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Abstract 

Objective:  A major factor in practical application of photobioreactors (PBR) is the adhesion of algal cells onto their 
inner walls. Optimized algal growth requires an adequate sunlight for the photosynthesis and cell growth. Limitation 
in light exposure adversely affects the algal biomass yield. The removal of the biofilm from PBR is a challenging and 
expansive task. This study was designed to develop an inexpensive technique to prevent adhesion of algal biofilm on 
tubular PBR to ensure high efficiency of light utilization. Rubber balls with surface projections were introduced into 
the reactor, to remove the adherent biofilm by physical abrasion technique.

Results:  The floatation of spike balls created a turbulent flow, thereby inhibiting further biofilm formation. The 
parameters such as, specific growth rate and doubling time of the algae before introducing the balls were 0.451 day−1 
and 1.5 days respectively. Visible biofilm impeding light transmission was formed by 15–20 days. The removal of the 
biofilm commenced immediately after the introduction of the spike balls with visibly reduced deposits in 3 days. This 
was also validated by enhance cell count (6.95 × 106 cells mL−1) in the medium. The employment of spike balls in 
PBR is an environmental friendly and economical method for the removal of biofilm.
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Introduction
Microalgae can be cultivated in either freshwater or 
saline by two different methods i.e. open or closed sys-
tems [1, 2]. Biofilm formation in PBRs is a complex pro-
cess, in which algae and bacteria produce extracellular 
polymeric substance (EPS) to bind the cells to external 
surfaces of the bioreactors. Chlorella species are one of 
the most abundant producers of EPS [3]. Biofilm forma-
tion in PBRs diminishes the passage of light to algal cells 
which inhibits photosynthesis, hence reducing  the cell 
growth and biomass yield.

Cleaning of the biofilm from PBRs is a challenging pro-
cess, requiring a lot of effort and time. For instance, by 
using a cylindrical piece of foam, 10  cm long with 10% 
larger diameter than the inner diameter of PVC pipe, 

the biofilm was removed with the help of air pump that 
pushed the foam along the pipe required high pressure 
[4]. Seaweeds extract has also been used to avoid biofilm 
formation while cultivating green algae [5]. Antifouling 
booster biocides are also in practice to remove marine 
sediments [6]. Other available techniques include the 
use of ozone, ultrasonic technology, and the use of large 
slugs of air to intermittently scour the internal surface 
of the tube. Continuous circulation of close fitting balls, 
highly turbulent flow and suspended sand or grit parti-
cles technique have also been employed to abrade any 
biomass adhering to the internal surface of the bioreactor 
[7]. All of these processes have a set of drawbacks such as 
the risk of reactor tube breakage, utilization of valuable 
chemicals, high energy input, as well as high operating 
and maintenance cost, which motivates to identify feasi-
ble options for algal biofilm removal.

Spike rubber ball method is an inexpensive and 
novel approach for effective PBR cleaning. The spike balls 
have a simple design and usage, which requires no special 
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training or extra labor costs for handling purposes. Spike 
balls are reusable and can be used in multiple batch pro-
cesses, thereby contributing towards minimum waste gen-
eration. This technique also encourage the effective mixing 
of algal cultures, without posing any adverse impact on 
their growth cycle. This mixing effect prevents algal bio-
mass to settle on the walls of PBR pipes, which results in 
the potential biofilm reduction. Another added advantage 
of the process is the cost-effectiveness and application in 
different PBRs for biofilm removal due to the availability of 
the spike balls in various sizes and designs.

This study is focused on devising an innovative method 
of removing algal biofilm from PBRs. The set of spike 
balls with bristles were prepared and were circulated 
along with the algal culture in the airlift tubular PBR as a 
mobile scrubber to remove biofilm leading to less deposi-
tion and high biomass production.

Main text
Experimental
The algal strain used in this study is Chlorella vulgaris 
(ATCC 9765), which was obtained from AlgaeTech Inter-
national, Malaysia. Chlorella vulgaris is a photosynthetic 
microorganism with size ranging from 2 to 10  µm [8]. 
Chlorella vulgaris was grown in Bold’s Basal media [9] at 
25  °C in a 100 mL flask which was subsequently diluted 
to 1000 mL with a pH of 6.5. The culture was then trans-
ferred into a 480 L PBR using electric pump for aeration 
whereas day light was used as a light source. The pH was 
monitored and adjusted to 6.5 using 2 M NaOH or 2 M 
H2SO4 solutions. All the chemicals used were of analyti-
cal grade from Sigma Aldrich.

The vertical PBR (480  L) were used for microalgae 
cultivation as presented in Fig.  1. The PBR consisted of 

vertical and horizontal pipes, a degasser, sampling point 
and a pump. Submerged spike balls used in the experi-
ment were 6 in. in diameter with 0.7 cm long projections 
(completely filled with water having magnets inside). The 
spike balls used mechanical scrubbing action against the 
reactors to remove deposited algal biofilms. Furthermore, 
the action of spike balls kept the water agitated which 
discouraged the algal deposition.

A small portion of reactor pipe was removed from the 
PBR for analysis of the biofilm characteristics. The algal 
biofilm present on the fragments of PBR glass pipe was 
air dried and later analysed using Nanovea Optical Pro-
filometer Ps-50 (Nanovea Corp. USA) with Nanovea 3D 
software. Chlorella vulgaris cell count was monitored 
using Neubauer Hemocytometer (China). The cell con-
centration was measured using Eq. (1). Where, Xc is cell 
concentration, Tcell is total cells and Df is dilution factor.

The dry biomass (g  L−1) was used to determine the 
growth rate of algal culture. The specific growth rate (r) 
per day was calculated using the Eq.  (2) [10]. Where Nt 
and N0 are the dry biomass weights (g L−1) at time Tt and 
T0, respectively, and ∆t is the time interval from Tt to T0.

Algal yield was determined from the growth rate and 
doubling time. Cell doubling time (td,) was estimated 
using Eq. (3).

(1)Xc (mL−1) = [Tcell (5 squares)× 5000× Df]

(2)r =

[

Ln (Nt)− ln (N0)

�t

]

(3)td =

[

ln 2

rmax

]

Bold's Basal Medium Scaling up to 1L

Algal Cultures

Algal Culture Scale up Photobioreactors

480L

Fig. 1  Experimental setup of vertical 480 L PBR
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Results
The algal cultivation in PBR were conducted to inves-
tigate the impact of the spike balls on the removal of 
produced algal biofilm. From inoculation till day 24, 
the cell count was observed to increase from 1.05 × 106 
cells mL−1 to 2 × 106 cells mL−1. This number doubled in 
1 day, reaching 4 × 106 cells mL−1 on day 25, and finally 
peaking at 4.85 × 106 cells mL−1 on day 30 as shown in 
Fig. 2a. On day 17, visible algal biofilm was seen appear-
ing in the inner walls of PBR which kept accumulating 
till day 37 under the controlled growth environment. In 
the second PBR run, spike balls were introduced in the 
PBR on day 30, which resulted in an abrupt increase in 
cell count to 6.85 × 106 cells mL−1. The continuation of 
this rise in cell count was seen until day 37. This enhance-
ment in cell count was not only due to the result of algal 
growth but also dislodging of cells previously adherent to 
the PBR walls as more light was able to penetrate inside 
the PBR pipes.

Figure  2a shows the dry biomass of algae. The maxi-
mum specific growth rate (rmax) per day was determined 
from all the different values of specific growth rate (r), 
while the maximum biomass obtained was designated as 
Nmax (g  L−1). The maximum specific growth rate (rmax) 
was obtained to be 0.451 day−1 while the doubling time 
was found to be 1.5 days. As the spike balls were intro-
duced into the PBR on day 30, a sudden increase in the 
cell count was observed as shown in Fig.  2a. The result 

obtained from Nanovea 3D software shows the thick-
ness of algal biofilm is 3064  nm (3.064  µm) as depicted 
in Fig. 2b.

The spike balls were introduced into the PBR on day 
30 and their effect on biofilm removal was observed by 
doing the visual inspection a thick layer of algal biofilm 
can be seen in the Fig. 3a. Nevertheless, a visible reduc-
tion in the biofilm layer was seen in 3  days after intro-
ducing the spike balls demonstrated in Fig.  3b. The 
image  clearly show the effect of the spike balls employ-
ment into the PBR. There was a substantial effect on the 
amount of adherent biofilm by the brushing action of 
these spikes. Continues motion of these balls within the 
tubing ensured adequate area was covered including bot-
tom and bends. They were easily removed via the degas-
ser chamber and any material trapped in the projections 
could be cleaned with simple soap and water.

Discussion
This study attempted the removal of biofilm on the inner 
walls of the PBR via physical abrasion method. Opti-
mal growth parameters for C. vulgaris has already been 
identified and it was grown for biomass production 
purposes. During algal growth in PBR, the major prob-
lem faced was biofilm formation. After experimentation 
it was found that the algal biofilm thickness was to be 
3.064 µm which is in good compromise with previously 
reported results [11, 12]. The spike balls removed algal 
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Fig. 2  a Cell count and dry weight of algae. b Analysis of algal biofilm thickness
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biofilms significantly from the bioreactor and carried 
them into circulation. This increased the algal mass per 
liter of solution, and inhibit cells to stick in PBR, resulting 
biofilm formed is also nominal. The spikes on balls pro-
vide increase in surface area when in contact with walls 
of PBR. The scrubbing action of spikes also increases its 
mechanical efficiency.

While comparing with previously available tech-
nologies, few methods required high pressure to clean 
PBR which leads to breakage of reactor [13]. The using 
of ozone and ultrasound is expensive technology as it 
requires high energy input and it also destroys the algal 
cell [14, 15]. The chemical methods are also harmful for 
algal cell growth and expansive [16]. Whereas, the pro-
vided method is not harmful to the algal cells reactor and 
maintenance of the reactor. The spike ball design and 
preparation is very simple and no extra cost is required. 
The method does not required any surplus energy or 
chemicals, so it can be considered as environmental 
friendly and low cost mechanical approach to remove the 
biofilm form PBRs.

Limitations
• • Spike balls can get trapped in bends of PBR.
• • A single spike ball design can limited to the particular 

reactor.
• • Retrieval of damaged spike balls may be difficult.
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