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Abstract

Boundary element formulations for modelling the nonlinear behaviour of concrete are reviewed. The analysis based
on the dual boundary element method (BEM) to represent the cracks in concrete is presented. The fictitious crack is
adopted to represent the fracture process zone in concrete. The influence of reinforcements on the concrete is considered
as a distribution of forces over the region of attachment. The yielding of reinforcement is considered when the total
force at any section of the reinforcement is greater than the yielding force and is assumed to be broken when the strain
reaches the maximum strain. In using the BEM to simulate cracks, the crack path need not be known in advance since it
can be calculated during the iteration process and as such remeshing becomes obsolete. The numerical results obtained
are compared to the FEM analysis. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

An early application of the boundary element method (BEM) to cracking can be traced to Harder [1]. An
indirect boundary element formulation was used together with the fictitious crack model (FCM). No results
were however reported in Ref. [1]. Liang and Li [2] presented BEM analysis to simulate the nonlinear
fracture zone in cementatious materials, using a FCM. Later, Cen and Maier [3] used multidomain BEM
along with the FCM to simulate the crack propagation in concrete. A review of boundary element for-
mulations for fracture mechanics can be found in Ref. [4].

In this paper, the application of the BEM to analysis of crack growth in plain and reinforced concrete is
presented. The method presented is based on the original contributions by Saleh and Aliabadi [8,10,11].
The FCM is used for the cracking of concrete and bonded by stiffener to represent the reinforcement. The
method presented is based on the dual boundary element method (DBEM) developed by Aliabadi and
co-workers [5-7]. The DBEM is shown to be computationally efficient in simulating crack propagation,
particularly when dealing with the nonlinear behaviour in concrete such as fracture zone. Using this
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method the crack propagation path does not need to be known in advance, since at every step of crack
extension the path is computed simultaneously. This is one of the main reasons why DBEM becomes more
efficient in the numerical analysis of crack propagation in which the crack path could be arbitrary.

Therefore, the aim of this paper is to discuss the application of DBEM to the analysis of cracks in
concrete and to study the behaviour of the fracture zone which occurred in concrete during the crack
propagation, by means of the FCM.

2. Dual boundary element method

The DBEM is employed to model the cracking of reinforced concrete. The DBEM is shown to be
computationally efficient in simulating crack propagation especially when dealing with the nonlinear
behaviour in concrete. The dual equations, on which the DBEM is based, are the displacement and the
traction boundary integral equations. The boundary integral representation of the displacement compo-
nents, «; can be written in terms of boundary points as

W)+ f XA - f TN~ [ U X X))

~ [ G xdr), 0

where coefficient ¢;;(X') is given by 6;;/2 for smooth boundary at the point X’ (J;; is the Kronecker delta) and
§ denote the Cauchy principal value integral. The functions 7;;(x’,x) and U;;(x’,x) represent the Kelvin
traction and displacement fundamental solutions, given by
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At a boundary point x; u{'(x) and #7(x) are the displacement and distributed cohesive forces, respec-
tively, on one of the crack surfaces I.

The boundary integral representation of the traction components, #; can be obtained from ¢; = g;;n;,
where o;; are the stress components obtained by differentiating Eq. (1) followed by apphcatlon of the
Hooke’s law and n; denotes the ith component of the unit outward normal to the boundary. For a point on
a smooth boundary, #; can be written as
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where f denotes the Hadamard principal value integral. The fundamental solutions Sy;(X’, X) and Dj;(X’, X)
are given as
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The functions u{'(x) and #'(x) are the displacement and distributed cohesive forces, respectively, at the
other crack surfaces, I's.. For a traction free crack, " = £ = 0. Eqgs. (1) and (2) constitute the basis of the
DBEM and can be expressed in the matrix form as

X
(4 [Ha] [Gal]q {uer} ¢ = {F}, 3)
{tar}

in which A4 is the coefficient corresponding to vector X containing the unknowns u and ¢ and F contains the
known values of u and ¢ on the boundary nodes other than the crack boundary. [H,| and [G,] are coef-
ficients corresponding to the nodes on the crack boundary. The general modelling strategy developed by
Portela et al. [6] is adopted in this work.

The general modelling strategy is as follows:

o for the crack boundary, the displacement boundary integral equation is applied when the source point is
located on one of the crack surfaces;

e the traction boundary integral equation is applied when the source point is located on the opposite crack
boundary;

o the displacement boundary integral equation is applied when the source point is located on the remain-
ing noncracked boundaries of the body;

¢ the crack boundaries are discretized by discontinuous quadratic boundary elements. The nodes of one of
the crack boundaries are located in such a way that they coincide with the nodes on the opposite bound-
ary;

e continuous quadratic boundary elements are used along the remaining noncrack boundaries of the body,
except at the intersection between a crack and an edge, where discontinuous quadratic elements are used
in order to avoid nodes at the intersection.

3. Boundary condition for FCM
The cohesive forces on the fictitious crack surfaces, i.e. the fracture zone, can be derived by the rela-

tionship between traction and crack opening displacement in the local coordinate system (#,¢). The linear
(SL) softening constitutive law, can be written as

Cr K Auflr Cr
t;: = f[/< - Aucr ) ? tnr = 07 (4)

where Aut™ = u? — u¢ is a displacement discontinuity normal to the crack in which »* is the displacement
at one of the crack surfaces and u” is the displacement at the opposite crack surface. Au™ and f; are the
material parameters. At the interface of the fracture zone, to maintain the equilibrium, the following
conditions are enforced

=t =1 (5)

The combination of boundary integral equation, Egs. (1) and (2), and the fictitious crack boundary
condition, Egs. (3) and (4), can be expressed in the matrix form as
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where [C,,| and [D,] are the fictitious crack boundary conditions corresponding to the vectors {u} and
{t«}, respectively, and the vector {S.,} contains the material parameters. In all cases, subscript cr represents
the fictitious crack boundary. For the linear relation ¢ — Au®", matrices [C,,] and [D,] contain 4 x 4 sub-
matrices given by
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0 0 0 0 01 01
and vectors {u.}, {t.} and {S.} are given by
uy ; f
us “ 0
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ub tb 0

<

where [N] is the transformation matrix from global to the local reference system, varying node by node on
the fictitious crack surface.

The cracked boundaries are modelled with discontinuous quadratic elements (see Fig. 2). This is due
to the efficiency and to keep the simplicity of the standard boundary elements. Continuous quadratic ele-
ments are used along the remaining boundary of the body, except at the intersection between a crack and an
edge, where discontinuous elements are required on the edge in order to avoid a common node at the
intersection.

4. Modelling of reinforcements

Consider the cracked reinforced concrete configuration shown in Fig. 1(a). In addition to the plain
concrete, a number of reinforcements are bonded to the concrete over the loci L, (n = 1,2,...,N*), where
N*® is the number of reinforcements.

The reinforcement is subdivided into continuous quadratic isoparametric elements which consist of three
nodes equally spaced by, b,. Each reinforcement exerts a line distribution of forces (per unit arc length),
/] "(X) (j=1,2; n=1,2,...,N%) on the corresponding locus L, in the concrete, and itself experiences an
equal and opposite reaction force —f7'(X) along its length. The condition that the concrete displacements
u;(X) and the nth reinforcement dlsplacements uj (X) are compatible with the shear coefficient of the bond
between concrete and reinforcement, @”, is glven in terms of /7' by

(X)) = 1,(X0)] = [1,X) = 1,(X0)| = 0" [ 17(X) = 17(X0)]. 9)

where X, and X' are distinct points on the nth reinforcement locus L,. For a perfect bond, " is equal to
Zero.
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Fig. 1. Reinforced concrete configuration: (a) Steel nodes are divided into equal intervals. (b) The stress—strain curve for steel is as-
sumed to be elastic perfectly plastic.

The reaction forces of the reinforcement, f7(X), can be included in the displacement boundary integral
equation (1) as the body forces confined to a straight line instead of to the domain and are given by

)+ f T+ f TN dTu) — [ U)X d ()
=Y [ UGN = [ KN dr ), (10)

and in the traction boundary integral equation (2), as
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Combining Eq. (9) with Egs. (10) and (11) gives the compatibility equation for points X, and X’ on the
nth reinforcement locus as
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FﬁFCI
where @" = 0 is assumed and,
ATy = T(X',%) = T,(X0, %),
AU; = Uy(X', x) = Uy(Xo, X),
ASyij = S (X', X) — Sy (X0, %),
ADy; = Dyy;(X', ) — Dyy(Xo, X).

(13)

The displacements u} of the nth reinforcement in Eq. (12) can be expressed in terms of an arc length
parameter x measured in the longitudinal direction from one end. Therefore, the relative displacements of
the reinforcement due to a body force distribution —f;(x) per unit length (0 < x </) are given by

u;(x) — 1;(0) = [N][t;(x) —v;(0)]  for j=1,2, (14)

where [N] represents the transformation matrix from global to local coordinate system. The displacements
v; of the reinforcement along the longitudinal direction are given as

019 = 00) = {310+ [ (- Dic@rac) (15)

and along the transverse direction as

0200 - 20 = - {3m0+ [ G- on0ac]

250 e n0 4 [ - 0@} -0 (16)
s 0

where A4;, E, G; and R, are material properties and represent the cross-sectional area, Young’s modulus,

shear modulus and transverse flexural rigidity of the reinforcement; 7 (x), T>(x) and M (x) representing the

internal forces and moment acting over the reinforcement cross-section and f(0) denoting the partial de-

rivative Ov, /Oy evaluated at the end x = 0 to take account of any difference in the rigid body rotations of

reinforcement and concrete.
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Additional equations are those of equilibrium under the actions of the body forces —f;(x) and the end
loads 71(0), T;(/), 1»(0), T»(/), and M(0), M(I). They can be expressed as

[ rwac=10)-10) worj=12
° (17)
/0 (1 — x)fa(x) dx = M(1) — M(0) — IT5(0).

The end loads in Eq. (17) correspond to the boundary conditions for the reinforcement. Setting all six
values to zero will represent a reinforcement with free ends. Alternatively, finite values may be chosen to
specify a given state of stress or strain at the ends.

5. Yielding of reinforcement

The reinforcements are assumed to behave linearly up to the yield stress, oy, and then as a perfectly
plastic material as shown in the stress—strain curve in Fig. 1(b). After yielding, the force in the reinforce-
ment is set to the yielding force, F;, = gyA4, until the strain reaches the maximum strain, &, when the re-
inforcement is broken. The total force at any node in the reinforcement, F;,, is determined from the end load
71(0) and the summation of forces (per unit arc length), f;, multiplied by the node interval, b, as

Fo=Ti(0)+b, Y f;. (18)

The total force in Eq. (19) is compared with the yielding force, F. If the force is greater than the yielding
force, all the affected nodes (j = n,...,N) are set to a value in such a way that the summation of forces per
unit arc length at that particular node is equal to the yielding force per unit length, F/b,.

6. Algorithm for crack growth

The direction of propagation of the fictitious crack is obtained from maximum principal stress criteria as
given by

1 21y,
¢ :E tan~! |:—] (19)

o, — 0,

With reference to Fig. 2, the iteration process can be described by the following:
(1) The initial load P} is given to calculate the stress components (g, ¢!, 7!,) at the initial crack tip.
(2) An increase in the load by a certain amount, say A, such that P, =P} .+ /, and calculating the
stress components (a!, 6!, 7! ) at the initial crack tip (in the current step). In this step, it is possible to
determine the characteristics of the final load, P}, whether in the ascending branch when S, < 0 or in the

descending branch when Sy > 0 where,

sy = P = P (20)
(3) Once the characteristic of the final load has been calculated, P}, can be calculated using linear ex-
trapolation of the load and the normal stress, (P.. ¢!) and (P2, 02) using the following expression:

init? “n init? Y n
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Fig. 2. Schematic illustration of the iteration process: Calculation of stresses for (a) the initial crack tip, (b) the first increment, (c) some
elements at the fictitious crack tip will be completely separated when Au® > Au, and (d) increment of the next element. 'y, I, and I,
represent the open crack boundary, fictitious crack boundary and elastic boundary, respectively.
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for Sy > 0. Again, calculate the stress components at the initial crack tip, and now the normal stress is
equal to the maximum tensile strength of the material, i.e. o2 = f/ (see Fig. 2(a)). Having obtained the
final stress components, it is possible to calculate the direction of the crack propagation, ¢, using
Eq. (19). This is the final step for the first iteration and therefore, P}, becomes the final load for this ite-
ration.

(4) An increase in the crack length by a specified amount in the direction perpendicular to ¢;,;,. Repeat
steps (1-3) to obtain the final load for this increment, ann becomes the direction, ¢,, (see Fig. 2(b)).

(5) Check the normal crack opening displacement, Au¢', at the real crack tip. In the case when Au" is
greater than the critical value, Au,, the real crack tip moves to the adjacent element and the fictitious crack
will completely separate and become a traction free crack (see Fig. 2(c)). In this case the system of linear
algebraic equations will be changed. Repeat steps (1-3) again to calculate the new final load and the path.

(6) If step (5) does not apply, the crack will propagate perpendicular to ¢,, with a specified crack length
extension.

(7) Repeat steps (1-6) for the next crack extension (Fig. 2(d)).

Using the above iteration procedure, the final load for each crack extension can be approximately
calculated and the crack path does not have to be known in advance. The path can be in any direction and
its true as long as the above procedure is preserved. This is perhaps one of the advantages of using DBEM
in crack growth analysis over the other methods.

7. Numerical example

In this section examples of crack growth in plain and reinforced concrete are presented. Also presented
are comparisons with the finite element method.

7.1. Double notched problem

Consider a double notched shear beam shown in Fig. 3. The geometrical ratios considered in this ex-
ample are //h =4.0,¢/h = 0.8,a/h = 0.2 and b/h = 1.0, where b is the thickness of the beam. The depth of
the beam is # = 0.2 m. This beam has been analyzed using FEM by Carpinteri [12]. A similar beam with
different ratios has also been tested by many other researchers. The concrete has been modelled as linearly
elastic with compression £, = 27000 MPa and v = 0.1. The mode I crack parameters have been taken as
tensile strength, f; = 2.0 MPa and fracture energy, Gy = 100 N/m. The structure has symmetry about two
axes, i.e. the horizontal and vertical axes at the centre of the beam. This symmetry will make the structure
balance and have a polar symmetry around the centre. The initial boundary element mesh contains 98
nodes with 44 elements.

The initial boundary element mesh is shown in Fig. 4 followed by the deformation shape at a certain
iteration. The history of the crack pattern is shown in Fig. 5. Fig. 6, shows the dimensionless computational
results in terms of load—deflection curves for the bending point C of steel beam.

7.2. Reinforced concrete beam

Consider the beam shown in Fig. 7. The material properties for the concrete are as follows: compression
strength f. = 75.5 MPa, Young’s modulus E. = 34300 MPa, fracture energy Gy = 90 N/m, tensile strength
f! = 5.30 MPa. The beam of # = 100 mm with an area of steel 4, = 157.1 mm? is considered. The diameter
of the hole is 30 mm. In the first case, a hole is introduced 50 mm away from the centre line of the beam. In
the second case, two symmetrical holes are introduced. In the third case, the hole is placed in an area where
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Fig. 3. Double notched shear beam for mixed mode crack propagation.

Fig. 4. (a) Initial boundary element mesh and deformation shape for (b) iteration 3, (c) iteration 6 and (d) iteration 8.
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Fig. 5. The history of the crack path for a double notched shear beam.
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Fig. 7. Three-point bending beam with the presentation of holes.

the diagonal tension crack is to appear. The fourth case is similar to the third case, except that there are two
holes located in the area of the diagonal tension crack.

The results for these analyses are shown in Fig. 8. From the figure, it can be observed that there are no
extreme changes in terms of load carrying capacity for all cases. Very minor changes can be seen for the
mid-span deflection.
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Fig. 8. Load-deflection curves for concrete grade four with the presentation of holes.

8. Conclusion

A boundary element formulation has been presented for modelling cracking in plain and reinforced
concrete. The model utilized the fictitious crack model for the cracking of concrete. Both the linear and
bilinear stress-displacement curve have been implemented. The BEM results were shown to agree well with
the FEM. The advantage of the new formulation over previous ones was demonstrated by simulating crack
growth where no remeshing is required.

The embedded approach is used to model the reinforcement. The proposed model has a capability to
detect the yield stress in the steel with reasonable accuracy. It is assumed that the bond between steel and
concrete is perfect.
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