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Abstract In a dimensional problem, the transformation of a graph into its linear network

can be viewed as a transition involving demand and supply. A connected graph represents the

demand flows between the components in the graph while the network supporting it is the

resource or capacity links for supporting the demand volumes. The transformation involves

a mapping from the graph to its network to satisfy certain performance metrics. In this work,

we propose a model for transforming a connected graph to its linear network model in the

form of a single-row routing network. The main objective is to provide an optimum routing

network that minimizes the congestion. In this technique, the given graph is first partitioned

into several disjoint cliques using the Hopfield neural network using our model called AdCliq.

From the cliques, a set of intervals derived from the zones are obtained through the matching

nodes in the single-row axis. The intervals are then mapped into a network of non-crossing

nets using our previously developed tool called ESSR. The network is optimal in terms of

minimum street congestion and number of doglegs, and this provides a reasonably good step

towards the overall solution to the demand-supply problem.

Keywords Connected graph . Single-row routing . Demand-supply problem and linear

transformation

1 Introduction

In most cases, a connected graph represents a network of inter-dependent nodes where their

links provide the communication paths between the nodes. In a connected graph, a node can
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communicate with any other node by hopping through one or more intermediate nodes. In

a multi-commodity network problem, the nodes in a connected graph represent the demand

and they are competing against each other for the available resources, or link capacities, in the

form of network equipment (or hardware). The objective is to minimize an objective function

subject to some constraints. A linear programming model is obtained if the equations in the

objective function and its constraints form a linear system.

In this paper, two important components are discussed and linked to each other. First is the

connected graph which is an abstraction representing a demand in the demand-supply prob-

lem. Second is single-row routing which represents the supply in the problem. Traditionally,

single-row routing is a classical problem that contributes in the printed-circuit board (PCB)

designs [1]. We study the demand-supply relationship between a connected graph with the

single-row routing problem, and show how the latter can be applied for solving the problem

in the former.

In [2], we discussed a technique for transforming a complete graph into its single-row

representation. A complete graph is a fully-connected graph where every node is adjacent to

all other nodes in the graph. Very often, many applications in science and engineering are

reducible to this type of graph. Hence, a simplified form of a complete graph contributes in

providing the solutions to these problems. In this paper, we present a technique for trans-

forming a complete graph into a single-row routing problem. Single-row routing is a classical

technique in the VLSI design that is known to be NP-complete. We solved this problem ear-

lier using a method called ESSR, and, the same technique is applied to the present work to

transform a complete graph into its single-row routing representation.

Our work in this paper is motivated from the need to expand the scope of the single-row

routing problem. In [2], we showed that single-row routing can also be applied in two non-

PCB applications, namely, the channel assignment problem in the wireless cellular network

systems and the theoretical single-row multiprocessor network system. In the first application,

each node in the given graph maps into a zone consisting of several channels for serving the

demand from the mobile users. In the second application, the nodes in the single-row axis are

modeled as processors in a theoretical multiprocessor system. Therefore, it is safe to say that

single-row routing technique can also be applied to cover many other problems, particularly

those that require matchings between the pairs of nodes in the graph.

It is obvious that two NP-complete problems are encountered here, namely, the maximum

clique of a graph and single-row routing. In supporting our work, two tools have been

developed, both using C++. First is AdCliq which is a visual simulator for partitioning a

connected graph into sets of cliques using the Hopfield neural network method. Second is

ESSR [3] which generates a realization in the form of single-row representation of the nodes

grouped in cliques in AdCliq. ESSR performs a search on the minimum energy function of the

nets based on the stochastic simulated annealing method. As a team AdCliq and ESSR form

a strong combination for transforming the nodes in a connected graph into their single-row

realization.

In this paper, we propose a technique for transforming a connected graph into its single-

row representation. The method starts by partitioning the graph into several disjoint cliques

using the Hopfield neural network. Once the cliques have been established, the step continues

by forming an interval graph with matching nodes in the single-row axis. Finally, we apply

ESSR to obtain its least congested single-row routing.

The paper is organized into eight sections. Section 2 is the problem formulation while the

terminologies and symbols used are outlined in Section 3. Section 4 discusses some brief

introduction to the single-row routing problem, and its solution using ESSR. The maximum

clique problem and its solution using the Hopfield neural network is discussed in Section 5.
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Fig. 1 A connected graph G5 with five nodes (left) and its partitions into two cliques (right)

Fig. 2 Single-row representation S from G

This is followed by a description of the transformation technique using both AdCliq and

ESSR in Section 6. We then display some experimental results from the simulations using

AdCliq and ESSR in Section 7. Finally, Section 8 is the summary and conclusion.

2 Problem formulation

The problem can be stated as follows: given a connected graph G with an arbitrary number

of nodes and edges, how can this graph be transformed into a network of non-crossing nets

with their proper matching nodes? It is also our main objective in the problem to design a

routing in the network with minimum street congestion and number of doglegs.

The above problem may be expressed as a dimensional problem in the form of demand-

supply problem [4]. In this case, the graph represents the demand while the single-row

network is the supply or equipment (hardware) for supporting the demand. Therefore, the

problem translates into mapping the demand to the equipment in such away to meet certain

performance metrics. In many cases, the demand-supply problem can be expressed as a

constrained or unconstrained linear programming problem.

Figure 1 shows an example of a connected graph G5 with five nodes. Our strategy in solving

the problem requires transforming G5 into two cliques, C1 and C2, before mapping the nodes

into a single-row network S with 10 pins. The transformation requires a series of steps

including partitioning the graph into several cliques before getting the linear representation.

Figure 2 show theresult of the transformation into its single-row representation. The figure

shows the final realization of the single-row representation with a minimum street congestion

value of 1 and having no dogleg. This realization is optimal with its energy at the minimum

value of 2.
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3 Symbols and terminologies

Several symbols and terminologies related to a connected graph and its transformation to the

single-row model are explained as follows:

Graph and hopfield network models

G Graph

G ′ Set of all computed cliques in G
Ci Clique i in G ′

GL List of nodes in G that are not in the computed cliques

GM G with an additional node v0

M Number of nodes in G
H Energy in the Hopfield network

R Transmission range for connectivity in G
di Degree of node i in G
qi j Element in the adjacency matrix of G
uxi Input of neuron i in group x
vi Node i in G
vxi Output of neuron i in group x
wi j Weight of link between vi and v j

Single-row network model

E Energy in the realization

Q Congestion in the realization

Qu Upper street congestion in the realization

Ql Lower street congestion in the realization

D Number of doglegs in the realization

N Number of nets in S
L Ordering list of nodes in the single-row axis S
Ik Interval k
S Set of pins in the single-row axis

bk beginning pin in net k
ek ending pin in net k
si Pin i in S
nk Net k in S
hk, j Height of segment j in net k

4 Single-row routing problem

Single-row routing is a combinatorial optimization problem that has been proven to be

NP-complete [1]. Traditionally, single-row routing is one of the techniques employed for

designing the routes between the electronic components of a printed-circuit board. Each path

joining the pins is called a net. In single-row routing problem, we are given a set of 2m
evenly-spaced pins (terminals or vias), ti , for i = 1, 2, . . . , 2m, arranged horizontally from
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1

2

3

4

5

6

7

8 9 10

upper street 
congestion, Qu = 2

lower street 
congestion, Ql = 3

node axispins

dogleg

n1

n2

n5

n3

n4

OUTPUT (routing results):
        Number of doglegs, D = 2
        Congestion, Q = max(Qu ,Ql) = 3

net

INPUT (requirements):
n1=(1,5), n2=(2,10), n3=(3,7), n4=(4,9), n5=(6,8)

Fig. 3 Terminologies in the single-row routing problem

left to right in a single horizontal row called single-row axis. The problem is to construct m
nets from the list L = {nk}, for k = 1, 2, . . . , m, formed from horizontal intervals, (bk , ek),

in the node axis, where bk and ek are the beginning and end pins of the intervals, respectively.

Each horizontal interval is formed from a pair of two (or more) pins through non-intersecting

vertical and horizontal lines. The nets are to be drawn from left to right, while the reverse

direction is not allowed.

Figure 3 shows a realization in a single-row routing from the ordering list L = {n1, n3,

n5, n4, n2}. Physically, each net in the single row represents a conductor path for its pins to

communicate. The area above the single-row axis is called the upper street, while that below

is the lower street. The number of horizontal tracks in the upper and lower streets is called

the upper street congestion Qu and the lower street congestion Ql , respectively. The overall

street congestion Q of a realization is defined as the maximum of its upper and lower street

congestions, that is, Q = max(Qu, Ql ) = 3 in the above figure. A crossing on the node axis,

as shown through a line between node 4 and 5 in the figure, is called a dogleg or interstreet

crossing. The realization also produces two doglegs in this example.

4.1 Simulated annealing approach using ESSR

Various methods based on graph theory, mathematical programming and heuristics have

been proposed to solve the single-row routing problem. In [5], Kuh et al. proposed some

necessary and sufficient conditions for determining the minimum congestion. In [6], a graph

decomposition technique was proposed to obtain the least congested routing based on the

overlapping intervals of a graph. In Deogun and Sherwani [7], Du and Liu proposed a heuristic

for finding an optimal routing based on a method that sorts the nets according to their classes,

internal cut numbers and residual cut numbers.
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One important objective in single-row routing is to minimize both the street congestion

and number of doglegs. This objective is difficult to achieve as the two components are

separate but dependent entities. While having one component minimized, the other tends

to show some resistance to its minimization. In [8], we proposed the simulated annealing

approach for solving the single-row routing problem. In this work, the energy in a given net

ordering is expressed as the total length of all the tracks, according to the energy function E
as follows:

E =
M∑

k=1

Mk∑
j=1

∣∣hk, j

∣∣. (1)

In the above equation, hk, j is the height of segment j in net k, while M is the number of nets

in the problem and Mk is the number of segments in net k. The routing produced in Fig. 3

with L = {n1, n3, n5, n4, n2} has an energy given by E = 11 which suggests it may not be

optimum. A better solution can be obtained by reforming the list with different orderings of

nets.

ESSR produces reasonably good optimal results in terms of both minimum street conges-

tion and number of doglegs through a series of iterative steps. The idea in ESSR is to place

the nets in a list L in order according to their position. Starting at a high temperature the

process starts with a random list L0 where the energy E0 is recorded. The temperature is then

lowered gradually where, at the same time, the position of a set of nets in the list are swapped.

The new energy is recorded and its difference from the old energy �E determines whether

the new list is accepted or rejected. The new list is accepted if �E ≤ 0. If �E > 0 then the

new list if accepted only if its Boltzmann probability given by P(�E) = e−�E/T is greater

than some threshold value ε. This annealing step is repeated until the energy is minimum,

and that no further improvement is noted after several iterations. The list corresponding to

this minimum energy is then the solution to the problem, and this list produces the desired

least-congested routing.

The method is further improved in [3] where a set of nets, rather than just one pair, are

swapped to produce a faster convergence to its solution. This parallel version of simulated

annealing is called the enhanced simulated annealing technique for single-row routing, or

ESSR. Through comparison with some methods before, ESSR produces reasonably good

optimal results in terms of both the street congestion and number of doglegs.

5 Hopfield network approach to the maximum clique problem

A clique C of a graph G is a subgraph of G where a node in C is adjacent to every other

node in the subgraph. The number of nodes in a clique is called its cardinality. A clique

with the maximum cardinality in a graph is also called the maximum clique. The maximum

clique problem is one of the most fundamental problems in graph theory which has many

applications such as in scheduling, clustering and resource allocation. The problem is known

to be NP-complete as it has interacting variables with many degrees of freedom.

The maximum clique problem is one of the most fundamental problems in graph theory.

Several methods have been proposed to solve this problem. One such method is the Hopfield

neural network [9] where an advantage can be seen from the fact that the graph maps directly

to the network. The network itself is a dynamic system which allows the neurons to update

their values asynchronously on new inputs, and maintain these values as inputs to other
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Single-row mapping and transformation of connected graphs 79

neurons. This process leads the network to enter a new state which depends on some iterative

parameters such as time and the thermostatic temperature. The network is said to stabilize

when changes on the input values for some neurons bring no effect to the network as a whole.

Hopfield neural network is a fully-connected, recurrent network, which has strong potential

for hardware implementation, due to the collective dynamical properties of its interacting

neurons [9]. The network itself is a complete graph where a node is connected to every

other node in the network. Updates on the nodes are executed asynchronously where only

a few nodes are selected at random at each time step. Unlike feed-forward networks, the

Hopfield network involves cyclic connections that make them behave as a nonlinear dynamic

system. Essentially, the system has very rich temporal and spatial behaviors, such as stable

and unstable fixed points, limit cycles, and chaotic behavior which can be used to model

associative memory. The network dynamics are dominated by locally stable states called

attractors, from where their state equations converge after a long temporal evolution.

We implement the method discussed in [11] which formulates the maximum clique prob-

lem as an unconstrained quadratic zero-one problem, with the energy function f (x) given as

follows:

f (x) = bTx + xTQx =
M∑

i=1

bi xi +
M∑

i=1

M∑
j=1

qi j xi x j , (2)

for the vector x = [x1, x2, . . . , xM ]T with xi ∈ {0, 1} , b = [b1, b2, . . . , bM ]T and Q = [qi j ]

is an M × M symmetrical rational matrix with zero diagonal elements. The corresponding

objective here is to minimize f (x).

A new matrix GM is obtained by adding v0 into G and this makes the unconstrained

quadratic zero-one programming problem equivalent to the problem of minimizing the weight

summation over the same partition in GM . From this concept, the maximum clique problem

becomes the global minimization of the following energy function [11]:

H =
M∑

x=0

M∑
y=0

2∑
i=1

wxyvxivyi (3)

where
∑2

i=1 vxi = 1forx = 0, 1, . . . , M where vxi ∈ {0, 1}andv01 = 1.In this case, the

weight wi j of an edge between nodes i, j in G M is defined by

w0i = wi0 = 1

4

(
N∑

j=1

qi j − 1

)
,

wi i = 0; wi j = w j i = 1
4
qi j

(4)

for all i �= jand i, j = 1, . . . , M .

In general, the M-node maximum clique problem can be mapped onto the Hopfield network

with M neurons. Comparing the Hopfield energy function (2) with the energy function of

Equation (3) defined for the maximum clique problem, we obtain all the self-connection

weights, wxi,xi = 0, the interconnection between neurons in the same group x, wxi,x j = 0

and the bias for every neuron θxi = 0. Substituting these values in Hopfield’s updating rule
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Given a connected graph G
(demand)

Apply AdCliq to get G'={Ci}
Formation of S, zones and their 

grouping based on Ci

Formation of intervals, 
Ij = (bj , ej)

Single-row routing through 
ESSR (equipment)

Fig. 4 The steps in the transformation

(3), we obtain the input of neuron i in the xth group given by

uxi = −2

M∑
y=0

wxyvyi . (5)

The dynamics of the network are reduced to

vxi (t + 1) =
{

1 if uxi (t) = max
j=1,...,m

{ux j (t)},
0 otherwise.

(6)

We chose the group of neurons, x with the smallest energy difference to be updated at time t,
which is �Hx (t) = miny=1,...,n{�Hy(t)}. This selection enables the network to converge to

a stable state in just a few iterations, and the global minimum leads to the maximum clique

of the graph.

6 Single-row transformation

Single-row transformation of a graph involves four steps, as shown in Fig. 4. In the first

step, the given connected graph G is partitioned into several disjoint cliques G ′ = {Ci }. The

given graph represents the demand in the demand-supply problem. Our approach for finding

the cliques is based on the Hopfield neural network method through AdCliq, as described

in Section 4.1. The second step involves the formation of nodes on a single-row axis and

their classification into zones. This leads way to the third step which is the formation of

intervals for matching the nodes on the single-row axis. The last step produces the optimal

realization for the minimum congestion in the network using ESSR. The solution is expressed

in the form of a network realization which represents the equipment in the demand-supply

problem.

6.1 AdCliq: Our Tool for partitioning a graph into cliques

In our work, the maximum clique problem is an important component in transforming a

given graph G to its linear form for the demand-supply problem. An important step in

the work is to partition G into q disjoint cliques G = {C1, C2, . . . , Cq} in such a way that

|C1| ≥ |C2| ≥ · · · ≥ |Ci | ≥ · · · ≥ ∣∣Cq

∣∣, where |Ci | is the cardinality of Ci . In this notation,
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Choose M and R to
produce the graph G.

Update GL by deleting 

the nodes in Ci.

Let k=number of 
remaining nodes in GL.

Compute the maximal 
clique Ci .

Let GL=the nodes in G,

k=M and i=1.

Start

Is k < 1? End
YesNo

i = i+1

Fig. 5 Execution steps in AdCliq

C1 is the maximum clique of G, C2 is the next maximum clique with the nodes in C1 excluded

from G, and continues until the minimum clique Cq .

Our model is called AdCliq, and it is based on the Hopfield neural network. AdCliq has

been developed using the C++ programming language on the Windows environment. The

simulation model generates a graph G with two to 100 nodes at the randomly determined

positions in the window. A link or edge between a pair of nodes is determined through their

Euclidean distance: a link exists if their Euclidean distance is less than a preset threshold

value R. This approach provides links to the nodes of the graph that are close to each other,

and ignore those that are far apart from each other. Therefore, an area that is congested with

nodes is said to have a high density, and this prompts for a higher number of links to meet

the higher demand of communication and data sharing.

Figure 5 showsthe flowchart of the execution steps in AdCliq. The model starts with input

in the form of M and R, for the number of nodes in G and the transmission range, respectively.

From the input, a list GL of all the nodes in G is created, with n as its number. Initially, k =
M but this value will decrease as GL excludes all the nodes from the computed cliques.
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Fig. 6 A graph with 13 nodes
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C2

C4

Fig. 7 Cliques of the graph in Fig. 6

The next step in AdCliq is to compute the maximum clique based on the list of nodes

in GL . The clique is denoted C1, and once it has been determined all the nodes in C1 are

removed from GL . The number of nodes k in GL is updated, and a check is made to determine

whether the iteration continues or to be stopped. If k < 1 the operation is stopped as it

signals all the cliques in G have been computed. Otherwise, the above step is repeated for

finding the second maximum clique, or C2, and so on until the stopping criteria k < 1 is

reached.

Adcliq is illustrated using an example on the graph in Fig. 6. The connected graph G
consists of 13 nodes, labeled as vi where i = 1, 2, . . . , 13. Applying AdCliq, we obtain

G ′ = {C1, C2, C3, C4}, with C1 = {v1, v2, v3, v4, v5}, C2 = {v6, v7, v8}, C3 = {v9, v10, v11}
and C4 = {v12, v13}, as shown in Fig. 7.
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z1 z5 z6 z7 z13z12z11z10z8 z9z2 z3 z4

C1 C4C3C2

Fig. 8 Transformation of G ′ into S

6.2 Formation of zones in the single-row node axis

The second step involves the formation of the single-row node axis S from G. In the trans-

formation, the graph G with M nodes generates N nets in S, where each net represents a pair

of nodes in S. The node vi in G forms zone zi consisting of di nodes in S, where di is the

degree of vi . It can easily be shown that there are 2N = 1
2

∑m
i=1 di nodes in S. The zones are

further classified as cliques C j according to the graph G ′.
The next step is to form a set of linear nodes S from G ′. Each node vi in G ′ expands into

di nodes in S, where di is the degree of vi . Figure 8 shows the linear nodes from G ′ obtained

from Fig. 7. In the figure, d1 = 5 since the degree of v1 is 5. There are
∑13

i=1 di = 44 nodes

in S, and they are placed into 13 zones, zi , for i = 1, 2, . . . , 13, according to their origin in

G ′. The nodes in S are labeled sk , for k = 1, 2, . . . , 44.

It is obvious from the transformation that a node in G becomes a zone in S. The zones

zi in Fig. 8 are arranged according to their grouping into cliques, in the order from C1 to

C4. This is necessary to make sure the neighboring nodes are close to each other in the new

arrangement. It is also necessary to minimize the length of each interval to be formed in the

subsequent steps as the length of an interval is also the horizontal length of the net.

6.3 Formation of intervals

The third step involves matching the pins S = {sk} into pairs of two to form the intervals

Ik , for j = 1, 2, . . . , N . Each interval Ik = (bk, ek) is made up of a left (beginning) pin bk

and a right (ending) pin ek . The formation of intervals is based on the width and level of the

intervals, similar to the method discussed in our earlier work in [2].

The matching between the nodes in G ′ can be either intra-clique or inter-clique. A matching

is said to be intra-clique if the two nodes belong to the same clique. Otherwise, it is inter-
clique. In both cases, the matchings represent the nets to be drawn from left to right in S.

Intra-clique matching involves a technique as described in Algorithms 1 and 2 in [2]. In

this technique, the nets are formed by grouping the intervals into several layers based on

their width. The width of interval k, denoted by wk , is defined as the difference between its

beginning and end pins, given as wk = ek − bk . A level, y, in Sm consists of a set of equal-

width nets grouped in ascending order from the smallest width to the largest. Our strategy

begins by forming levels where the nets with equal width are grouped. The nets in Sq are

created by defining their end-points. Once the nets have been formed, the next step consists

of sorting and renumbering the nets based on their beginning pins, in ascending order from

the lowest to highest.

The i th net in level y in Sq , denoted as ny,i,q = (by,i,q , ey,i,q ), formed from the clique, Cq ,

is grouped into levels based on its width, wy,q , according to the following relationships:

by,i,q = (q − y) + (q − 1)(i − 1) (9a)

ey,i,q = by,i + wy,q (9b)
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Table 1 Matching pairs obtained

from the transformation net pins

n1 (1,31)

n2 (2,21)

n3 (3,16)

n4 (4,11)

n5 (5,6)

n6 (7,20)

n7 (8,15)

n8 (9,10)

n9 (12,19)

n10 (13,14)

n11 (17,18)

n12 (22,41)

n13 (23,32)

n14 (24,44)

n15 (25,30)

n16 (26,27)

n17 (28,29)

n18 (33,40)

n19 (34,39)

n20 (35,36)

n21 (37,38)

n22 (42,43)

z1 z5 z6 z7 z13z12z11z10z8 z9z2 z3 z4

C1 C4C3C2

intra-clique
matchings

inter-clique 
matchings

Fig. 9 Interval graph formation from the matching nodes

for y = 1, 2, . . . , q − 1, and i = 1, 2, . . . , q − 1.

Inter-clique matchings involve the creation of interval Ik = (bk, ek) formed from a pin

in zi and another in z j from the graph relationship (vi , v j ) where vi and v j are not in the

same clique in G ′. Figure 9 shows the intervals formed from G ′ = {C1, C2, C3, C4} in the

inter-clique matching. The results from the inter-clique matchings are tabulated in Table 1.

6.4 Transformation of G into a single row S and its routing

In the last step, each interval Ik in S is mapped and realized into net nk using ESSR. The net

is drawn from left to right in such a way that it is made up of horizontal and vertical line

segments only, and it does not cross another net. We apply ESSR with I = {Ik} as the input,

to produce an optimal routing with minimum congestion based on the minimum energy E ,

Springer



Single-row mapping and transformation of connected graphs 85

Fig. 10 Final realization with E = 26, Q = 3 and D = 3, using ESSR

as described in our earlier work in [1]. Figure 10 showsthe routing results from the nets

in Table 1. The results are optimal with E = 26, Q = 3 and D = 3 from the ordering list

L = {1, 14, 19, 5, 20, 6, 9, 21, 10, 7, 16, 8, 4, 17, 11, 18, 22, 15, 13, 3, 12, 2}.

7 Experimental results and analysis

Our simulations are performed using AdCliq and ESSR. Both AdCliq and ESSR are user-

friendly tools that were developed using C++ on the Windows environment. AdCliq supports

a maximum of 100 nodes per graph which are generated randomly in the rectangular area of

the window. The connected graph is produced from the random placement of nodes in the

plane. The adjacency of the nodes in the graph G is controlled by the preset transmission

range R. In this case, a pair of nodes are adjacent (an edge exists between the nodes) if its

distance is less than or equal to R. This factor contributes to the total number of links in

G, which is the same as the total degrees of all its nodes, GD. R is directly proportional to

GD: a high value of R contributes to a high GD, which means a high adjacency rate between

the pairs of nodes in G. AdCliq computes the number of cliques of the graph, its maximum

clique and the total degrees, and display the results in the window.

We illustrate the interface in AdCliq using an example of a graph with 30 nodes.

Figure 11 showsthe visual interface of AdCliq with G having 30 nodes scattered randomly

in the rectangular area on the left of the window. A sample run with R = 150 produces ten

cliques in G, with the maximum clique of six and total node degrees of 160. The maxi-

mum clique produced is C1 = {3, 7, 10, 15, 24, 28}. Other cliques are C2 = {6, 18, 19, 21},
C3 = {2, 8, 11, 27},C 4 = 13,16,20,29 , C5 = {5, 22, 23, 30}, C6 = {4, 12}, C7 = {14, 17},
C8 = {1, 25}, C9 = {9} and C10 = {26}.

Figures 12 showsESSR in forming the intervals between the pins in S using the information

from the graph G in AdCliq. The iterations become stable after 2270 iterations with the

minimal energy value E = 2209, and this results in Q = 24 and D = 335. The energy E is

the optimal value obtained after some massive annealing steps in ESSR which correspond to

minimum Q and D based on Equation (1). The details on the energy minimization procedures

in ESSR can be referred to our earlier work in [3]. This output is shown as a realization in

Fig. 13.

We perform simulations using AdCliq and ESSR on 14 data sets where the above illustra-

tions make up Set 8. The graphs with between six to 60 nodes are generated using AdCliq,

while their transformation into the single rows are performed using ESSR. Table 2 shows

the results from the simulation on the data sets. The graphs information using AdCliq is

shown in columns 2 through 6 in the table. AdCliq computes the number of cliques, the

maximum clique MC and the total number of degrees GD of each graph. It then follows with

the transformation of each graph G into a row of pins using ESSR, with the information on

the transformation shown in columns 7 to 11 in the table. In the transformation process, the

number of nodes in G maps directly as the number of zones in S. In addition, each node

degree in G maps to a pin in S. The output in the form of energy E, congestion Q and number
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Fig. 11 AdCliq interface showing the graph in Set 8

Fig. 12 Intervals S formed from the graph in Fig. 11

of doglegs D from the simulated annealing processes are shown in columns 9, 10 and 11,

respectively.

Figure 14 shows the relationships between the number of nodes M in the graph with the

energy (left), and congestion and number of doglegs (right) on the sets of data in Table 2. It

is obvious from the graphs that the complexity of the problem increases exponentially as the

number of nodes increases.
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Fig. 13 Final realization in S with 160 pins

Table 2 Sample results from the simulations

G Partitioning using AdCliq S transformation using ESSR

Set M R #Cliques MC GD #Zones #Pins E Q D

1 6 250 3 3 12 6 12 12 2 3

2 8 250 4 3 22 8 22 20 3 4

3 10 250 4 4 28 10 28 24 4 2

4 13 200 4 5 44 13 44 26 3 3

5 15 200 5 5 68 15 68 151 10 30

6 20 200 8 5 80 20 80 343 12 36

7 25 200 9 6 134 25 134 994 19 157

8 30 150 10 6 160 30 160 2209 24 335

9 35 150 12 6 204 35 204 3872 37 425

10 40 150 14 8 232 40 232 4817 48 663

11 45 150 13 9 310 45 310 6534 57 847

12 50 100 13 7 414 50 414 9590 70 994

13 55 100 14 8 556 55 556 12954 88 1134

14 60 100 15 10 634 60 634 15337 102 1529

The transformation problem has a number of open problems in the form of theoretical

foundation and applications. The transformation model from a connected graph to the single

row network has a huge potential for a wide range of applications. In [2], we discussed

two potential applications, namely the channel assignment problem and the multiprocessor

routings. Both problems may be explored further as there are many open problems relevant

to the transformation model discussed in this paper.
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Fig. 14 Relationships between the number of nodes M with E, Q and D

We discuss briefly the potential application of the transformation model to the channel

assignment problem. The case mentioned in [2] is specific to a complete graph where all

nodes in the graph have equal degrees as they are connected to each other. Therefore, the

transformation is made in such a way that every zone has an equal number of pins (channels).

A zone in this model may represent a cell in the network. Practically, the model may not

apply well as the demand for channels may differ between the cellular cells in the network.

The present model is more flexible as it caters to the non-uniform channel requirements as

the degree of each node in the graph varies. As shown in Fig. 9, a clique instead of a zone

may represent a cell in this case. In turn, a zone may represent the mobile subscriber who

may want to communicate with more than one person in the network as specified by its node

degree.

8 Summary and conclusion

In this paper, the single-row transformation model of a connected graph has been presented.

The transformation model is proposed as a multi-commodity problem in the form of supply-

demand mapping. In the demand-supply dimensional problem, the connected graph may

represent the demand flows between the components in the graph while the network support-

ing it is the resource or capacity links for supporting the demand volumes. The main idea

behind this transformation model is to provide a reasonably good optimal single-row routing

network that minimizes the congestion in the network. We proposed AdCliq which is a tech-

nique for partitioning a given graph into several disjoint cliques using the Hopfield neural

network. From the cliques, a set of intervals derived from the zones are obtained through

the matching nodes in the single-row axis. The intervals are then mapped into a network of

non-crossing nets using our previously developed tool called ESSR. The network is optimal

in terms of minimal street congestion and number of doglegs, and this provides a reasonably

good step towards the overall solution to the demand-supply problem.
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