clockwise. In this case, the
lower part corresponds to the stable power-flow solutions and
the upper part corresponds to the unstable power-flow solutions
[4].

B. Combined Solution 2: The Path

Similar to the above case, Fig. 5(b) shows the combined so-
lution “2” which exhibits three-phase curves. The tracing
direction of the curves of phases “a” and “b” is clockwise
whereas it is anti-clockwise for the curve of phase “c.”

C. Comparison With the Solution “0”

The above discussion shows that it is difficult to decide which
of the two curves shown in Fig. 5 is related to the voltage
stability of the system. However, a comparison with the terminal
voltage locus calculated using the linear load model, solution

“0” given in Fig. 3, shows that it is identical to the combined
solution shown in Fig. 5(a). This shows that the solution “0”
locus can be obtained from the distinct points , , and
without the assumption of a linear model at the start of the study.

V. DISCRIMINATION BETWEEN THE TWO CURVES

As has been mentioned above, the knowledge of the point
is very important to construct the two curves from the mul-
tiple solutions shown in Fig. 4. The point has similar charac-
teristics to the points and . At the points and two so-
lutions merge into one, and they also differentiate between two
solutions: one solution is the stable one whereas the other is the
unstable one. Coming back to the point , also there are two
solutions merging into one, and at this point two curves can
be constructed. The similarity in the characteristics of point
with the points and shows that the point can be used
to set a criterion to choose the curve shown in Fig. 5 that
represents the solution “0” shown in Fig. 3. Consequently, the
point can be used to set the criterion to differentiate between
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Fig. 6. Locus of the magnitude voltage at the neutral node.

the two curves, i.e., to identify which curve is related to the
voltage stability study.

Fig. 6 shows the locus of the solution “0” of the neutral
voltage as well as that of solution “1” and “2.” The locus shows
the point at which the two solution “1” and “2” merges
into one, which is also the solution “0.” The point can be
calculated using (9) as follows:

(12)

Equation (12) is valid when the distinguished of (9) equals to
zero, i.e.,

(13)

It is difficult to solve (13) in a closed form since is a function
of both the load imbalance factors and and the terminal
voltage imbalance factors and . The variables , , , and
are complex numbers. Therefore, will be a function of eight
variables representing the real and imaginary parts of the system
unbalance factors.

For the two-bus network shown in Section II, a direct solution
can be obtained for (13), if the terminal voltages at the load bus
are assumed to be balanced, the factors and are equal to

and , respectively. As it has been mentioned
in Section II, the power factor of the load has been considered
to be constant. This implies that the imbalance factors and
are real numbers.

The solution of (13), given in the Appendix , gives four points
at which the two solutions merge into one. The solution is of
interest when both the imbalance factors and are equal to

Fig. 7. Multiple solutions criterion due to unbalanced three-phase load.

one. The other solutions are not visible. This is because the gen-
eration in power system is balanced and the imbalance usually
arises from the load or the asymmetrical elements in the net-
work. Consequently, the point in Fig. 6 corresponds to the
balanced load condition as follows:

(14)

The other three solutions are not shown in Fig. 6. In the
system under study, the load impedance is being changed from
open circuit to short circuit. This change in the impedance will
cause variation in the absorbed complex power from zero to a
maximum value at the load bus.

So far the point has been considered to be the point that
represents the balanced load; also, at this point, the solution “0”
shifts from one solution to the other. Consequently, the relation
between the factors and can directly determine which of the
two solutions is identical to the solution “0.” On the basis of the
above discussion, a criterion has been found for determining the
solution “0” from the multiple solutions as follows:

(15a)

(15b)

(15c)

This can be expressed by the factor as a criterion as follows:

(16a)

(16b)

where the factor refers to the solution identification number
The factor is plotted in Fig. 7 which shows that at point

the solution is shifted from one solution to the other according
to (16).

In summary, the significance of the study can be stated as
follows.

1) Two pairs of possible power-flow solutions exist in the case
of unbalanced networks with a zero sequence blocking
transformer or with an ungrounded unbalanced load.

2) The locus of each pair is not meaningful. However, a com-
bination can be constructed based on these pairs of solu-
tions to construct two curves. The key point to con-
struct the two curves is the point at which the two
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Fig. 8. Modified IEEE four-node feeder with an ungrounded load.

curves pass, i.e., the point . One of these curves must
represent the actual solution which is calculated from the
linear load model.

3) The point is a kind of a bifurcation point at which equi-
librium occurs [10]–[12]. Hence, the point is similar
to the nose of the curve in the voltage stability studies.
The nose of the curve differentiates between two solu-
tions. One solution is the stable solution whereas the other
is the unstable solution. In comparison, the point also
differentiates between two curves. One curve is
related to the voltage stability of the system whereas the
other is related to the imbalance of the system.

4) The solution which is related to the imbalance of the
system is probably not realistic and appears due to the
complex power load model assumption.

5) The point was derived for the two-bus network, to
demonstrate the aforementioned facts. Based on the as-
sumed model at the start of the study, a criterion has been
set to select the actual curve or that corresponding to
the network voltage stability curve.

VI. APPLICATION TO REAL PROBLEMS

A. Application to Radial Distribution Networks

A distribution network is characterized by its radial structure
and is usually fed from a single power source. For a distribution
network it is possible to perform the voltage stability analysis
based on the Thévenin’s equivalent two node model. For an un-
grounded load connected at node “ ,” the Thévenin’s equivalent
can be calculated as follows [9].

1) Disconnect the ungrounded load at node “ ” and then run
the conventional power-flow program to calculate the no load
voltage at node “ .”

2) Calculate the Thévenin’s impedance at node “ ” by
formulating the system impedance matrix or by any alternative
approach.

As the two-node network model is constructed similar to that
shown in Fig. 2(b), the curve corresponding to the voltage
stability can be determined according to the selection criterion
given by (15).

The IEEE four-node feeder, shown in Fig. 8, is used to test
out the proposed approach. The feeder comprises of two line
segments, step down transformer and unbalanced and
ungrounded load connected at bus “4.” The original feeder data
are modified such that the unbalance is only due to the unbal-
anced load.

The power-flow (6) at bus “4” is solved numerically ac-
cording to the power-flow procedure given in Appendix B. A
balanced load per phase at bus “4” is

Fig. 9. Power-flow solutions at bus “4” of the system shown in Fig. 8.

considered as the base case for the analysis. The load of phases
“a” and “c” are kept constant as the base value whereas the load
of phase “b” is changed in steps such that all possible loading
conditions are considered.

1) Selection of the Real Power-Flow Solution: The solution
of the terminal voltage at phase “a” is shown in Fig. 9 for all
possible loading conditions of phase “b.” There are two solu-
tions corresponding to the neutral voltages calculated from (9).
These two solutions represent two halves of the curves ob-
tained in Section IV. As the demand of phase “b” becomes close
to the demand of the other phases, i.e., phases “a” and “c,” the
convergence becomes difficult. This is mainly due to the charac-
teristics of the point as a bifurcation point. The conventional
power-flow methods must be modified in order to obtain reli-
able results near the bifurcation point [10].

Although the results shown in Fig. 9 may not be highly ac-
curate due to the simple power-flow adopted, as illustrated in
Appendix B, the results show that both solution “1” and solu-
tion “2” move towards the point as the demand of phase “b”
increases. Then the slope of each solution completely changes.
Hence a combination of the two solutions is required to find
out the actual behavior of the system with the increase in the
demand.

The selection criterion given by (15) shows that the voltage
profile consists of solution “2” when , solution “1” when

and the two solutions merge into one at the point .
Consequently, the real behavior of the terminal voltage with the
increase in the demand of phase “b” is determined by the path

as shown in Fig. 9.
2) Effect of the Balanced Load Base Case on the Stability

Limit of the Study System: When the balanced load base case
is changed, the positions of the points and also change.
This is demonstrated in Fig. 10. The figure shows both solution
“1” and solution “2” at different balanced load base cases. For
each balanced load base case the point is different and also
stability limit is different. The total maximum demand for
any of the tested cases in Fig. 10 can be determined as follows:

(17)

where and is varied from zero up to the
maximum value .

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 8, 2009 at 20:51 from IEEE Xplore.  Restrictions apply.



1256 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 23, NO. 3, AUGUST 2008

Fig. 10. Effect of the balanced load base case on the maximum power trans-
ferred to phase “b” of the load.

The total maximum power transferred through the
three-phase network can be estimated based on the results
shown in Fig. 10 and (17) as follows:

Case 1:
Case 2:
Case 3:
Case 4:

The above calculations show that the contribution of the
load among the phases affects the stability limit of three-phase
networks.

B. Application to Meshed Transmission Networks

Due to the existence of many generators in transmission
networks, the application of the equivalent Thévenin’s network
is not suitable for these cases and a full continuation power-flow
must be used. However, the existing three-phase power-flow
algorithms in the available literature cannot handle systems
with isolated neutral points or grounding problems [7]. The
conventional power-flow should be extended first to account
for neutral voltages. Hence, a suitable continuation power-flow
method can be applied [10]–[12]. Due to the complexity of
power system modeling requirements, this portion has been left
for future research.

VII. CONCLUSIONS

The paper has presented an approach which can be used to
differentiate between the multiple power-flow solutions. The ap-
proach is helpful to study the voltage stability problem for un-
balanced networks with multiple solutions. In this paper, two

identical two-bus networks with constant impedance and with
constant complex power load models have been used. The solu-
tion of the first network is used to determine the locus of the
curve related to the voltage stability analysis. The solution of the
second network leads to four possible solutions. It is found that
there is a unique point at which two out of the four solutions
merge into one and two different curves can be constructed.
This point is proportional to the degree of the imbalance of the
system. One of the curves is identical to the curve con-
structed from the constant impedance load model. Based on this
observation, a criterion has been set to differentiate between the
two curves. The criterion is found out from the ratios among
the complex power demands of the three phases.

APPENDIX A
DERIVATION OF THE SOLUTION AT THE POINT

The imbalance factors due to the source voltage are defined
as follows:

(A.1a)

(A.1b)

From (7)

(A.2a)

(A.2b)

(A.2c)

Substituting (A.1) in (A.2), the following equations are
obtained:

(A.3a)

(A.3b)

(A.3c)

The imbalance factors and are assumed to be real numbers.
This is because of the assumption of a constant power factor.
Then substituting (A.3) into (13) yields

(A.4)
Substituting (A.1) in (A.3) yields

(A.5a)

(A.5b)

Solution of (A.5) gives the following possible locations for the
point :

Solution 1:
Solution 2:
Solution 3:
Solution 4: .

APPENDIX B
POWER-FLOW SOLUTION OF TWO-BUS NETWORK WITH

AN UNGROUNDED STAR CONNECTED LOAD

The power-flow (6) at the load bus is solved numerically to
calculate both the terminal voltages as well as the neutral voltage
of the load. The iterative solution process involves the following
steps:
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1) Assume initial terminal voltage at the load bus,

2) Calculate the unbalance factors , , , and . Then,
calculate the two solutions of the neutral voltage according
to (8).

3) Calculate the line currents in terms of the specified load
for each phase “ ”

(B.1a)

(B.1b)

4) Calculate the updated terminal voltages that correspond to
both solution “1” and solution “2”

(B.2a)

(B.2b)

5) Calculate the power mismatches at the load bus as follows:

(B.3a)

(B.3b)

Check if the program has converged; if not, go to step 2.
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