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Abstract. Multilateration estimates aircraft position
using the Time Difference Of Arrival (TDOA) with
a lateration algorithm. The Position Estimation (PE)
accuracy of the lateration algorithm depends on sev-
eral factors which are the TDOA estimation error, the
lateration algorithm approach, the number of deployed
GRSs and the selection of the GRS reference used for
the PE process. Using the minimum number of GRSs
for 3D emitter PE, a technique based on the condi-
tion number calculation is proposed to select the suit-
able GRS reference pair for improving the accuracy of
the PE using the lateration algorithm. Validation of
the proposed technique was performed with the GRSs
in the square and triangular GRS configuration. For
the selected emitter positions, the result shows that the
proposed technique can be used to select the suitable
GRS reference pair for the PE process. A unity con-
dition number is achieved for GRS pair most suitable
for the PE process. Monte Carlo simulation result, in
comparison with the fixed GRS reference pair latera-
tion algorithm, shows a reduction in PE error of at
least 70 % for both GRS in the square and triangular
configuration.
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1. Introduction

Passive wireless positioning and navigation systems
utilize aircraft transponder emission which is detected
with the support of antenna of a Ground Receiving Sta-
tion (GRS) for determining the position of the aircraft.
Determining the position of an aircraft is a two-stage
process [1]. The first stage involves the estimation of
the position dependent signal parameter from the re-
ceived aircraft transponder emission. Some examples
of position dependent signal parameters are the An-
gle Of Arrival (AOA), the Time Of Arrival (TOA),
the Time Difference Of Arrival (TDOA) and Receive
Signal Strength (RSS). In the second stage, the posi-
tion dependent signal parameter estimated at the first
stage is input into a Position Estimation (PE) algo-
rithm to determine the position of the aircraft. This
is known as the PE process. Examples of the PE al-
gorithm used at the PE process are angulation, finger-
printing and lateration. Multilateration system is an
example of a wireless positioning system. The system
estimates TDOA from the received aircraft transpon-
der emission as its position dependent signal parame-
ter and uses the lateration algorithm to determine the
aircraft position [1], [2] and [3]. It consists of several
specially placed GRSs all connected to a central pro-
cessing unit. Depending on the number of GRS de-
ployed, 2-Dimension (2D) or 3-Dimension (3D) posi-
tion of the aircraft is resolved. For 3D PE, there is a
minimum of four GRSs needed [3]. Many studies have
described methods for TDOA estimation [4], [5], [6],
[7] and [8]. For example, [4] compares TDOA estima-
tion using cross-correlation and fast cross-correlation
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to determine which method is faster for practical and
theoretical implementation. In [8], Signal-to-Noise Ra-
tio (SNR) is used for the benchmark to compare the
performance of five different TDOA estimation tech-
niques.

The PE process is the scope of this work. Depending
on the number of GRS (N), N−1 nonlinear hyperbolic
equations are generated [9]. Several approaches devel-
oping the lateration algorithms have been proposed in
articles [9], [10], [11], [12], [13], [14] and [15] which can
be grouped into two as a linear and nonlinear approach
[1] and [11]. The non-linear approach involves the use
of linear approximation and iterative methods such as
Taylor’s series expansion to perform PE [9], [10] and
[11]. The linear algorithm involves algebraically ma-
nipulating the hyperbolic equations to directly set an
inverse problem that linearly relates the unknown air-
craft position to the known TDOA measurements as
described in [12], [13], [14] and [15]. Due to the con-
vergence issue and the use of initial position estimated
for the non-linear approach [10], this study focuses on
using the linear approach to developing the lateration
algorithm.

The linear lateration algorithm has been character-
ized with high PE error. Numerous researchers have
proposed techniques such as weighting functions [16],
total least squares [17] and Tikhonov regularization [9]
for improving the PE accuracy of the lateration algo-
rithm. These techniques efficiently to use but require
at least five GRSs to be deployed. The minimum GRS
deployed for 3D PE is four. Thus, these techniques
cannot be used to improve PE accuracy of the latera-
tion algorithm for 3D minimum configuration.The use
of more than one GRS as a reference is suggested for
improving the accuracy of the lateration algorithm [6]
and [18]. The choice of the reference GRS has been
reported to improve the PE accuracy of the lateration
algorithm [19], [20] and [21]. In [20], a TDOA residual-
based method was proposed to select the suitable GRS
as a reference for PE with lateration algorithm in an
active system. It was assumed that the emitter posi-
tion is known but there was the need to continuously
track the position of the system using another system.
Using the known emitter position, each of the deployed
GRS is used as a reference and the GRS that resulted
in the least TDOA residual is chosen as a reference for
subsequent estimation of the emitter position. An SNR
based GRS reference selection method was proposed in
[21]. With the assumption that all noise power at the
GRS remains constant, the GRS with the highest re-
ceived SNR is the closest to the emitter and it is the
most suitable GRS to be used as a reference for the PE
with the lateration algorithm. Using GRS pair as a ref-
erence for the lateration algorithm, this study suggests
a technique to choose the suitable GRS reference pair
for the lateration algorithm. The lateration algorithm

considered is for the 3D minimum configuration mul-
tilateration system. The suggested technique involves
calculating the condition number of a derived matrix
and choosing the GRS pair with the least condition
number from the derived matrix. The proposed GRS
reference pair selection technique is validated by com-
parison with the fixed GRS reference pair lateration
algorithm, used in [12], with selected emitter position
and the GRSs deployed in square and triangular con-
figurations.

The rest of the paper is organized as follows.
Section 2. presents the multilateration PE methodol-
ogy and PE condition number analysis. The proposed
GRS reference pair selection technique is described in
Sec. 3. The result and discussion are presented in
Sec. 4. followed by the conclusion in Sec. 5.

2. Multilateration PE
Methodology and Condition
Number Analysis

This section describes the variable GRS reference pair
PE lateration algorithm followed by the condition num-
ber analysis of the multilateration PE mathematical
model for different GRS reference pair.

2.1. Variable GRS Reference Pair
Multilateration PE
Methodology

Let x = (x, y, z) be the coordinate of a stationary emit-
ter in 3D Euclidean space and Si = (xi, zi, zi). the co-
ordinate of the i-th GRS The distance travelled by the
electromagnetic emission from the emitter position to
the i-th GRS is calculated as:

di = c · τi =
√

(x− xi)2 + (y − yi)2 + (z − zi)2, (1)

where c = 3 · 108 m·s−1 is the speed of light and τi is
the propagation time of the signal from the emitter to
the i-th GRS.

The Path Difference (PD) between i-th and m-th
GRS pair is obtained as:

di,m =

√
(x− xi)2 + (y − yi)2 + (z − zi)2−

+

√
(x− xm)

2
+ (y − ym)

2
+ (z − zm)

2
.

(2)

GRS pair is used as a reference for the latera-
tion algorithm. Let the i-th and j-th GRSs to be
chosen as reference pair with coordinates (xi, ji, ki)
and (xj , jj , kj) respectively while the non-reference
GRSs are labelled the m-th and n-th with coordinates
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(xm, jm, km) and (xn, jn, kn) respectively. Using the
i-th GRS as a reference, two independent PD equa-
tions are obtained [12] and expressed in the following:

di,n = di − dn, (3)

di,m = di − dm, (4)

while for the j-th reference GRS, the two independent
PD equations are obtained as:

dj,n = dj − dn, (5)

dj,m = dj − dm. (6)

Combining Eq. (3) and Eq. (4) after further simplifi-
cation results into 3D plane equation which is presented
in [12] as follows:

Ai,n,m = xBi,n,m + yCi,n,m + zDi,n,m, (7)

where the coefficients of Eq. (7) are:

Ai,n,m = 0.5

(
di,m − di,n +

ki,m
di,m

− ki,m
di,n

)
, (8)

Bi,n,m =
Xn,i

di,n
− Xm,i

di,m
, (9)

Ci,n,m =
Yn,i
di,n
− Ym,i

di,m
, (10)

Di,n,m =
Zn,i

di,n
− Zm,i

di,m
, (11)

ki,w =
(
x2i + y2i + z2i

)
−
(
x2w + y2w + z2w

)
, (12)

Xi,w = xi − xw, Yi,w = yi − yw, (13)

Zi,w = zi − zw, w ∈ [m,n] . (14)

In addition, combining Eq. (5) and Eq. (6) after fur-
ther simplification results into another 3D plane equa-
tion as follows:

Aj,n,m = xBj,n,m + yCj,n,m + zDj,n,m, (15)

where the coefficients of Eq. (15) are:

Aj,n,m = 0.5

(
dj,m − dj,n +

kj,m
dj,m

− kj,m
dj,n

)
, (16)

Bj,n,m =
Xn,j

dj,n
− Xm,j

dj,m
, (17)

Cj,n,m =
Yn,j
dj,n

− Ym,j

dj,m
, (18)

Dj,n,m =
Zn,j

dj,n
− Zm,j

dj,m
, (19)

kj,w =
(
x2j + y2j + z2j

)
−
(
x2w + y2w + z2w

)
, (20)

Xj,w = xj − xw, Yj,w = yj − yw, (21)

Zj,w = zj − zw, w ∈ [m,n] . (22)

Equation (7) and Eq. (15) when represented in ma-
trix form is:[

Bi,n,m Ci,n,m Di,n,m

Bj,n,m Jj,n,m Dj,n,m

]
·

xy
z

 =

[
Ai,n,m

Aj,n,m

]
, (23)

Qij · x = aij . (24)

Equation (23) is known as the multilateration 3D
PE mathematical model for minimum GRS configu-
ration. The subscript “i, n, m” and “j, n, m” for
the entries of the matrices Qij and aij indicate that
the entry is obtained using the i-th and j-th GRS as
a reference respectively with the m-th and n-th GRS
as non-reference. The location of the aircraft (x, y, z)
is obtained by finding the inverse matrix solution of
Eq. (23) with TDOA or PD measurements and GRSs
coordinates as input.

2.2. Multilateration PE
Mathematical Condition
Number Analysis

In the practical application, the PD measurements are
obtained with errors which affect the solution obtained
using matrix Eq. (23). The effect of the PD measure-
ment error on the solution of matrix Eq. (23) is de-
termined by the sensitivity of matrix Qij defined by
the condition number value. The condition number of
a square matrix indicates on how the error in the in-
put variables is amplified to the solution obtained us-
ing the system. Matrix Qij in Eq. (24) is a rectangular
matrix whose condition number cannot be determined.
Assuming that the GRSs have insignificant height dif-
ference, that is:

Zi,w = zi − zw ≈ 0, (25)

Zj,w = zj − zw ≈ 0, (26)
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Tab. 1: Matrix Aij condition number for different GRS pair as reference. Yellow shade indicates the GRS pair with the least
K(Aij).

Range
(km)

Bearing
(◦)

Altitude
(km)

GRS reference pair condition number
i = 1
&

j = 2

i = 1
&

j = 3

i = 1
&

j = 4

i = 2
&

j = 3

i = 2
&

j = 4

i = 3
&

j = 4
5 60 1 17 21 4 19 10 30
50 1 87 59 17 64 50 99
5 120 7 37 21 31 8 30 49
50 7 89 50 66 17 60 101

for all 1 ≤ i ≤ 4, 1 ≤ j ≤ 4, 1 ≤ w ≤ 4 and i 6= j 6= w,
matrix Qij can be reduced to a square matrix written
as:

Aij =

[
Bi,n,m Ci,n,m

Bj,n,m Cj,n,m

]
, (27)

where Di,n,m = Dj,n,m = 0.

Using the matrix Aij , the condition number can be
obtained and used in determining the effect of PD mea-
surement error on the PE accuracy of the lateration
algorithm. The condition number of matrix Aij in
Eq. (27) denoted as K(Aij) is obtained as:

K(Aij) = ‖Aij‖2 ·
∥∥A−1

ij

∥∥
2
, (28)

where ‖Aij‖2 and
∥∥A−1

ij

∥∥
2
are the 2-norm of matrix

Aij and its inverse respectively.

The 2-norm of the matrix Aij and its inverse are
defined with respect to entries in Eq. (27) which have
been expressed in [22].

‖Aij‖2 =

=
√
|Bi,m,n|2 + |Ci,m,n|2 + |Bj,m,n|2 + |Cj,m,n|2,

(29)

∥∥A−1
ij

∥∥
2
=

=

√
|Bi,m,n|2 + |Ci,m,n|2 + |Bj,m,n|2 + |Cj,m,n|2

det(Aij)
,

(30)

where det(Aij) is a determinant of matrix Aij ex-
pressed mathematically as:

detAij = (Bi,m,n · Cj,m,n)− (Bj,m,n · Ci,m,n). (31)

Substituting Eq. (29) and Eq. (30) into Eq. (28),
the condition number the matrix Aij as function of its
entries can be written as Eq. (32).

Equation (32) represents the condition number of
matrix Aij in Eq. (27) whose entries are obtained
using the i-th and j-th GRS pair as a reference with the
m-th and n-th as non-reference GRSs. For an emitter
at a stationary position with a fixed GRS configuration,
different GRS pair (i, j) will produce different entries
of matrix Aij . This will result in different condition

number value in Eq. (32). Higher condition number
values indicate greater error in the solution obtained
using Eq. (23). Table 1 shows the condition number
of the matrix Aij using Eq. (32) for different GRS
pair (i, j) at four emitter positions with GRS in the
square configuration. Emitter positions are given in
cylindrical coordinate system. The condition number
differs for different emitter positions and GRS refer-
ence pairs. At fixed emitter position, different GRS
pair produces different condition numbers. At emit-
ter position (5 km, 60◦, 1 km), GRS pair i = 1 and
j = 4 has the least condition number value while GRS
pair i = 3 and j = 4 has the highest condition number
value. At emitter position (50 km, 120◦, 7 km), GRS
pair i = 2 and j = 3 has the least condition number
value while i = 3 and j = 4 has the highest condition
number value. For each emitter position, the pair with
the least condition number value,used as a reference for
the lateration algorithm, will result in the emitter po-
sition estimated with the least error. This means that
for emitter positions (5 km, 60◦, 1 km) and (50 km,
60◦, 1 m), the suitable GRS pair as a reference are the
i = 1 and j = 4. For emitter positions (5 km, 120◦,
7 km) and (50 km, 120◦, 7 km), the suitable GRS pairs
as a reference are i = 2 and j = 3.

GRS reference selection for PE is carried out prior
to the actual PE process. The available parameters
related to the emitter position which can be used for
selecting the suitable GRS pair as a reference are the
PD measurements only. Thus, the condition number
obtained from matrix Aij in Eq. (27) cannot be used
since it is a function of both PD measurements and
GRS coordinate. In next section, the approach is de-
veloped to determine the suitable GRS reference pair
to be selected for the PE process.

3. Proposed GRS Reference
Pair Selection Technique

In this section, the technique for selection of the suit-
able GRS reference pair for the PE process is pre-
sented. In Subsec. 2.2. , it was concluded that us-
ing matrix Aij to determine the suitable GRS pair as
a reference for PE is not possible. Matrix Aij can
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K(Aij) =

(
|Bi,m,m|2 + |Ci,m,m|2 + |Bj,m,m|2 + |Cj,m,m|2

)
(Bi,m,m · Cj,m,m)− (Bj,m,m · Ci,m,m)

. (32)

Aij =


(
Xm,i

di,m
− Xn,i

di,n

) (
Ym,i

di,m
− Yn,i
di,n

)
(

Xm,j

dj,m
− Xn,j

dj,n

) (
Ym,j

dj,m
− Yn,j
dj,n

)
 =


(Xm,idi,n −Xn,idi,m)

di,mdi,n

(Ym,idi,n − Yn,idi,m)

di,mdi,n
(Xm,jdj,n −Xn,jdj,m)

dj,mdj,n

(Ym,jdj,n − Yn,jdj,m)

dj,mdj,n

 =

=

[
(di,m · di,n)−1

0

0 (dj,m · dj,n)−1

]
·
[
(Xm,idi,n −Xn,idi,m) (Ym,idi,n − Yn,idi,m)
(Xm,jdj,n −Xn,jdj,m) (Ym,jdj,n − Yn,jdj,m)

]
,

(33)

be split into two matrices while one of the matrices
is having only the PD measurements as its entries.
From Eq. (27), the matrix Aij is written as Eq. (33).
Let

Mij =

[
(di,m · di,n)−1

0

0 (dj,m · dj,n)−1

]
. (34)

Nij =[
(Xm,idi,n −Xn,idi,m) (Ym,idi,n − Yn,idi,m)
(Xm,jdj,n −Xn,jdj,m) (Ym,jdj,n − Yn,jdj,m)

]
.

(35)

Then

Aij = Mij ·Nij . (36)

Matrix Mij and Nij are both square matrices. The
matrix Mij is having only PD measurements obtained
using any possible GRS pair (i, j) as its entries. This
matrix can be used instead of matrix Aij for condition
number calculation to determine the suitable GRS pair
as a reference for the PE process. The condition num-
ber of matrixMij as a function of the PD measurement
is obtained as Eq. (37).

Further simplification of Eq. (37) will result in:

K(Mij) =

(
dj,m · dj,n
di,m · di,n

)
+

(
di,m · di,n
dj,m · dj,n

)
. (38)

Using Eq. (38), the condition numbers for all the
possible GRS pairs are obtained. The pair with the
least condition number is chosen as a reference for the
PE process with the lateration algorithm. The sum-
mary of the procedure for selection of GRS reference
pair for four numbers of GRSs is described as follows:

• Obtain the PD measurement set using Eq. (39) for
each of the possible GRS pair (i, j) as references
as shown below.

di,j,m,n = [di,m, di,n, dj,m, dj,n] . (39)

• Using the PD measurement set from (i) for each
GRS pair, substitute into Eq. (38) and solve for
K(Mij).

• Choose the GRS pair with the least K(Mij) value
from step (ii) as the reference pair for the PE pro-
cess with the lateration algorithm.

4. Results and Discussion

In this section, the technique for the selecting the suit-
able GRS reference pair based on the condition number
which is calculated using Eq. (38) for the PE using the
lateration algorithm is validated. This is done with a
comparison of the condition number which has been
obtained using Eq. (38) with the support of Eq. (32).
Validation is carried out for some selected emitter po-
sitions with GRSs in the square and triangular con-
figuration as shown in Fig. 1. It has been established
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(a) Square GRS configuration.
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(b) Triangular GRS configuration.

Fig. 1: Square and triangular GRS configuration with GRS sep-
aration of 10 km.
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KMij =
1

det(Mij)
· ‖Mij‖22 =

∥∥∥∥[(di,m · di,n)−1
0

0 (dj,m · dj,n)−1

]∥∥∥∥2
2

det

([
(di,m · di,n)−1

0

0 (dj,m · dj,n)−1

]) =

=

(√
(di,m · di,n)−2

+ (dj,m · dj,n)−2

)2

(di,m · di,n · dj,m · dj,n)−1 = (di,m · di,n · dj,m · dj,n) ·

(
1

(di,m · di,n)2
+

1

(dj,m · dj,n)2

)
.

(37)

that the GRS pair with the least condition number is
the suitable GRS pair as a reference for the lateration
algorithm.

For each of the GRS configurations, the validation of
the proposed GRS reference pair selection technique is
carried out for the emitter positions which are defined
in Tab. 2.

Tab. 2: Emitter positions for validation.

No. Emitter
position

Range
(km)

Altitude
(km)

Bearing
(◦)

1 A

5 7

30
2 B 120
3 C 220
4 D 320

Table 3 shows the condition number comparison of
the matrix Aij in Eq. (27) and Mij in Eq. (34) us-
ing Eq. (32) and Eq. (37) respectively for the square
GRS configuration. For the selected emitter positions
considered, it is seen that the GRS pair with the least
KAij also has the least KMij . At emitter position
A, the GRS pair with the least KAij = 8 and least
KMij = 1 is the pair i = 1 and j = 4. At emitter
location B, the GRS pair with the least Aij = 8 and
least KMij = 1 is the pair i = 2 and j = 3. It is also
seen that the GRS pair with the least Aij will have
KMij = 1. This means that the GRS pair suitable as
a reference for PE process with the lateration algorithm
at any given emitter position will have KMij = 1.

Table 4 shows the condition number comparison of
matrix Aij in Eq. (27) and matrix Mij in Eq. (34)
using Eq. (32) and Eq. (37) respectively for the trian-
gular GRS configuration. The same conclusion for the
square GRS configuration is deduced for the triangular
configuration. Even thought, at the emitter positions
A and D the leastK(Aij) is obtained by more than one
GRS reference pair. One of the GRS pairs was chosen
as the most suitable for the PE process of the emitter
at the selected position which has K(Mij) = 1.

4.1. PE Accuracy Improvement

In this section, the PE accuracy of the lateration algo-
rithm with the proposed reference selection technique
in Sec. 3. is compared with the fixed GRS refer-
ence pair approach (GRS 1 and GRS 2) used in [12].
PE Root Mean Square Error (RMSE) is used as the
performance measure for the comparison. Mathemati-
cally, the PE RMSE is obtained as:

PErmse =

=

√√√√√√
N∑
i=1

[
(x̂− x)2 + (ŷ − y)2 + (ẑ − z)2

]
N

,

(40)

where (x, y, z) are the known emitter coordinates and
(x̂i, ŷi, ẑi) are the estimated emitter coordinates at the
i-th Monte Carlo simulation realization. The Monte
Carlo simulation results were obtained after 500 real-
izations. The PD Estimation (PDE) error was mod-
elled as N(0, σ2) and it was assumed to be the same at
all the spatially placed GRSs.

By varying the PDE error standard deviation from
0 m to 2 m, the PE RMSE of the lateration algorithm
with the proposed reference selection technique and
that of the fixed GRS reference pair were obtained and
compared. Figure 2 and Fig. 3 show the PE RMSE
comparison between two approaches for emitter at po-
sition B using the square and triangular configura-
tion respectively. The PE RMSE increases with in-
crease in the PDE error standard deviation from 0 m
to 2 m. Comparison between the PE RMSE of the lat-
eration algorithm with the proposed reference selection
technique for both square and triangular configuration
shows that there is an improvement in the PE accu-
racy by the reduction in the PE RMSE. From Fig. 2,
at PDE error standard deviation of 1 m, the PE RMSE
of the lateration algorithm with the proposed technique
is 6.25m and that of using the fixed GRS reference pair
is 21.78 m. This means a reduction in the PE RMSE
of about 15.53 m (∼ 71 %) was achieved with the pro-
posed technique at emitter position A with the GRS in
the square configuration. Extending the analysis to the
triangular configuration, at PDE error standard devi-
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Tab. 3: Square GRS configuration condition number comparison. Yellow shade indicates the GRS pair with the least KAij value
while green shade indicates the GRS pair with the least KMij value.

GRS reference pair
Emitter
position

i = 1
&

j = 2

i = 1
&

j = 3

i = 1
&

j = 4

i = 2
&

j = 3

i = 2
&

j = 4

i = 3
&

j = 4
K(Aij) 21 49 8 31 37 30A
K(Mij) 3 5 1 2 3 6
K(Aij) 37 21 31 8 30 49B
K(Mij) 3 3 2 1 6 5
K(Aij) 85 73 7 80 98 60C
K(Mij) 17 9 1 2 16 9
K(Aij) 85 98 80 7 73 60D
K(Mij) 17 16 2 1 9 9

Tab. 4: Triangular GRS configuration condition number comparison. Yellow shade indicates the GRS pair with the least K(Aij)
value while green shade indicates the GRS pair with the least K(Mij) value.

GRS reference pair
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&
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i = 1
&
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i = 1
&
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i = 2
&

j = 3

i = 2
&

j = 4

i = 3
&

j = 4
K(Aij) 14 2 2 2 2 15A
K(Mij) 2 4 1 5 3 2
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K(Mij) 2 1 3 1 2 2
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Furthermore, comparing the PE RMSE for the
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lar GRS configuration resulted in the least PE RMSE.
This is due to the low condition number values ob-
tained with the triangular configuration as shown in
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5. Conclusion

This research has accomplished a method to select the
suitable GRS reference pair which is to be used for
improving PE accuracy of the lateration algorithm for
a minimum configuration 3D multilateration system.
The technique was validated by condition number cal-
culation and PE RMSE estimation comparison with
a fixed GRS reference pair lateration algorithm. Condi-
tion number calculation results indicate that the most
suitable GRS pair, used as a reference for the latera-
tion algorithm, has the least condition number value.
PE RMSE Monte Carlo simulation results comparison
shows that the proposed reference selection technique
improved the PE accuracy of the lateration algorithm
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by a reduction in the PE RMSE of at least 70 % for
both square and triangular GRS configuration. Fur-
ther work will focus on the extension of the technique
for more than 4 GRSs.
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