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An Approach to Determine a Pair of Power-Flow
Solutions Related to the Voltage Stability
of Unbalanced Three-Phase Networks
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Abstract—This paper proposes an approach to determine a
pair of power-flow solutions associated with the voltage stability
of unbalanced three-phase networks. The approach is derived
from the observations of the multiple three-phase power-flow
solutions of a two-bus network. It is found that there are two pairs
of solutions at the load bus. The plot of the voltage magnitude of
each pair against the power demand at the load bus shows that
two possible PV curves can be constructed for each phase. Each
of the two curves is a combination of the two pairs of solutions.
One of these curves is associated with the voltage stability of
the system whereas the other is associated with the imbalance
of the three-phase network. Based on the above observations, a
constant impedance load model is utilized to calculate the solution
associated with the voltage stability of the study system. Then the
equivalent complex power load demand is used to calculate the
two pairs of solutions, i.e., the multiple three-phase power-flow
solutions. Simulation studies have been carried out for the multiple
solutions. The results show that there is a point which is directly
proportional to the imbalance in the power demand at the load
bus. This point is used to set a criterion to differentiate between
the two PV curves. Hence, the PV curve which is related to the
voltage stability can be determined without the assumption of the
linear load model at the start of the study.

Index Terms—Multiple solutions, neutral voltage, PV curves,
three-phase power-flow, voltage stability.

I. INTRODUCTION

systems operation and control. The continuous growth
of loads with a limited reserve capacity and economical con-
straints force both transmission and distribution networks to
operate close to their voltage stability limits. Traditionally, the
voltage stability problem involves the calculation of the multiple
power-flow solutions at all possible loading conditions. This is
referred to as the continuation power-flow method [1]-[6].
In balanced three-phase or positive-sequence networks, the
voltage stability problem involves the calculation of a pair of

V OLTAGE STABILITY is an important aspect of power
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power-flow solutions [1]-[3]. One of the two power-flow so-
lutions is the stable one whereas the other is the unstable one.
Recently, the continuation power flow method has been used to
study the voltage stability in the case of unbalanced three-phase
networks [4]-[6]. In the proposed methods, multiple solutions
which are associated with the imbalance in the system [7], [8]
are not considered, and hence only a pair of solutions is calcu-
lated at each phase as in case of balanced networks.

However, in unbalanced power systems, with zero-sequence
blocking transformers [7] or ungrounded loads [8], additional
pair of solutions exists which is related to the degree of the im-
balance of the system. Hence, it will be challenging to study the
voltage stability due to the existence of more than one pair of
the power-flow solutions. The multiple solutions phenomenon
requires further understanding and investigation to differentiate
between power-flow solutions related to the voltage stability and
those related to the system imbalance [4]-[8].

The aim of the current paper is to investigate the multiple so-
lutions phenomenon in case of unbalanced networks with zero-
sequence blocking transformer [4] or ungrounded load [S5]. The
proposed study is performed for a two-bus network with an un-
grounded unbalanced load. The study shows that there are two
possible pairs of solutions for the terminal voltage at the load
bus. Consequently, there are four possible solutions at the load
bus. Two of these solutions are related to the degree of the im-
balance in the load whereas the other two solutions are related
to the classical voltage stability of the study system. Based on
the two pairs of solutions, two PV curves can be constructed for
each phase. Each PV curve is a combination of two solutions at
the load bus. One of the two PV curves is related to the voltage
stability of the system.

An important observation in course of the proposed study is
that there is a unique point on the locus of the terminal voltage
solutions at which two PV curves can be constructed. It has
also been observed that this point is a function of the degree of
imbalance of the load. Based on this observation, a criterion is
set to differentiate between the two PV curves. The criterion is
found out from the ratios among the complex power demands
of the three phases.

The paper is organized as follows. In Section II, the load
model and basic equations are presented. Determination of
the two PV curves from the multiple solutions is discussed in
Section III. A criterion to differentiate between the two PV
curves is presented in Section IV. In Section V, the application
to real problems is proposed. The conclusions are drawn in
Section VL.
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a) Constant impedance load model in a two bus network
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b) Complex power load model in a two bus network

Fig. 1. Two-bus network. Ea = 1.0£0°,Eb = 1.0£ — 120° p.u., Ec = 1.0£120° p.u.Z;, = j0.004d p.u.,and Z, = Z, = Z. = 0.0467 + 70.0204 p.u..

II. LOAD MODEL, TEST SYSTEM, AND BASIC EQUATIONS

It is well known that the multiple solutions exist in case of
the constant complex power load model [8]. However, if a con-
stant impedance load model is assumed, a direct solution for the
voltage at the neutral point is possible.

The two-bus networks shown in Fig. 1(a)-(b) are for constant
impedance and constant complex power models respectively,
each of them represent a practical system. Hence, the voltage at
the neutral node in both the networks will be the same. The se-
ries impedance 7, may represent the source, line, or Thévenin’s
equivalent of a network [9].

The calculation of the neutral voltage in each network is as
follows.

A. Constant Impedance Load Model

The following Kirchhoff’s current law equation can be ob-
tained at the neutral node:

I, +1Iy+1.=0. (1)
Substituting the loads and source voltages yields
E, -V a’E, -V, al, —V;
, N N N _o. )
Za ZB Zc

where Zx = Z), + 7, k refers to nodes “a,” “b,” or “c,” K
refers to nodes “A,” “B,” or “C,” Zj, is the load impedance, X is
the line impedance, Z is the total impedance, and ¢ = 1.0/ —
120°. Rewriting (2), the voltage at the neutral node is calculated
as follows:

aa—l—a2 + no
Vo = <#> E,. 3)

o+ [+ po
where the subscript “0” in V¢ refers to solution “0,” and

7y Zco

M:Z_A’U_Z_A'

The solution “0” of the line current I;o and the terminal
voltage Vi can be calculated as follows:

Er — Vno
Iyo = 4
k0 7 “4)
Vio = Er — Ino 21 )

B. Constant Complex Power Load Model

Equation (1) shown above is valid in case of this model also.
Therefore

Sa S Se
+ b4 =0 (6)
Vao—=VN  Veo—VN Veo—Vn
where
Sk = [Trol* Z. @
Equation (6) can be reduced to the following equation:
(X 2+M W) N =0 ®)
VaO VaO B
where
L=1+a+p
M=-(+wtataw+f+037)
N =vyw + aw + By
o= ﬂ—i _ Y0 ndw = Yo
A " Vo'
Equation (8) can be solved directly as follows:
—M +/M? —4LN
VN2 = < 5T ) Vao- 9)

Equation (9) gives two solutions for the voltage at the neutral
node. Consequently, there are two solutions for the line currents
and terminal voltages, which can be calculated using (4)—(5).
Table I illustrates the results obtained from the solutions of the
models shown in Fig. 1.

III. MULTIPLE POWER-FLOW SOLUTIONS

The aforementioned models are used to calculate the profiles
of terminal voltages when the load impedance is varied from
short to open circuit states. The linear load model in Fig. 1(a)
will give a single solution which is referred to as solution “0” in
Table I. However, the nonlinear load model shown in Fig. 1(b)
gives two solutions of the terminal voltages, which are referred
to as solution “1” and solution “2,” respectively. One of these
two solutions, or a combination of them, should be identical to
solution “0.”

A. Procedure to Calculate the Multiple Solutions

The power-flow solutions shown in Table I are calculated ac-
cording to the process illustrated in Fig. 2. The solutions loci
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TABLE I
MULTIPLE POWER-FLOW SOLUTIONS DUE TO THE UNBALANCE IN THE NETWORKS SHOWN IN FIG. 1

. . Constant impedance load model Constant complex power load model
Serial Variable - - -
Result of solution 0 Result of solution 1 Result of solution 2
2 2 2
ac+a’ U+ uoc ~M+M* —4LN ~M—NM?-4LN
Neutral voltage Vy Vo = aota HrHo E, | Vyi = Vo | Vo = V.o
o+ U+ uo 2L 2L
E V * *
— S
Line current Iy Lo =% Iy = Sik Iy =[ k ]
K Vio =V Vo =Va
Terminal . . .
voltage Vi Vio = Ex = jIxo X1, Via = Ey = JX 1 Iy Via = Ey = JjX 111y

Where £ refers to phases 'a', 'b', or 'c', K refers to phases 'A, 'B', or 'C'. The superscript '* 'refers to the conjugate of a complex number

Given Base Case
(Ep.Ep.E,).(Load: Z, = Z, = Z, = Z).and Z,,,

v
Start with phase 'a’ short circuit: (Z(, = Z/] 05)
Set the ratio or the increment » = 1.0005

v

Calculate true solution: VNO

v

Calculate true currents and voltages using (4-5)

v

Calculate complex power using (7)

v

Calculate the multiple solutions using Table I

v

=rZg d

A4

new
Za

Is phase 'a' open circuit?
(Za/Z >2x104)

Print Multiple Solutions

Fig. 2. Procedure for multiple solutions.

can be obtained by varying the impedance Z,, from O to infinity.
This means that the complex power demand at phase “a” will
vary from zero to its maximum value. The impedances of phases
“b” and “c” are kept constant at their nominal values. The vari-
ation of the impedance Z, will in turn cause variation in the
total complex power demand for the three-phases. This means
Zy = Z. with varying Z, will not guarantee similar changes in
the complex power demands S, S, and S. due to the nonlin-
earity in the system.

The solution “0” locus of the load terminal voltage, shown in
Fig. 3, is calculated from the linear impedance load model. This

1 -

0.98 -

p.u

>, 096 + -

J phase 0
o
©
S

092

09

Fig. 3. Locus of the solution “0” at the load terminal.

locus represents the PV curve of phase “a.” Similar results are
obtained for phases “b” and “c” as shown in Fig. 3.

B. Loci of Multiple Power-Flow Solutions

The loci of the terminal voltage solutions “1” and “2” in
Table I are shown in Fig. 4. The locus for each solution com-
prises of two solutions as shown in Fig. 4(a) and (b), respec-
tively, for the three-phase voltages. Consequently, in all, there
will be four possible solutions for the terminal voltages. Two
out of these solutions are related to the degree of the imbalance
in the system whereas the other two solutions are related to the
voltage stability problem.

C. Observations on the Loci of Multiple Power-Flow Solutions

The points x; to x7 on the loci of the terminal voltage are
shown in Fig. 4 for the three-phases. Amongst these seven
points, there are three distinct points: x2, z3, and zg, and
they are marked for each phase. At these points, two of the
four possible power-flow solutions merge into one solution.
The three points represent the boundaries of the study system.
Therefore, they are classified as bifurcation points [10]-[12].

1) Points x3 and xg: The points x3 and xg represent the
nose curve of the traditional voltage stability limits. At these
points, the critical power P,,., i.e., the maximum power demand,
is the same in case of the two solutions: solution “1” and solu-
tion “2,” with different critical voltage values. Consequently, for
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Ve.p.u.

P pu

a) Solution 1, corresponds to Vi

b) Solution 2, Corresponds to Va»

Fig. 4. Multiple three-phase power-flow solutions, locus of terminal voltage at the load bus.

each phase, the two critical voltages occur at the same maximum
power demand. The coordinates for the points x5 and z¢ are as
follows:

T3k :(Vk = Vk_CT17Pk = Pcr)
Tk (Vi = Vi_era, P = Pey).

(10a)
(10b)

where k refers to the phases “a,” “b,” and “c.”

2) Point xo: The third point of importance is zs. At this
point, two of the four possible solutions merge into one. For ex-
ample, at the locus of phase “a,” the point 2, in Fig. 4(a) is the
same as the point s, in Fig. 5(b). This is also valid for phases
“b” and “c.” The coordinates for the point x5 are expressed as
follows:

zog : (Ve = Vio, P = P) (11)

where P, is the power at which the two different solutions, i.e.,
solution “1” and solution “2” merge into one.

As has been discussed in the previous section, the points z3
and z¢ exhibit the traditional stability limits, the third point
w9 needs further investigation. The importance as well as the
derivation of the point 22 will be discussed in detail in the fol-
lowing sections.

IV. THREE-PHASE PV CURVES

Based on the aforementioned distinct points, two independent
PV curves can be constructed as shown in Fig. 5. The two PV
curves, for the three phases, have two different noses, viz.: the
points =3 and x¢. In addition, the two PV curves should pass
through the point x5. The first PV curve has the path z; —
To — Ty — T4, While the second PV curve has the path z; —
Te¢ — X9 — x7 as shown in Fig. 5.

A. Combined Solution 1: The Path x1 — x93 — 13 — X4

The tracing direction of the first PV curve, shown in Fig. 5(a)
for phase “a” and phase “b,” is clockwise similar to the classical
positive sequence network PV curve. Therefore, the upper part
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Vi, p.u.
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a) Combined Solution 1, Path: x;— x;—>x3—>x4

Fig. 5. PV curves of three-phase system “a.”

of this curve corresponds to the stable power-flow solutions and
the lower part corresponds to the unstable power-flow solutions.
On the other hand, the tracing direction of the PV curve, shown
in Fig. 5(a) for phase “c,” is anti-clockwise. In this case, the
lower part corresponds to the stable power-flow solutions and
the upper part corresponds to the unstable power-flow solutions

(4].

B. Combined Solution 2: The Path x5 — ¢ — T — T7

Similar to the above case, Fig. 5(b) shows the combined so-
lution “2” which exhibits three-phase PV curves. The tracing
direction of the PV curves of phases “a” and “b” is clockwise
whereas it is anti-clockwise for the PV curve of phase “c.”

C. Comparison With the Solution “0”

The above discussion shows that it is difficult to decide which
of the two PV curves shown in Fig. 5 is related to the voltage
stability of the system. However, a comparison with the terminal
voltage locus calculated using the linear load model, solution

1253

Pa pu

b) Combined Solution 2, Path: x5— x6— x2—>x7

“0” given in Fig. 3, shows that it is identical to the combined
solution shown in Fig. 5(a). This shows that the solution “0”
locus can be obtained from the distinct points z, x3, and xg
without the assumption of a linear model at the start of the study.

V. DISCRIMINATION BETWEEN THE TWO PV CURVES

As has been mentioned above, the knowledge of the point x5
is very important to construct the two PV curves from the mul-
tiple solutions shown in Fig. 4. The point x5 has similar charac-
teristics to the points z3 and xg. At the points z3 and x4 two so-
lutions merge into one, and they also differentiate between two
solutions: one solution is the stable one whereas the other is the
unstable one. Coming back to the point 5, also there are two
solutions merging into one, and at this point two PV curves can
be constructed. The similarity in the characteristics of point 2
with the points z3 and xg shows that the point x5 can be used
to set a criterion to choose the PV curve shown in Fig. 5 that
represents the solution “0” shown in Fig. 3. Consequently, the
point x5 can be used to set the criterion to differentiate between
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Fig. 6. Locus of the magnitude voltage at the neutral node.

the two PV curves, i.e., to identify which curve is related to the
voltage stability study.

Fig. 6 shows the locus of the solution “0” of the neutral
voltage as well as that of solution “1” and “2.” The locus shows
the point x> at which the two solution “1” and “2” merges
into one, which is also the solution “0.” The point x> can be
calculated using (9) as follows:

-M

Vi =V = 5T

Vao. (12)
Equation (12) is valid when the distinguished of (9) equals to

Zero, i.€.,

.f(a7/67w77) = M2 —4LN =0.

Itis difficult to solve (13) in a closed form since f is a function
of both the load imbalance factors « and (3 and the terminal
voltage imbalance factors w and y. The variables «, 3, w, and ~y
are complex numbers. Therefore, f will be a function of eight
variables representing the real and imaginary parts of the system
unbalance factors.

For the two-bus network shown in Section II, a direct solution
can be obtained for (13), if the terminal voltages at the load bus
are assumed to be balanced, the factors w and ~ are equal to
1.0/240° and 1.0£120°, respectively. As it has been mentioned
in Section II, the power factor of the load has been considered
to be constant. This implies that the imbalance factors « and 3
are real numbers.

The solution of (13), given in the Appendix , gives four points
at which the two solutions merge into one. The solution is of
interest when both the imbalance factors a and (3 are equal to

13)

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 23, NO. 3, AUGUST 2008

| | !
H H : Locus of x,
Poesp : i
20 prestessepenesnnasinannassrfssnenna
: ] ]
H H
| 1 1
' ' '
(O S L — LR S I
= | 1 |
1 H :
.2 : : !
j a>f |
D 10 [eeeecesisoseces *o«oc-o—oo-b—ooc-o—oo-o—qo o Py----
.= ' : :
@) ' : :
05 femcmemamas LS Boiieees LI
1 1 '
' ' :
| : |
' : :
0 4 8 12
P, p.u

Fig. 7. Multiple solutions criterion due to unbalanced three-phase load.

one. The other solutions are not visible. This is because the gen-
eration in power system is balanced and the imbalance usually
arises from the load or the asymmetrical elements in the net-
work. Consequently, the point a9, in Fig. 6 corresponds to the
balanced load condition as follows:

a=p3=1.0. (14)

The other three solutions are not shown in Fig. 6. In the
system under study, the load impedance is being changed from
open circuit to short circuit. This change in the impedance will
cause variation in the absorbed complex power from zero to a
maximum value at the load bus.

So far the point 2 has been considered to be the point that
represents the balanced load; also, at this point, the solution “0”
shifts from one solution to the other. Consequently, the relation
between the factors o and 3 can directly determine which of the
two solutions is identical to the solution “0.” On the basis of the
above discussion, a criterion has been found for determining the
solution “0” from the multiple solutions as follows:

a > Solution 1is the same as solution0  (15a)
a < Solution 2is the same as solution 0 (15b)
a = Solution 1 = solution 2. (15¢)

This can be expressed by the factor C as a criterion as follows:

If solution 1 is the same as solution 0 set C =1.0
(16a)

If solution 2 is the same as solution 0 set C =2.0.
(16b)

where the factor C refers to the solution identification number

The factor C'is plotted in Fig. 7 which shows that at point z,
the solution is shifted from one solution to the other according
to (16).

In summary, the significance of the study can be stated as

follows.

1) Two pairs of possible power-flow solutions exist in the case
of unbalanced networks with a zero sequence blocking
transformer or with an ungrounded unbalanced load.

2) The locus of each pair is not meaningful. However, a com-
bination can be constructed based on these pairs of solu-
tions to construct two PV curves. The key point to con-
struct the two PV curves is the point at which the two PV
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6.0 MVA, 12.47/4.16 kV Ungrounded Y
Z=1.0%+j6.0% $=1200+7900 kVA

VA base= 100 kVA

Fig. 8. Modified IEEE four-node feeder with an ungrounded load.

curves pass, i.e., the point z5. One of these curves must
represent the actual solution which is calculated from the
linear load model.

3) The point x5 is a kind of a bifurcation point at which equi-
librium occurs [10]-[12]. Hence, the point sy, is similar
to the nose of the PV curve in the voltage stability studies.
The nose of the PV curve differentiates between two solu-
tions. One solution is the stable solution whereas the other
is the unstable solution. In comparison, the point z2 also
differentiates between two PV curves. One PV curve is
related to the voltage stability of the system whereas the
other is related to the imbalance of the system.

4) The solution which is related to the imbalance of the
system is probably not realistic and appears due to the
complex power load model assumption.

5) The point 2 was derived for the two-bus network, to
demonstrate the aforementioned facts. Based on the as-
sumed model at the start of the study, a criterion has been
set to select the actual PV curve or that corresponding to
the network voltage stability curve.

VI. APPLICATION TO REAL PROBLEMS

A. Application to Radial Distribution Networks

A distribution network is characterized by its radial structure
and is usually fed from a single power source. For a distribution
network it is possible to perform the voltage stability analysis
based on the Thévenin’s equivalent two node model. For an un-
grounded load connected at node “z,” the Thévenin’s equivalent
can be calculated as follows [9].

1) Disconnect the ungrounded load at node “2”” and then run
the conventional power-flow program to calculate the no load

[T3EL]

voltage at node ““i.

2) Calculate the Thévenin’s impedance at node “s” by
formulating the system impedance matrix or by any alternative
approach.

As the two-node network model is constructed similar to that
shown in Fig. 2(b), the PV curve corresponding to the voltage
stability can be determined according to the selection criterion
given by (15).

The IEEE four-node feeder, shown in Fig. 8, is used to test
out the proposed approach. The feeder comprises of two line
segments, Y-g/D step down transformer and unbalanced and
ungrounded load connected at bus “4.” The original feeder data
are modified such that the unbalance is only due to the unbal-
anced load.

The power-flow (6) at bus “4” is solved numerically ac-
cording to the power-flow procedure given in Appendix B. A
balanced load S = 1200 + 7 900 kVA per phase at bus “4” is

1255

L S . G T r
xia R I T
‘ | ————— Splution 1 |
09 1_,_.9-7:/7 77777777 ~ :.:.Z.Z.TE..T..T..Tf Sgl;tiiZ;QT
5 1
o 08+~ B RN R
N a>p a<pP
07 +----- R D TR
| Po=1200kW
06 l
0 10 20
Pb, p.u

Fig. 9. Power-flow solutions at bus “4” of the system shown in Fig. 8.

considered as the base case for the analysis. The load of phases
“a” and “c” are kept constant as the base value whereas the load
of phase “b” is changed in steps such that all possible loading
conditions are considered.

1) Selection of the Real Power-Flow Solution: The solution
of the terminal voltage at phase “a” is shown in Fig. 9 for all
possible loading conditions of phase “b.” There are two solu-
tions corresponding to the neutral voltages calculated from (9).
These two solutions represent two halves of the PV curves ob-
tained in Section I'V. As the demand of phase “b” becomes close
to the demand of the other phases, i.e., phases “a” and “c,” the
convergence becomes difficult. This is mainly due to the charac-
teristics of the point z» as a bifurcation point. The conventional
power-flow methods must be modified in order to obtain reli-
able results near the bifurcation point z2 [10].

Although the results shown in Fig. 9 may not be highly ac-
curate due to the simple power-flow adopted, as illustrated in
Appendix B, the results show that both solution “1” and solu-
tion “2” move towards the point x5 as the demand of phase “b”
increases. Then the slope of each solution completely changes.
Hence a combination of the two solutions is required to find
out the actual behavior of the system with the increase in the
demand.

The selection criterion given by (15) shows that the voltage
profile consists of solution “2” when o > 3, solution “1” when
a < (3 and the two solutions merge into one at the point x5.
Consequently, the real behavior of the terminal voltage with the
increase in the demand of phase “b” is determined by the path
r1 — X9 — x3 as shown in Fig. 9.

2) Effect of the Balanced Load Base Case on the Stability
Limit of the Study System: When the balanced load base case
is changed, the positions of the points x5 and z3 also change.
This is demonstrated in Fig. 10. The figure shows both solution
“1” and solution ‘“2” at different balanced load base cases. For
each balanced load base case the point z9 is different and also
stability limit x5 is different. The total maximum demand for
any of the tested cases in Fig. 10 can be determined as follows:

Ppax=FP,+ P+ FP.=2P+ P,,. a7

where P, = P, = P and P, is varied from zero up to the
maximum value P.,.
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Fig. 10. Effect of the balanced load base case on the maximum power trans-
ferred to phase “b” of the load.

The total maximum power transferred through the
three-phase network can be estimated based on the results
shown in Fig. 10 and (17) as follows:

Case 1: Ppax = 2 x 400 4 5800 = 6600 kW
Case 2: Ppax = 2 x 800 4 5500 = 7100 kW
Case 3: Pax = 2 x 1200 4+ 4900 = 7300 kW
Case 4: Prax = 2 x 1600 4 3300 = 6500 kW

The above calculations show that the contribution of the
load among the phases affects the stability limit of three-phase
networks.

B. Application to Meshed Transmission Networks

Due to the existence of many generators in transmission
networks, the application of the equivalent Thévenin’s network
is not suitable for these cases and a full continuation power-flow
must be used. However, the existing three-phase power-flow
algorithms in the available literature cannot handle systems
with isolated neutral points or grounding problems [7]. The
conventional power-flow should be extended first to account
for neutral voltages. Hence, a suitable continuation power-flow
method can be applied [10]-[12]. Due to the complexity of
power system modeling requirements, this portion has been left
for future research.

VII. CONCLUSIONS

The paper has presented an approach which can be used to
differentiate between the multiple power-flow solutions. The ap-
proach is helpful to study the voltage stability problem for un-
balanced networks with multiple solutions. In this paper, two
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identical two-bus networks with constant impedance and with
constant complex power load models have been used. The solu-
tion of the first network is used to determine the locus of the PV
curve related to the voltage stability analysis. The solution of the
second network leads to four possible solutions. It is found that
there is a unique point at which two out of the four solutions
merge into one and two different PV curves can be constructed.
This point is proportional to the degree of the imbalance of the
system. One of the PV curves is identical to the PV curve con-
structed from the constant impedance load model. Based on this
observation, a criterion has been set to differentiate between the
two PV curves. The criterion is found out from the ratios among
the complex power demands of the three phases.

APPENDIX A
DERIVATION OF THE SOLUTION AT THE POINT x5

The imbalance factors due to the source voltage are defined
as follows:

1 3
w=ua’=1.0/240° = -5 —jg (A.la)

1 3
'y:a:1.0£120°:—§+j§. (A.1b)

From (7)

L=1+a+p (A.2a)
M=—-(nw+wt+a+aw+ B+ 5y) (A.2b)
N =vw + aw + (7. (A.2¢)

Substituting (A.1) in (A.2), the following equations are
obtained:

L=1+a+p (A.32)
M=1+da+aB (A.3b)
N =1+ aa + d’p. (A.3¢)

The imbalance factors o and 3 are assumed to be real numbers.
This is because of the assumption of a constant power factor.
Then substituting (A.3) into (13) yields

f= (1+a2a+aﬂ)2—4(l+a+ﬂ) (1+aa+a2[3).
(A4)
Substituting (A.1) in (A.3) yields
Re(f) =a®+ 32 +4af —2a —23—-2=0 (ASa)
Im(f)= —a?+ 6% —-2a+28=0. (A.5b)

Solution of (A.5) gives the following possible locations for the

point xy:
Solution 1: . = 1 =1
Solution 2: = 1 8 =-3
Solution 3: « = —3 f=1
Solution 4: « = —=1/3 = -1/3.
APPENDIX B

POWER-FLOW SOLUTION OF TwO-BUS NETWORK WITH
AN UNGROUNDED STAR CONNECTED LOAD

The power-flow (6) at the load bus is solved numerically to
calculate both the terminal voltages as well as the neutral voltage
of the load. The iterative solution process involves the following
steps:
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1) Assume initial terminal voltage at the load bus,

2) Calculate the unbalance factors «, 3, w, and ~. Then,
calculate the two solutions of the neutral voltage according
to (8).

3) Calculate the line currents in terms of the specified load
for each phase “k”
— Sa’
Vii — Vn
Via — Vo

Iia (B.1a)

Tio (B.1b)

4) Calculate the updated terminal voltages that correspond to
both solution “1” and solution “2”

Vit = Egth — Zii v dra
Viie = Egth — ZiktnIro-

(B.2a)
(B.2b)

5) Calculate the power mismatches at the load bus as follows:

ASk1 =Sk — (Vix — V) (Ii)™
ASk2 =Sk — (Via — Viva) (I2)" .

(B.3a)
(B.3b)

Check if the program has converged; if not, go to step 2.
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