
Transient Stability Program Using
Component-Based Software Engineering

 Hadi Suyono Khalid Mohamed Nor Sallehhudin Yusof
Department of Electrical Engineering, Department of Electrical Power Engineering Advance Power Solution Sdn. Bhd
 University of Malaya University of Technology Malaysia (UTM) Kuala Lumpur, Malaysia
 Kuala Lumpur, Malaysia Johor, Malaysia salleh@pc.jaring.my
 hadis@um.edu.my khalidmn@utm.my

Abstract—This paper presents a development of transient
stability analysis (TSA) software by applying component-based
software engineering (CBSE). The TSA application needs
software components to be integrated such as linear solver
components, load flow analysis (LFA) components, and TSA
components. The TSA components are built independently from
the LFA and other components. Therefore, the TSA components
can be integrated with any load flow package. The power system
devices are represented as entity objects and then encapsulated in
an independent class hierarchy. In this development, the same
object-oriented power system model (OO-PSM) that has been
used in the LFA components is reused for developing the TSA
components, but it needs to be extended to model new devices
such as synchronous machines, exciters, speed-governors,
turbines, PSS, and SVC system. The performance of the
proposed TSA software was tested with large systems and
compared with structural programming. The results exhibit that
there is no much difference in the execution time regarding to the
quality of the component-based TSA application such as saving
in the development resources.

I. INTRODUCTION
Component-based Software Engineering is the

methodology that builds a software application by assembling
many software components. A software component is built and
tested before integration into an application. A component has
a specific functionality since it is independent and it can be
replaced with other component has the same role and interface.
On the other hand, the component sometimes needs to be
modified or updated because of maintenance reason.
Modifying and updating a component can be done without
affecting other components, since it is supposed that both the
role and the interface are not changed. The software component
can be implemented either structural design or object-oriented
design (OOD). The OOD offers some a great reusability that
can be found in its features such as inheritance, association,
polymorphism, and encapsulation. In the OOD, a class is
defined as user-defined data abstraction and methods for an
object. By using objects and classes, an application can be
divided into small, more manageable pieces that are more
closely matched to the real structures and behaviors of existing
systems.

The OOD and object-oriented programming (OOP) have
been widely used in many power system applications,
including simulation for LFA and fault analysis [2]-[3],
dynamic stability analysis [4], power system education purpose

[5], and for graphical user interface [6]. Nevertheless, most of
the previous designs are only based on the inheritance
approach. The design has also coupled the solver algorithm
inside the class hierarchy. Thus, the solver has class
dependencies or class deep dependencies that make it difficult
to be updated, extended, maintained, or replaced. This
drawback can be eliminated by separating the solver algorithm
from the object oriented power system model (OO-PSM) that
presents the devices of an electrical network. The paper
proposes a new design of the OO-PSM that will be developed
by utilizing inheritance, association, and a combination of the
inheritance and association approaches, whereas the solution
algorithm is built as software components. The application is
developed by integrating both the load flow and transient
stability software components. Numerical results are provided
in the end of the paper to test the performance of the proposed
component-based TSA application.

II. TRANSIENT STABILITY PROBLEM

A. Transient Stability Equation
The transient stability analysis is used to evaluate the

ability of an electric power system to regain the state of the
operating equilibrium after being subjected to a physical
disturbance [7]. The stability performance of the power system
depends on the type of disturbance and the initial operational
condition. When a large disturbance subject to power system,
the voltages will drop, and if this situation occurs for a long
time, the synchronization will be lost. It may even lead to the
power system blackout. Examples of large disturbances are
short circuit fault, loss of loads, and loss of generations.

Generally, the transient stability of power system is highly
non-linear. It can be mathematically expressed as:

),(Vxfx =& (1)
where, x is the state variable, f is the non-linear vector function,
and V is the bus voltage vector. Because of the state variable
depends on the voltage, it will be updated for along study. On
the other hand, the new voltage vector can be obtained by
solving the network equation that is formulated as follows:

),(VxIYV = (2)
where I is the vector of injected current, and Y is the complex
admittance matrix.

B. Power System Model
Since many devices are connected to the power system,

they should be mathematically modeled to run a power system

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 8, 2009 at 20:05 from IEEE Xplore. Restrictions apply.

analysis. A synchronous machine is represented with a model
that depends on the damper in two d- and q-axis considered.
The damper is indicated by the number of winding. There are
six machine models, ranging from classical to complete models
[8] [9].

A load in the power system analysis is commonly modeled
as a static power load that is represented by a MVA rating at a
particular bus. The static load can be represented as a function
of voltage magnitude and frequency [10].

An excitation system is used to control the generator
terminal voltage via the adjustment of generator field current.
There are three types of excitation system, depending on the
basis of the excitation power source; DC, AC, and ST
excitation system [11].

Power system stabilizer is an element that provides an
additional input to the voltage regulator to improve the
dynamic performance of the power system. A speed governor
and turbine models are used to control the mechanical torque
and mechanical power variables during the dynamic
simulations [12].

A Static VAR compensator (SVC) is equipped to maintain
voltage levels, and to improve the power with the injection of a
controlled capacitive or inductive current with a specific
variable [13]. The SVC is widely used in the transmission
system.

Usually all machines and their controllers are involved in
the TSA. They are represented from a composition of block
diagrams that are given in the frequency domain. Since step-
by-step solution is applied, the equation in the frequency
domain is converted to the differential equation in the time
domain. Furthermore, the numerical integration method can be
implemented to solve the differential equation.

III. NUMERICAL INTEGRATION METHOD
The numerical integration method has two techniques;

explicit and implicit. Modified Euler method is applied as an
explicit technique, whereas the Trapezoidal method is used as
an implicit technique. The Modified Euler method needs two
equations to solve equation (1), namely initial and final
estimate equations. The initial estimate equation is given by:

),(f)()()()(ooon Vxtxx ∆+= (3)
where (n) denotes the current estimate, (o) denotes the previous
value, and ∆t indicates the integration step. Since the voltage V
also depends on the current I, which in turn is the function of
the state vector, the new estimate for voltage is:

),()()()(onn VxIYV = (4)
Then, the final value of x is solved by:

[]),(f),(f
2
1)()()()()()(nnooof VxVxtxx +∆+=

(5)

and the final voltage can be updated by using:
),()()()(nff VxIYV = (6)

where (f) denotes the final value.
The Trapezoidal method is the most popular choice for

TSA study. The implementation of this method in equation (1)
produces an algebraic equation which is expressed as:

[]),(),(
2
1

111 nnnnnn VxfVxftxx +∆+= −−−

(7)

and the network equation is derived from equation (2) is given
as follows:

),(nnn VxIYV = (8)
where n is the current value and n-1 indicates the previous
value.

IV. OBJECT-ORIENTED AND COMPONENTS DESIGN IN THE
TRANSIENT STABILITY ANALYSIS

The objects in the TSA design are divided into three major
groups i.e. entity objects, control objects, and interface objects.
The power system devices are modeled as entity objects. They
are represented as the OO-PSM, whereas the solution
algorithm or analysis objects are modeled as control objects.
They are created as software components. Finally, the interface
objects include the objects that handle the communication
between the analysis objects and their clients.

A. Software Architecture of the TSA
The software architecture is defined as the structure of the

system which comprises software components, the externally
visible properties of these components, and the relationship
among them [14]. The architecture design of the TSA is shown
in Fig. 1. There are two groups of components that compose
the architecture: analysis components and interface
components. The analysis components correspond to the
algorithms such as computational or functional algorithms that
can be employed to manipulate the data.

The analysis components include the LFA, TSA, and linear
solver components. The interface components are required to
transfer the data to the analysis components from raw sources,
and also to display the input or output of the analysis results.
The ReadAsciidata, ReadMachinedata, TeeChart Pro, and
DBCAD are categorized as interface components.

Graphical User Interface

DbCadTeeChart Pro Transient Stability
Result

OO-PSM

Transient Stability Package

TTransientbase

TTrapezoidMethodTEulerMethod

+Get_Object ()
+Set_Object ()

«interface»
Linear Solver Components

Load Flow Components

ReadAsciidataReadMachinedata

Legends:
composition

interface

inheritance

Figure 1. The architecture design of the TSA software

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 8, 2009 at 20:05 from IEEE Xplore. Restrictions apply.

The ReadAsciidata component is employed to prepare the
LFA data which contains bus and branch network data. The
ReadMachinedata component is used to read the machine data
and its controllers. The OO-PSM will be created and then
associated in the LFA as well as TSA components. If the LFA
components are firstly executed, the OO-PSM has existed.
Then the OO-PSM can be transferred to the TSA components
by using the interfaces Get_Object and Set_Object.

The LFA and TSA analyses need a sparse linear solver for
their solution process. The solver is developed in independent
component. The linear solver is the modules which are
acquired from the public domain. The modules are
implemented through structural programming and wrapped as
well as encapsulated into components. The solver component
uses the standard sparse data storage formats such compressed
column or row formats. Therefore the solver components can
be replaced at any time with a component has better
performance without altering the TSA software. In the LFA,
the linear solver is used to solve the power mismatch in terms
of Jacobian matrix, whereas in the TSA, the linear solver is
utilized to solve equation (2).

The TSA components consist of three classes;
TTransientbase, TMEulerMethod, and TTrapezoidalMethod
classes. The TTranseintbase is a base class that includes
general attributes and functions which can be accessed by
descendent classes. The TMEulerMethod and
TTrapezoidalMethod are derived from TTransientbase which
are linked by inheritance concept. These classes correspond to
Modified Euler and Trapezoidal methods respectively. Since
the software application tools need the solver to run the
computational purposes, only the solver classes are then
encapsulated into the software components.

The TSA results are visualized by using graphical user
interface (GUI) that is achieved by associating DBCAD and
TeeChart Pro components. DBCAD is an advantageous
component in computer aided drawing (CAD). DBCAD is used
to draw the one line diagram of the power system. TeeChart
Pro is a charting component, which has several chart types
available in 2D and 3D versions. This component allows the
creation of general purpose windows application which is very

easy to use, flexible and effective. In the TSA simulation,
TeeChart component is reused for plotting the dynamic
performances of the TSA results.

B. Object-Oriented Power System Model (OO-PSM)
The OO-PSM class hierarchy of the TSA is shown in Fig.

2. The OO-PSM classes that are used in the LFA are similar to
the TSA. The detailed explanation of the LFA classes is
reported in the references [16]. Thus, the OO-PSM classes that
are developed in the LFA are reused as base classes in the
TSA. From the base classes, any other classes required in the
TSA analysis can be extended. The extended classes are
synchronous machines, exciters, governors, turbines, PSS, and
SVC system.

The synchronous machines are modeled from classical to
complete models. The classical model is encapsulated into
cMachine00 class and is designed as the base class of all
machine classes. The machine model that represents the field
circuit with one damper in the q-axis is cMachine10 class. The
machine model that considers two damper circuits in d- and q-
axes is named as cMacine11 class. The cMacine11 class is
inherited from cMachine10 class. As for cMachine20 class, it
represents the field circuit incorporated with two dampers in
the q-axis, whereas the machine models that include one and
two dampers in the d-axis are encapsulated into cMachine21
and cMachine22 classes respectively. The cMachine22 class
has two ancestors, namely cMachine11 and cMachine21
classes which are derived from the same class i.e. cMachine10
class. This design can be realized by using a virtual class
implementation. The virtual class is a base class that is passed
to more than one derived class through a concept called
multiple inheritances. The code fragment implementations of
these classes are provided as follows:
class cMachine11:virtual public cMachine10 {}
class cMachine20:virtual public cMachine10 {}
class cMachine22: public cMachine21,
 public cMachine11{}

The multiple inheritances are employed to enhance the
reusability in the OOD perspective. The cPss class is
constructed to represent the power system stabilizer system.
The static VAR compensation system is represented as cSVC

 Base classes

 Extended Classes

cPowerDevices

cNode cBranch

cLine cTransformer

cTwowinding

cThreewinding

cACGenerator cLoad

cConstanPower cImpedanceLoadcGovernorcTurbine

cSteamTurbine cHydroTurbine cTermalGov cHydroGov

cExciter cMachine00

cMachine10

cMachine11

cMachine20

cMachine21

cMachine22

cPss

cHGOVcTGOV

cEST cEDCcEAC

cSVC

Legends:
composition
inheritance

Figure 2. Object oriented power system model (OO-PSM) class hierarchy

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 8, 2009 at 20:05 from IEEE Xplore. Restrictions apply.

class. The excitation system can be derived as three classes:
cEAC class for AC excitation system, cEST class for ST
excitation system, and cEDC class for DC excitation system.
The governor system classes are developed through a
composition of classes. The cHGOV class of hydro governor
system is composed of two classes, namely cHydroGov class
that corresponds to the speed governor of hydro system and
cHydroTurbine class corresponding to the hydro turbine. The
cSteamTurbine class represents the steam turbine, whereas the
cThermalGov class is for the speed governor and speed control
of thermal system. Both classes, cSteamTurbine and
cThermalGov are built in cTGOV class that represents the
thermal governor system.

Since the object devices have been defined in the OOD
class hierarchy, it can be extended without changing the
existing classes. To enhance reusability, not only inheritance
mechanism is applied in the design, but also compositional
approach and multiple inheritances have been utilized to
increase the reusability technique in the OOD.

C. Interfaces Design
The software component has three main characteristics.

They are interface, implementation, and deployment
characteristics. The interface is used to allow the user or other
components to access and interact with it. The interface is a set
of services which is naturally grouped into meaningful clusters
[15]. The interfaces of the TSA components are depicted in
Fig. 3. The power system devices data required are transferred
by Add_devices interface. All devices data and properties can
be passed using this interface such as Add_generator used to
supply the properties of generator, Add_exciter used to pass the
exciter data and etc. The devices data can also be accessed by
Read_device interfaces.

Since LFA uses instance objects of OO-PSM and this
analysis must be performed as a pre-requisite for TSA, the OO-
PSM that already exists in LFA components can be passed to
the TSA component by Get_Object and Set_Object interfaces.
The Get_Object interface is used to evoke the object from the
LFA components, whereas the Set_Object interface is to put
the object in the TSA components. To set fault parameters such
as bus fault, type of fault and amount of the impedance fault,
Set_parameter and Set_fault interfaces are employed. The time
of study and capturing of the channel considered can be
employed by using the Set_time_study and Capture_channel
interfaces. After the parameters and OO-PSM are realized,
Calculate interface is then performed to execute the solver
components. The result can be saved by Save_output interface.

Beside the availability of interfaces, the software
application also needs implementations. The implementation is
the code that makes the components work. A component may
be built with more than one implementation. The deployment
of the component is the physical executable files (exe and dll)
and the package files (bpl, bpi, and lib).

D. Function Design
Usually the controllers of a synchronous machine consist of

composition of base block diagram such as voltage regulator,
lead-lag block, integrator with non-windup or with windup, and
etc. The block diagram corresponds to a physical model has
particular functions. Hence, software design and
implementation based on base block diagrams is used to
enhance the reusability of the code so that it can be reused for
other controllers. Fig. 4 shows an example to create an exciter
ST1 IEEE model code. There are two states: state 0 and state 1
that correspond to the initial and the final estimates based on
equations (3) and (5) respectively, for Modified Euler method.
Both initial and final estimates are encapsulated into a method
that is easy to debug and maintain. To execute either initial or
final states, the input must be passed to the method. That can
be shown in Fig. 5 for regulator voltage non-windup codes. In
the initial state, the voltage regulator quantity (Vrn) and its
differential (dVr/dt) are calculated. Both variables are stored to
obtain the final value (Vrn1) in the final state. Then the
regulator voltage is updated with a new value that is evaluated
the limit. This approach is also implemented in the Trapezoidal
method. Since all controllers of machine are composed of the
base block diagram, the method can be reused for other
controllers. These methods are included in the software
components.

Transientbase

TEulerMethod TTrapezoidalMethod

Transient Stability Package

Add_devices

Read_devices

Set_Object

Get_Object

Set_parameters

Set_fault

Set_time_study

Chapture_channel

Save_output

Calculate

Figure 3. Interfaces for transient stability components

void TEulerMethod ::ExcEstimateST 1(int state ,...)
{
for (i=1; i<=EST1->NDevice ; i++) {
 j = Exc[i].MacHandle ;
 if (state == 0){
 vcn [j] = TermVoltTransduser (…);
 Vsum = Vref-EST1[i].Vc+EST1[i].vso-EST1[i].Vf;
 Vrn [j] = RegVoltNonWindup (…);
 Vfn [j] = ExcitationSystemStabilizer (…);
 }
 else if (state == 1){
 EST 1[i].Vc = TerminalVoltageTransduser (…);
 Vsum = EST1[i].Vref-vcn[j]+sm[j].vson-Vfn[j];
 EST 1[i].VR = RegVoltNonWindup (…);
 EST 1[i].efd = EST1[i].VR;
 EST 1[i].efd = NonWindup (efd,Efdmin ,Efdmax);
 EST 1[i].Vf = ExcitationSystemStabilizer (…);}}
}

Figure 4. Exciter ST1 IEEE model representation

 float cExciter ::RegVoltNonWindup (int state ,…)
{
 dvrdt = *dVrdt;
 if (state == 0){
 dvrdt = (input * Ka - Vr)/Ta;
 Vrn 1 = Vr + dvrdt * dt;
 Evaluate _limit ();
 *dVrdt = dvrdt ;
 }
 else if (state == 1){
 dvrdtn = (input * Ka - Vrn)/Ta;
 Vr = Vr + 0.5 * (dvrdt + dvrdtn) * dt;
 Evaluate _limit ();
 Vrn 1 = Vr;
 }
return Vrn 1;
}

Initial state

Final state

Figure 5. Voltage regulator non-windup representation

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 8, 2009 at 20:05 from IEEE Xplore. Restrictions apply.

V. COMPONENT INTEGRATION
The LFA and TSA software components are integrated to

develop a component-based application. The components used
in the TSA application are built via in-house development, only
DBCad and TeeChart Pro components selected as the graphical
user interface are acquired from the third party. The
components are integrated through some well-defined
interfaces. These interfaces provide the bond that forms a
system from the disparate components. All the components that
are built through in-house development are created by Borland
C++ Builder which strongly supports the Integrated
Development Environment (IDE) tools. C++ Builder is chosen
as the IDE tool because it offers a wide range of component
platforms, such as Visual Component Library (VCL), and
Component Object Model (COM). The components are
gathered to form the TSA application.

The LFA components are reused with the TSA
components, the exchange data is transferred between
components based on the interface SetObject and GetObject.
Firstly, the power system data is transferred to the LFA
components by the interface SetObject and after the LFA
solution, the data is brought by the interface GetObject. As an
example, the LFA components and TSA components have an
object called Bus of the type TNode. The interface Set_Bus
passes a copy of the object Bus defined in TSA and LFA
components. After the solution, Get_Bus method delivers a
copy of the object Bus from the LFA component to the object
Bus in the TSA components. For other OO-PSM objects,
similar approach can be applied. This means that TSA
components take the solution from LFA components
encapsulated in OO-PSM. The TSA analysis components are
also integrated with both the third party components that
include DBCAD and TeeChart components. The user of the
application can execute the transient stability analysis with
many facilities for results visualization such as charts and
tables. Fig. 6 shows a window for the CBSE transient stability
application.

VI. COMPONENTS REUSABILITY
Reusability is an important issue in software engineering.

In developing the TSA application, reusability can be
categorized into two types: OO-PSM reused and components

reused. The OO-PSM object reused is established by using
inheritance, composition and a combination both of inheritance
and composition. The percentage of reusability of the OO-PSM
is exhibited in Table I. The percentage of reusability by
composition is equal to 40%. For new requirement of the TSA,
new classes are extended from base classes in the LFA. These
can be developed by inheritance approach that indicates 50% in
percentage, whereas the last object reused is built from both
inheritance and composition mechanism that is equal to 10% in
percentage. These are realized for developing governor system
objects that are composed of speed governor and turbine
system.

TABLE I. PERCENTAGE OF THE OO-PSM REUSABILITY

Reusability OO-PSM Percentage (%)
Inheritance 10 50

Composition 8 40
Inheritance and composition 2 10

Total 20 100

TABLE II. COMPARISON OF THE REUSABILITY OF COMPONENTs

Software Components Reused Scratch
Load Flow 2 0
Transient Stability 0 2
Input Data 1 1
Linear Solver 1 0
Output Interface 0 1
GUI 2 0
Total 6 4
Percentage (%) 60 40

Statistics for the component reusability in the TSA
simulation using CBSE is given in Table II. The table shows
that the reused components consist of a total of six
components, whereas the components developing from scratch
are four in total. Obviously, the result shows that reusability is
one of the most important advantages when the CBSE and
OOD methodology are implemented in TSA software. The
reusability percentage is 60% for components that have been
developed and used in LFA and still reused in the TSA.

VII. TEST SYSTEMS AND NUMERICAL RESULTS
The TSA component-based software was tested by the

IEEE data test, such as the 9 buses-3 machines, 39 buses-10
machines, and 162 buses-17 machines test systems. The test
was carried out using a computer with Intel Pentium IV/2.2
GHz processor and 512 MB main memory. The comparison
between CBSE software application and conventional
structural programming application is made. The execution
time as a main comparison is accomplished through the capture
of dynamical performances of TSA when the fault occurs at
bus 7, and the clearing time is at 0.7 s, while the maximum
time of study is at 2.5 s.

Table III shows the comparison results. The differences of
OOD and CBSE implementation and structural programming
are insignificant. The percentage differences of execution time
for both Modified Euler method and Trapezoidal method are
about 10% for 17 machines, 2% for 10 machines, and 5% for 3

Figure 6. User friendly TSA component based application

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 8, 2009 at 20:05 from IEEE Xplore. Restrictions apply.

machines. The CBSE application consumes more time as
compared with non CBSE, because of the fact that CBSE
application needs to call library files which are separated from
the application files. On the other hand, for non-component
application, function calling takes place in the same memory
block of the application, which makes the execution time less
than that of CBSE application. The comparison is also made to
compare the response of machine when different time step is
carried out in the study. The field voltage responses are
captured with time step equal to 0.001, 0.01 and 0.05 s. The
response is accurate when a small time step such as 0.01 and
0.001 s are applied, while inaccurate response will occur when
a larger time step such as 0.05 s in the Modified Euler method.
The Modified Euler is an explicit numerical integration that
allows the size of time step to be compatible with the
bandwidth of the equipment model in order to avoid numerical
instability. Typically, the time step is one-half of the smallest
of time constant in equipment model, usually the sub-transient
rotor time constant [17].

TABLE III. EXECUTION TIME COMPARISON (IN SECOND)

Data Test Method OOD &
CBSE Structural Diff (%)

 M. Euler 0.0200 0.0190 5.2632 9 bus,
3 machines Trapezoid 0.0200 0.0190 5.2632

 M. Euler 0.0640 0.0630 1.5873 39 bus,
10 machines Trapezoid 0.0650 0.0640 1.5625

 M. Euler 0.2330 0.2120 9.9057 162 bus,
17 machines Trapezoid 0.2240 0.2050 9.2683

In the Trapezoidal method, the responses are stable with all

time step of study, although the time step is large. The
Trapezoidal method as the implicit integration method
eliminates the small time constant numerical instability
problem. This property can be used to speed up simulation by
using larger time step. However, there is a limit to the size of
the time step beyond which the fidelity of high frequency
response is lost. Besides, with a large time step, the number of
iterations increases and this may offset the advantage that a
large time step offers.

VIII. CONCLUSION
The paper has presented the application of CBSE

methodology for developing a TSA program. The architecture
and development design in the CBSE have been proposed. The
power system devices that are involved in the TSA are
modeled as entity objects (OO-PSM) such that the OO-PSM is
independent from the solution algorithms. The solvers are built
separately to enhance reusability and maintainability of
software. The solvers are encapsulated into independent
software components. The components are reused to develop
user friendly transient stability application. The reusability
results show that a 60% of the software is reused from a
component based load flow software. Although the execution
time of CBSE is slightly more than non CBSE, it will not be a
major problem since the difference is small. Different time
steps are also employed to investigate the response
characteristics of both methods; Trapezoidal and Modified
Euler. The responses are stable with all time step of study,

although the time step is large in Trapezoidal method, whereas
for Modified Euler method, unstable responses are observed
when a large time step such as 0.05 second is implemented.

REFERENCES
[1] I. Crnkovic, M. Larsson, “Challenges of component-based

development”, Journal of Systems and Software, Vol. 61, No. 3, April
2002, pp. 201-212.

[2] E.Z. Zhou, “Object-oriented Programming, C++ and Power System
Simulation”, IEEE Transactions on Power Systems, Vol. 12, No. 1, Feb.
1996, pp. 206-215

[3] S. Pandit, S.A. Soman, S.A. Khaparde, “Object oriented design for
power system applications”, ISSN 0895-0156 ©2000 IEEE, Oct. 2000,
pp. 43-47

[4] A. Manzoni, S. E. Silva, I.C. Decker, “Power systems dynamics
simulation using object-oriented programming”, IEEE Transactions on
Power Systems, Vol. 14, No. 1, Feb.1999, pp. 249-255

[5] D.L. Lubkeman, A. Ghosh, J. Zhu, “Object-oriented programming for
power engineering education”, 0094-2898 IEEE, 1993, pp. 69-73

[6] S.N. Ironmonger, M.J. Bushnell, R. Patel, M.E. Bradley, B.W. Vaughan,
“An object-oriented power system model and graphical information
display system for control engineers”, Fourth International Conference
on Power System Control and Management, (Conf. Publ. No. 421), 16-
18 April 1996, pp. 120 - 124

[7] Kundur, P.; et al. “Definition and classification of power system
stability”, IEEE Transactions on Power Systems, Vol. 19, No. 3, Aug.
2004, pp.1387-1401

[8] J Arrilaga, C.P. Arnord, Computer Analysis of Power System, New
York: John Wiley & Sons, 1990

[9] Kundur P., Dandeno P.L., “Implementation of advanced generator
models into power system stability programs”, IEEE Transaction on
Power Apparatus and System, Vol. PAS-102, No. 7, July 1983, pp.
2047-2063.

[10] IEEE Task Force, “Standard load models for power flow and dynamic
performance simulation”, IEEE Transactions on Power Systems, Vol.
10, No. 3, Aug. 1995, pp. 1302 – 1313

[11] IEEE Standard Board, “IEEE recommended practice for excitation
system models for power system studies”, IEEE Std 421.5, 1992

[12] IEEE Committee Report, “Dynamic models for steam and hydro
turbines in power system studies”, Vol. PAS-92(6), 1973, pp. 1904-1915

[13] IEEE Special Stability Controls Working Groups, “Static VAR
compensator models for power flow and dynamic performance
simulation”, IEEE Transactions on Power Systems, Vol. 9, No. 1, Feb.
1994, pp. 229 – 240

[14] L. Bass, P. Clements, R. Kazman, Software Architecture In Practice,
New York: Addison Wesley, 1998

[15] A.W. Brown, K. Short, ”On components and objects: the foundations of
component-based development”, Proceedings Fifth International
Symposium on Assessment of Software Tools and Technologies, June
1997, pp. 112 -121

[16] K.M. Nor, H. Mokhlis, T.A. Gani, “Reusability techniques in load-flow
analysis computer program”, IEEE Transactions on Power Systems, Vol.
19, No. 4 , Nov. 2004, pp. 1754-1762

[17] F.P. de Mello, F.P. Feltes, J.W. Laskowski, T.F Oppel, “Simulating fast
and slow dynamic effects in power systems”, IEEE Computer
Applications in Power System, Vol. 5, No. 3, July 1992, pp. 33-38

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 8, 2009 at 20:05 from IEEE Xplore. Restrictions apply.

