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Abstract—This paper presents a development of transient 
stability analysis (TSA) software by applying component-based 
software engineering (CBSE). The TSA application needs 
software components to be integrated such as linear solver 
components, load flow analysis (LFA) components, and TSA 
components. The TSA components are built independently from 
the LFA and other components. Therefore, the TSA components 
can be integrated with any load flow package. The power system 
devices are represented as entity objects and then encapsulated in 
an independent class hierarchy. In this development, the same 
object-oriented power system model (OO-PSM) that has been 
used in the LFA components is reused for developing the TSA 
components, but it needs to be extended to model new devices 
such as synchronous machines, exciters, speed-governors, 
turbines, PSS, and SVC system. The performance of the 
proposed TSA software was tested with large systems and 
compared with structural programming. The results exhibit that 
there is no much difference in the execution time regarding to the 
quality of the component-based TSA application such as saving 
in the development resources. 

I.  INTRODUCTION 
Component-based Software Engineering is the 

methodology that builds a software application by assembling 
many software components. A software component is built and 
tested before integration into an application. A component has 
a specific functionality since it is independent and it can be 
replaced with other component has the same role and interface. 
On the other hand, the component sometimes needs to be 
modified or updated because of maintenance reason. 
Modifying and updating a component can be done without 
affecting other components, since it is supposed that both the 
role and the interface are not changed. The software component 
can be implemented either structural design or object-oriented 
design (OOD). The OOD offers some a great reusability that 
can be found in its features such as inheritance, association, 
polymorphism, and encapsulation. In the OOD, a class is 
defined as user-defined data abstraction and methods for an 
object. By using objects and classes, an application can be 
divided into small, more manageable pieces that are more 
closely matched to the real structures and behaviors of existing 
systems.  

The OOD and object-oriented programming (OOP) have 
been widely used in many power system applications, 
including simulation for LFA and fault analysis [2]-[3], 
dynamic stability analysis [4], power system education purpose 

[5], and for graphical user interface [6]. Nevertheless, most of 
the previous designs are only based on the inheritance 
approach. The design has also coupled the solver algorithm 
inside the class hierarchy. Thus, the solver has class 
dependencies or class deep dependencies that make it difficult 
to be updated, extended, maintained, or replaced. This 
drawback can be eliminated by separating the solver algorithm 
from the object oriented power system model (OO-PSM) that 
presents the devices of an electrical network. The paper 
proposes a new design of the OO-PSM that will be developed 
by utilizing inheritance, association, and a combination of the 
inheritance and association approaches, whereas the solution 
algorithm is built as software components. The application is 
developed by integrating both the load flow and transient 
stability software components. Numerical results are provided 
in the end of the paper to test the performance of the proposed 
component-based TSA application. 

II. TRANSIENT STABILITY PROBLEM 

A. Transient Stability Equation 
The transient stability analysis is used to evaluate the 

ability of an electric power system to regain the state of the 
operating equilibrium after being subjected to a physical 
disturbance [7]. The stability performance of the power system 
depends on the type of disturbance and the initial operational 
condition. When a large disturbance subject to power system, 
the voltages will drop, and if this situation occurs for a long 
time, the synchronization will be lost. It may even lead to the 
power system blackout. Examples of large disturbances are 
short circuit fault, loss of loads, and loss of generations.  

Generally, the transient stability of power system is highly 
non-linear.  It can be mathematically expressed as: 

),( Vxfx =& (1) 
where, x is the state variable, f is the non-linear vector function, 
and V is the bus voltage vector. Because of the state variable 
depends on the voltage, it will be updated for along study. On 
the other hand, the new voltage vector can be obtained by 
solving the network equation that is formulated as follows: 

),( VxIYV = (2) 
where I is the vector of injected current, and Y is the complex 
admittance matrix. 

B. Power System Model 
Since many devices are connected to the power system, 

they should be mathematically modeled to run a power system 

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 8, 2009 at 20:05 from IEEE Xplore.  Restrictions apply.



analysis. A synchronous machine is represented with a model 
that depends on the damper in two d- and q-axis considered. 
The damper is indicated by the number of winding. There are 
six machine models, ranging from classical to complete models 
[8] [9].  

A load in the power system analysis is commonly modeled 
as a static power load that is represented by a MVA rating at a 
particular bus.  The static load can be represented as a function 
of voltage magnitude and frequency [10].  

An excitation system is used to control the generator 
terminal voltage via the adjustment of generator field current. 
There are three types of excitation system, depending on the 
basis of the excitation power source; DC, AC, and ST 
excitation system [11].  

Power system stabilizer is an element that provides an 
additional input to the voltage regulator to improve the 
dynamic performance of the power system. A speed governor 
and turbine models are used to control the mechanical torque 
and mechanical power variables during the dynamic 
simulations [12].  

A Static VAR compensator (SVC) is equipped to maintain 
voltage levels, and to improve the power with the injection of a 
controlled capacitive or inductive current with a specific 
variable [13]. The SVC is widely used in the transmission 
system.  

Usually all machines and their controllers are involved in 
the TSA. They are represented from a composition of block 
diagrams that are given in the frequency domain. Since step-
by-step solution is applied, the equation in the frequency 
domain is converted to the differential equation in the time 
domain. Furthermore, the numerical integration method can be 
implemented to solve the differential equation. 

III. NUMERICAL INTEGRATION METHOD 
The numerical integration method has two techniques; 

explicit and implicit. Modified Euler method is applied as an 
explicit technique, whereas the Trapezoidal method is used as 
an implicit technique. The Modified Euler method needs two 
equations to solve equation (1), namely initial and final 
estimate equations. The initial estimate equation is given by: 

),(f )()()()( ooon Vxtxx ∆+= (3) 
where (n) denotes the current estimate, (o) denotes the previous 
value, and ∆t indicates the integration step. Since the voltage V 
also depends on the current I, which in turn is the function of 
the state vector, the new estimate for voltage is: 

),( )()()( onn VxIYV =  (4) 
Then, the final value of x is solved by: 

[ ]),(f),(f 
2
1 )()()()()()( nnooof VxVxtxx +∆+=

 
(5) 

and the final voltage can be updated by using:  
),( )()()( nff VxIYV =  (6) 

where (f) denotes the final value. 
The Trapezoidal method is the most popular choice for 

TSA study. The implementation of this method in equation (1) 
produces an algebraic equation which is expressed as: 

[ ]),(),(
2
1

111 nnnnnn VxfVxftxx +∆+= −−−
 

(7) 

and the network equation is derived from equation (2) is given 
as follows: 

),( nnn VxIYV = (8) 
where n is the current value and n-1 indicates the previous 
value.  

IV. OBJECT-ORIENTED AND COMPONENTS DESIGN IN THE 
TRANSIENT STABILITY ANALYSIS 

The objects in the TSA design are divided into three major 
groups i.e. entity objects, control objects, and interface objects. 
The power system devices are modeled as entity objects. They 
are represented as the OO-PSM, whereas the solution 
algorithm or analysis objects are modeled as control objects. 
They are created as software components. Finally, the interface 
objects include the objects that handle the communication 
between the analysis objects and their clients.     

A. Software Architecture of the TSA 
The software architecture is defined as the structure of the 

system which comprises software components, the externally 
visible properties of these components, and the relationship 
among them [14]. The architecture design of the TSA is shown 
in Fig. 1.  There are two groups of components that compose 
the architecture: analysis components and interface 
components. The analysis components correspond to the 
algorithms such as computational or functional algorithms that 
can be employed to manipulate the data.  

The analysis components include the LFA, TSA, and linear 
solver components. The interface components are required to 
transfer the data to the analysis components from raw sources, 
and also to display the input or output of the analysis results. 
The ReadAsciidata, ReadMachinedata, TeeChart Pro, and 
DBCAD are categorized as interface components. 

Graphical User Interface

DbCadTeeChart Pro Transient Stability 
Result

OO-PSM

Transient Stability Package

TTransientbase

TTrapezoidMethodTEulerMethod

+Get_Object ()
+Set_Object ()

«interface»
Linear Solver Components

Load Flow Components

ReadAsciidataReadMachinedata

Legends:
composition

interface

inheritance

 
Figure 1. The architecture design of the TSA software 
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The ReadAsciidata component is employed to prepare the 
LFA data which contains bus and branch network data. The 
ReadMachinedata component is used to read the machine data 
and its controllers. The OO-PSM will be created and then 
associated in the LFA as well as TSA components. If the LFA 
components are firstly executed, the OO-PSM has existed. 
Then the OO-PSM can be transferred to the TSA components 
by using the interfaces Get_Object and Set_Object.  

The LFA and TSA analyses need a sparse linear solver for 
their solution process. The solver is developed in independent 
component. The linear solver is the modules which are 
acquired from the public domain. The modules are 
implemented through structural programming and wrapped as 
well as encapsulated into components. The solver component 
uses the standard sparse data storage formats such compressed 
column or row formats. Therefore the solver components can 
be replaced at any time with a component has better 
performance without altering the TSA software. In the LFA, 
the linear solver is used to solve the power mismatch in terms 
of Jacobian matrix, whereas in the TSA, the linear solver is 
utilized to solve equation (2). 

The TSA components consist of three classes; 
TTransientbase, TMEulerMethod, and TTrapezoidalMethod 
classes. The TTranseintbase is a base class that includes 
general attributes and functions which can be accessed by 
descendent classes. The TMEulerMethod and 
TTrapezoidalMethod are derived from TTransientbase which 
are linked by inheritance concept. These classes correspond to 
Modified Euler and Trapezoidal methods respectively. Since 
the software application tools need the solver to run the 
computational purposes, only the solver classes are then 
encapsulated into the software components. 

The TSA results are visualized by using graphical user 
interface (GUI) that is achieved by associating DBCAD and 
TeeChart Pro components. DBCAD is an advantageous 
component in computer aided drawing (CAD). DBCAD is used 
to draw the one line diagram of the power system. TeeChart 
Pro is a charting component, which has several chart types 
available in 2D and 3D versions. This component allows the 
creation of general purpose windows application which is very 

easy to use, flexible and effective. In the TSA simulation, 
TeeChart component is reused for plotting the dynamic 
performances of the TSA results.  

B. Object-Oriented Power System Model (OO-PSM) 
The OO-PSM class hierarchy of the TSA is shown in Fig. 

2. The OO-PSM classes that are used in the LFA are similar to 
the TSA. The detailed explanation of the LFA classes is 
reported in the references [16]. Thus, the OO-PSM classes that 
are developed in the LFA are reused as base classes in the 
TSA. From the base classes, any other classes required in the 
TSA analysis can be extended. The extended classes are 
synchronous machines, exciters, governors, turbines, PSS, and 
SVC system.  

The synchronous machines are modeled from classical to 
complete models. The classical model is encapsulated into 
cMachine00 class and is designed as the base class of all 
machine classes. The machine model that represents the field 
circuit with one damper in the q-axis is cMachine10 class. The 
machine model that considers two damper circuits in d- and q- 
axes is named as cMacine11 class.  The cMacine11 class is 
inherited from cMachine10 class. As for cMachine20 class, it 
represents the field circuit incorporated with two dampers in 
the q-axis, whereas the machine models that include one and 
two dampers in the d-axis are encapsulated into cMachine21 
and cMachine22 classes respectively. The cMachine22 class 
has two ancestors, namely cMachine11 and cMachine21 
classes which are derived from the same class i.e. cMachine10 
class. This design can be realized by using a virtual class 
implementation. The virtual class is a base class that is passed 
to more than one derived class through a concept called 
multiple inheritances. The code fragment implementations of 
these classes are provided as follows: 
class cMachine11:virtual public cMachine10 {} 
class cMachine20:virtual public cMachine10 {} 
class cMachine22: public cMachine21,   
                  public cMachine11{} 

The multiple inheritances are employed to enhance the 
reusability in the OOD perspective. The cPss class is 
constructed to represent the power system stabilizer system.  
The static VAR compensation system is represented as cSVC 

 Base classes 

 Extended Classes 

cPowerDevices

cNode cBranch

cLine cTransformer

cTwowinding

cThreewinding

cACGenerator cLoad

cConstanPower cImpedanceLoadcGovernorcTurbine

cSteamTurbine cHydroTurbine cTermalGov cHydroGov

cExciter cMachine00
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Figure 2. Object oriented power system model (OO-PSM) class hierarchy 
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class. The excitation system can be derived as three classes: 
cEAC class for AC excitation system, cEST class for ST 
excitation system, and cEDC class for DC excitation system. 
The governor system classes are developed through a 
composition of classes. The cHGOV class of hydro governor 
system is composed of two classes, namely cHydroGov class 
that corresponds to the speed governor of hydro system and 
cHydroTurbine class corresponding to the hydro turbine. The 
cSteamTurbine class represents the steam turbine, whereas the 
cThermalGov class is for the speed governor and speed control 
of thermal system. Both classes, cSteamTurbine and 
cThermalGov are built in cTGOV class that represents the 
thermal governor system. 

Since the object devices have been defined in the OOD 
class hierarchy, it can be extended without changing the 
existing classes. To enhance reusability, not only inheritance 
mechanism is applied in the design, but also compositional 
approach and multiple inheritances have been utilized to 
increase the reusability technique in the OOD. 

C. Interfaces Design 
The software component has three main characteristics. 

They are interface, implementation, and deployment 
characteristics. The interface is used to allow the user or other 
components to access and interact with it. The interface is a set 
of services which is naturally grouped into meaningful clusters 
[15]. The interfaces of the TSA components are depicted in 
Fig. 3. The power system devices data required are transferred 
by Add_devices interface. All devices data and properties can 
be passed using this interface such as Add_generator used to 
supply the properties of generator, Add_exciter used to pass the 
exciter data and etc. The devices data can also be accessed by 
Read_device interfaces.  

Since LFA uses instance objects of OO-PSM and this 
analysis must be performed as a pre-requisite for TSA, the OO-
PSM that already exists in LFA components can be passed to 
the TSA component by Get_Object and Set_Object interfaces. 
The Get_Object interface is used to evoke the object from the 
LFA components, whereas the Set_Object interface is to put 
the object in the TSA components. To set fault parameters such 
as bus fault, type of fault and amount of the impedance fault, 
Set_parameter and Set_fault interfaces are employed. The time 
of study and capturing of the channel considered can be 
employed by using the Set_time_study and Capture_channel 
interfaces. After the parameters and OO-PSM are realized, 
Calculate interface is then performed to execute the solver 
components. The result can be saved by Save_output interface.  

Beside the availability of interfaces, the software 
application also needs implementations. The implementation is 
the code that makes the components work. A component may 
be built with more than one implementation. The deployment 
of the component is the physical executable files (exe and dll) 
and the package files (bpl, bpi, and lib). 

D. Function Design 
Usually the controllers of a synchronous machine consist of 

composition of base block diagram such as voltage regulator, 
lead-lag block, integrator with non-windup or with windup, and 
etc. The block diagram corresponds to a physical model has 
particular functions. Hence, software design and 
implementation based on base block diagrams is used to 
enhance the reusability of the code so that it can be reused for 
other controllers. Fig. 4 shows an example to create an exciter 
ST1 IEEE model code. There are two states: state 0 and state 1 
that correspond to the initial and the final estimates based on 
equations (3) and (5) respectively, for Modified Euler method. 
Both initial and final estimates are encapsulated into a method 
that is easy to debug and maintain. To execute either initial or 
final states, the input must be passed to the method. That can 
be shown in Fig. 5 for regulator voltage non-windup codes. In 
the initial state, the voltage regulator quantity (Vrn) and its 
differential (dVr/dt) are calculated. Both variables are stored to 
obtain the final value (Vrn1) in the final state. Then the 
regulator voltage is updated with a new value that is evaluated 
the limit. This approach is also implemented in the Trapezoidal 
method. Since all controllers of machine are composed of the 
base block diagram, the method can be reused for other 
controllers. These methods are included in the software 
components.  

 

Transientbase

TEulerMethod TTrapezoidalMethod

Transient Stability Package

Add_devices

Read_devices

Set_Object

Get_Object

Set_parameters

Set_fault

Set_time_study

Chapture_channel

Save_output

Calculate

Figure 3. Interfaces for transient stability components 

void TEulerMethod ::ExcEstimateST 1(int state ,...)
{
for (i=1; i<=EST1->NDevice ; i++) {
    j = Exc[i].MacHandle ;
    if (state == 0){
      vcn [j] = TermVoltTransduser (…);
      Vsum =  Vref-EST1[i].Vc+EST1[i].vso-EST1[i].Vf;
      Vrn [j] = RegVoltNonWindup (…);
      Vfn [j] = ExcitationSystemStabilizer (…);
    }
    else if (state == 1){
      EST 1[i].Vc = TerminalVoltageTransduser (…);
      Vsum = EST1[i].Vref-vcn[j]+sm[j].vson-Vfn[j];
      EST 1[i].VR  = RegVoltNonWindup (…);
      EST 1[i].efd = EST1[i].VR;
      EST 1[i].efd = NonWindup (efd,Efdmin ,Efdmax );
      EST 1[i].Vf  = ExcitationSystemStabilizer (…);}}
}  

Figure 4. Exciter ST1 IEEE model representation 
 

 float cExciter ::RegVoltNonWindup (int state ,…) 
{
  dvrdt = *dVrdt;
  if (state == 0){
      dvrdt = (input * Ka - Vr)/Ta;
      Vrn 1 = Vr + dvrdt * dt;
      Evaluate _limit ();
      *dVrdt = dvrdt ;
   }
   else if (state == 1){
      dvrdtn = (input * Ka - Vrn)/Ta;
      Vr = Vr + 0.5 * (dvrdt + dvrdtn ) * dt;
      Evaluate _limit ();
      Vrn 1 = Vr;
   }
return Vrn 1;
}

Initial state

Final state

 
Figure 5. Voltage regulator non-windup representation
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V. COMPONENT INTEGRATION  
The LFA and TSA software components are integrated to 

develop a component-based application. The components used 
in the TSA application are built via in-house development, only 
DBCad and TeeChart Pro components selected as the graphical 
user interface are acquired from the third party. The 
components are integrated through some well-defined 
interfaces. These interfaces provide the bond that forms a 
system from the disparate components. All the components that 
are built through in-house development are created by Borland 
C++ Builder which strongly supports the Integrated 
Development Environment (IDE) tools. C++ Builder is chosen 
as the IDE tool because it offers a wide range of component 
platforms, such as Visual Component Library (VCL), and 
Component Object Model (COM). The components are 
gathered to form the TSA application.  

The LFA components are reused with the TSA 
components, the exchange data is transferred between 
components based on the interface SetObject and GetObject. 
Firstly, the power system data is transferred to the LFA 
components by the interface SetObject and after the LFA 
solution, the data is brought by the interface GetObject. As an 
example, the LFA components and TSA components have an 
object called Bus of the type TNode. The interface Set_Bus 
passes a copy of the object Bus defined in TSA and LFA 
components. After the solution, Get_Bus method delivers a 
copy of the object Bus from the LFA component to the object 
Bus in the TSA components. For other OO-PSM objects, 
similar approach can be applied. This means that TSA 
components take the solution from LFA components 
encapsulated in OO-PSM. The TSA analysis components are 
also integrated with both the third party components that 
include DBCAD and TeeChart components. The user of the 
application can execute the transient stability analysis with 
many facilities for results visualization such as charts and 
tables.  Fig. 6 shows a window for the CBSE transient stability 
application.  

VI. COMPONENTS REUSABILITY 
Reusability is an important issue in software engineering. 

In developing the TSA application, reusability can be 
categorized into two types: OO-PSM reused and components 

reused. The OO-PSM object reused is established by using 
inheritance, composition and a combination both of inheritance 
and composition. The percentage of reusability of the OO-PSM 
is exhibited in Table I. The percentage of reusability by 
composition is equal to 40%. For new requirement of the TSA, 
new classes are extended from base classes in the LFA. These 
can be developed by inheritance approach that indicates 50% in 
percentage, whereas the last object reused is built from both 
inheritance and composition mechanism that is equal to 10% in 
percentage. These are realized for developing governor system 
objects that are composed of speed governor and turbine 
system. 

TABLE I.  PERCENTAGE OF THE OO-PSM REUSABILITY 

Reusability OO-PSM Percentage (%) 
Inheritance 10 50 

Composition 8 40 
Inheritance and composition 2 10 

Total 20 100 

TABLE II.  COMPARISON OF THE REUSABILITY OF COMPONENTs 

Software Components Reused Scratch 
Load Flow 2 0 
Transient Stability 0 2 
Input Data  1 1 
Linear Solver 1 0 
Output Interface 0 1 
GUI 2 0 
Total  6 4 
Percentage (%) 60 40 

 

Statistics for the component reusability in the TSA 
simulation using CBSE is given in Table II. The table shows 
that the reused components consist of a total of six 
components, whereas the components developing from scratch 
are four in total. Obviously, the result shows that reusability is 
one of the most important advantages when the CBSE and 
OOD methodology are implemented in TSA software. The 
reusability percentage is 60% for components that have been 
developed and used in LFA and still reused in the TSA.  

VII. TEST SYSTEMS AND NUMERICAL RESULTS 
The TSA component-based software was tested by the 

IEEE data test, such as the 9 buses-3 machines, 39 buses-10 
machines, and 162 buses-17 machines test systems. The test 
was carried out using a computer with Intel Pentium IV/2.2 
GHz processor and 512 MB main memory. The comparison 
between CBSE software application and conventional 
structural programming application is made. The execution 
time as a main comparison is accomplished through the capture 
of dynamical performances of TSA when the fault occurs at 
bus 7, and the clearing time is at 0.7 s, while the maximum 
time of study is at 2.5 s.  

Table III shows the comparison results. The differences of 
OOD and CBSE implementation and structural programming 
are insignificant. The percentage differences of execution time 
for both Modified Euler method and Trapezoidal method are 
about 10% for 17 machines, 2% for 10 machines, and 5% for 3 

 
Figure 6. User friendly TSA component based application 
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machines. The CBSE application consumes more time as 
compared with non CBSE, because of the fact that CBSE 
application needs to call library files which are separated from 
the application files. On the other hand, for non-component 
application, function calling takes place in the same memory 
block of the application, which makes the execution time less 
than that of CBSE application. The comparison is also made to 
compare the response of machine when different time step is 
carried out in the study. The field voltage responses are 
captured with time step equal to 0.001, 0.01 and 0.05 s. The 
response is accurate when a small time step such as 0.01 and 
0.001 s are applied, while inaccurate response will occur when 
a larger time step such as 0.05 s in the Modified Euler method. 
The Modified Euler is an explicit numerical integration that 
allows the size of time step to be compatible with the 
bandwidth of the equipment model in order to avoid numerical 
instability. Typically, the time step is one-half of the smallest 
of time constant in equipment model, usually the sub-transient 
rotor time constant [17].  

TABLE III.  EXECUTION TIME COMPARISON (IN SECOND) 

Data Test Method OOD & 
CBSE Structural Diff (%) 

 M. Euler  0.0200 0.0190 5.2632 9 bus,  
3 machines  Trapezoid  0.0200 0.0190 5.2632 

 M. Euler  0.0640 0.0630 1.5873 39 bus,  
10 machines  Trapezoid  0.0650 0.0640 1.5625 

 M. Euler  0.2330 0.2120 9.9057 162 bus,  
17 machines  Trapezoid  0.2240 0.2050 9.2683 

 
In the Trapezoidal method, the responses are stable with all 

time step of study, although the time step is large. The 
Trapezoidal method as the implicit integration method 
eliminates the small time constant numerical instability 
problem. This property can be used to speed up simulation by 
using larger time step. However, there is a limit to the size of 
the time step beyond which the fidelity of high frequency 
response is lost. Besides, with a large time step, the number of 
iterations increases and this may offset the advantage that a 
large time step offers.  

VIII. CONCLUSION 
The paper has presented the application of CBSE 

methodology for developing a TSA program. The architecture 
and development design in the CBSE have been proposed. The 
power system devices that are involved in the TSA are 
modeled as entity objects (OO-PSM) such that the OO-PSM is 
independent from the solution algorithms. The solvers are built 
separately to enhance reusability and maintainability of 
software. The solvers are encapsulated into independent 
software components. The components are reused to develop 
user friendly transient stability application. The reusability 
results show that a 60% of the software is reused from a 
component based load flow software. Although the execution 
time of CBSE is slightly more than non CBSE, it will not be a 
major problem since the difference is small. Different time 
steps are also employed to investigate the response 
characteristics of both methods; Trapezoidal and Modified 
Euler. The responses are stable with all time step of study, 

although the time step is large in Trapezoidal method, whereas 
for Modified Euler method, unstable responses are observed 
when a large time step such as 0.05 second is implemented.  
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