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Abstract

In this work, gene expression in autism spectrum disorder (ASD) is analyzed with the goal of

selecting the most attributed genes and performing classification. The objective was

achieved by utilizing a combination of various statistical filters and a wrapper-based geomet-

ric binary particle swarm optimization-support vector machine (GBPSO-SVM) algorithm.

The utilization of different filters was accentuated by incorporating a mean and median ratio

criterion to remove very similar genes. The results showed that the most discriminative

genes that were identified in the first and last selection steps included the presence of a

repetitive gene (CAPS2), which was assigned as the gene most highly related to ASD risk.

The merged gene subset that was selected by the GBPSO-SVM algorithm was able to

enhance the classification accuracy.

Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is defined by weak-

ened social interactions, impaired verbal and non-verbal communication and repetitive

actions [1, 2]. ASD affects more than 1% of the population, and males are four times more vul-

nerable to the disorder than females [3]. Although environmental factors are believed to con-

tribute to autism, researchers believe that genetic factors play a major role in the occurrence of

the disorder [4]. In a study of twins, the presence of high similarity in the features of autistic

twins was noticed [5]. It was observed that the genetic similarity among identical twins who

are from the same developmental environment and have the same parental chromosomes is

high. In these contexts, biologists have attempted to identify the most relevant genes that can

be utilized as biomarkers for tracing the disorder. The attribution of a role of specific genes in

the development of autism enables us to understand the mechanism of development of the dis-

order and hence predict its serious consequences. To date, there is a lack of treatment for the
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major symptoms of autism, and no accurate biomarkers have been identified because the etiol-

ogy of autism is not clearly known [6]. Although approximately 70% to 90% of cases of autism

are thought to be related to heritable causes, the variable phenotype of the disease and the com-

plex architecture of its genetics have made it difficult to identify specific genes that are associ-

ated with susceptibility to autism [7]. It has been claimed that the aggregate action of multiple

genes is necessary to produce autism disorder, a feature that adds complexity to genomic

investigations [8]. The pioneer work of Gregg et al. [9], which was based upon genomic profil-

ing of whole blood, revealed differences in gene expression in autistic and healthy children.

Moreover, these authors observed variations in gene expression at the early onset stage of the

disease in individuals with different subtypes of autism such as autism with regression and

autism without regression. Because of these variations, the identification of genes related to

autism presents a difficult problem. It is quite reasonable to use gene expression data to relate

the phenotypes of diseases to their attributed biomarkers [10].

Computer models can be used to study autism through the use of microarray gene expres-

sion data. A microarray is a tool that is used to estimate whether mutations in specific genes

are present in a particular individual. The most common type of microarray is utilized to mea-

sure gene expression; in this type of microarray, the expression values of thousands of genes

are calculated from the microarray sample [11]. Along this line, the techniques of machine

learning and data mining are considered effective tools in the application of genomic medi-

cine, which uses computational methods and genomic datasets to predict phenotypes [12].

Machine learning is valuable in the interpretation of large datasets of genomic data, and it has

also been successfully utilized to annotate the wide diversity of elements in genomic sequences

[13]. Genome sequence analysis has also received considerable attention. In recent years, very

useful computational tools were proposed in an open-source Python package designed to for-

mulate comprehensive built-in and user-defined features for DNA, RNA and protein

sequences; these are known as representations of DNA (repDNA) [14], repRNA [15] and Pse-

in-One [16], respectively. The repDNA tool was used to develop powerful computational pre-

dictors for use in identifying the biological features or attributes of DNAs by generating widely

used features that reflect the physicochemical properties and sequence-order effects of DNAs

and nucleotides [14]. This model includes three groups of features that can be used for differ-

ent analysis purposes. In regard to RNA analysis, a new repRNA was developed to meet the

increasing demands and to speed up the genome analyses [15]. The features of this model can

be represented by 11 different modes of feature vectors, thereby exceeding the limitations of

existing machine-learning methods such as SVM and KNN that use only vectors and not

sequences. Pse-in-one [16] was proposed as an effective tool that can handle the analysis of

more than one type of sample; however, it is utilization is maximized to work on DNA, RNA

and protein as well. The feature vectors of Pse-in-one can be easily combined with machine-

learning algorithms for use in developing computational predictors and analysis methods for

various tasks in bioinformatics and systems biology. Furthermore, studies in the field of cancer

informatics have shown an interesting contribution of data mining and machine learning to

finding related genes [17–19]. However, gene expression in autism displays some specific char-

acteristics that make gene selection, model creation and prediction more challenging than

gene expression analysis of cancers.

The major problem in the gene expression analysis of ASD is the difficulty in selection and

identification of the genes that are most relevant to autism. This problem exists because the

gene expression levels in autism disorder show considerable fluctuation among individuals

and because the sequences of several of these genes are highly variable [20]. In general, noise

in gene expression level data usually occurs due to variations associated with the experiments

or the existence of alterations in the genes [21, 22]. In the case of autism, the extra variance
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may be linked to the presence of alterations in many genes. Another reason for this difficulty is

the limited number of observations (in the range of hundreds) that have been made in com-

parison to the very large number of genes (in the range of tens of thousands). In machine

learning, this feature is known as high dimensionality, and sophisticated methods are required

to handle it. High dimensionality also exists in genome sequence analysis data, where it poses

computational challenges despite the important contribution of high-throughput sequencing

technology, which greatly increases the amount of available data for discriminative motif dis-

covery (DMD) [23, 24]. DMD methods usually have to sacrifice accuracy and may fail to fully

leverage the potential of large datasets. Hence, researchers have proposed the large margin

motif optimizer (LMMO) [23] for refining regulatory motifs and a novel approach referred to

as discriminative motif learning via AUC (DiscMLA) to identify motifs in high-throughput

datasets [24]. To further reduce computational time, some researchers have combined the pro-

posed models with various techniques for improving the scalability of large-margin type algo-

rithms and to accelerate DiscMLA.

The foregoing shows that it is not an easy or a straightforward task to find the attributed

genes of autism unless a careful analysis and investigation is made of the microarray dataset.

Gene selection methods are classified into two main types: filter-based methods and wrapper-

based methods [21, 25]. Because filter-based methods usually work without using a classifier,

they are efficient with respect to computational time. They are preferable for use in analyzing

the high-dimensional data of microarray datasets [26]. The drawback of filter-based methods

is that the selected features may not have relationships to each other, and the appearance of

redundant features is possible. This may decrease the accuracy of the classifier when the gene

selection results are directly applied to the learning algorithm [21]. For this reason, the best

choice is to use filters in the first selection process and to apply another feature selection

approach that depends on classifier accuracy to choose the attributed genes in later steps.

Wrappers tend to perform better in selecting discriminative genes since they take the model

hypothesis into account by training and testing in the gene space [21]. When dealing with

high-dimensional data such as microarray datasets, wrapper-based methods tend to be the

worst choice if applied to the data directly without any preprocessing because this leads to

overfitting [27]. This is because the wrapper acts by searching and comparing the performance

of each gene subset with the classification algorithm prior to estimating the best subset of

genes [28]. However, if wrappers are used after the application of filter methods, they require

less computational time and hence work more efficiently [29]. Conventional wrappers use

search algorithms to find subsets of genes through adding or removing the best features to the

space based on the fitness criteria [30]. Hence, the problems of large-scale feature selection are

not efficiently solved by using conventional optimization algorithms [31]. Therefore, to

address the feature selection problems effectively, meta-heuristic algorithms are being adopted.

There are various meta-heuristic algorithms that can be used to address feature selection

issues; these include the genetic algorithm (GA) [32], ant colony optimization [33], simulated

annealing [34], and particle swarm optimization (PSO) [35]. PSO and GA are two common

evolutionary algorithms that are usually applied in the form of wrapper methods [31, 36].

Comparably, PSO is efficient and simple; only a few parameters are required to perform its

adjustment, and hence it is a memory-enabled algorithm. Binary PSO is a modified version of

the standard PSO introduced by Kennedy and Eberhart [37] to handle variables with discrete

design. BPSO was shown to outperform GA when used for feature selection using the same fit-

ness function [38]. In another study [39], BPSO was used in feature selection such that the fit-

ness function was designed based on the rough set. BPSO was also applied to various

optimization problems [17, 40, 41]. In addition, a new discrete form of the PSO, the DPSO

algorithm, which is based on the particle’s best position (pbDPSO) and global best position
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(gbDPSO), was adopted to find the global optimal solution for a high-dimensional grid system;

in this way, a reduction in the minimum computation time and an energy improvement of up

to 28% were achieved [42]. Recently, a new modified version of PSO known as geometric PSO

(GPSO) was proposed by Moraglio et al. [43] and utilized for gene selection in cancer classifi-

cation by Alba et al. [36]. In the current work, a combination of statistical filters and wrapper

algorithms incorporating GBPSO is employed for gene selection and classification in autism

disorder. This is achieved through the application of various filters in parallel with a GBPSO

wrapper and a support vector machine (SVM) classifier (GBPSO-SVM algorithm). Prior to the

selection process, specific pre-processing operations are performed on the dataset in a creative

way to remove the most similar genes. The presented results were found to improve the accu-

racy of gene classification in autism disorder.

Materials and methods

Experimental overview

The experimental procedure of the current work was implemented in three basic steps; these

are briefly described below, and the details of each step are given in the following subsections.

First step: in this stage, the whole dataset was checked for the similarity of gene expression

in the control and autism classes. Genes with mean or median ratios close to unity (equal to or

greater than 0.95) were removed; in this way, the number of genes in the dataset was reduced

from 54,613 to 9454.

Second step: in this stage, the reduced dataset was divided into two parts, 85% of which was

used in the process of model training and validation (testing); the 15% non-involved set was

set aside to be used as a new real-world dataset against the gene classification based on the pre-

defined model. Later on, three filters, namely, the t-test (TT), feature correlation (COR) and

the Wilcoxon Rank Sum test (WRS), were initially applied in parallel to select the 200 most dis-

criminative genes using a 10-fold run evaluation.

Third step: in this stage, the final most discriminative subsets of genes were selected by the

GBPSO-SVM algorithm, and classification was performed based on the resulting genes. Fur-

thermore, a merged set of genes was generated from the combination of these three final sub-

sets based on their frequencies of appearance in the 10-fold selection process. Consequently,

the selected genes were used in training and validation performed with the SVM classifier in

the 10-fold cross-validation scheme. Finally, the non-involved dataset mentioned in step two

was used as a new real-world dataset to further test and generalize the applied model. The

complete methodology of the current work is illustrated in Fig 1, and the implementation

steps of the codes are given in (https://github.com/fahmi982/Implementation-Steps).

Autism dataset

The experimental data used in the analysis comprised an autism microarray dataset that was

downloaded from the well-known public repository GEO (NCBI) [44]. The dataset consists of

146 observations (samples) and 54,613 genes (features). The observations are divided into two

classes, a control class containing 69 observations and an autism class containing 77 observa-

tions. Samples from autistic and control individuals were collected from persons in the Phoe-

nix area. Blood drawing for the observations was conducted in the spring and summer of

2004. Total RNA was extracted for microarray experiments, which were performed using Affy-

metrix Human U133 Plus 2.0 39 Expression Arrays. The autistic patients who provided the

samples were diagnosed by medical professionals (developmental pediatricians and psycholo-

gists) according to the DSM-IV criteria, and the diagnosis was confirmed on the basis of the

ADOS and ADI-R criteria [45]. Samples from individuals with non-classic higher functioning
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forms of autism, regression and Asperger’s syndrome were not included in the dataset. Each

sample was subjected to normal high-resolution chromosome analysis and had a negative

result on the Fragile X DNA test.

Pre-selection operations

High variance is one of the most apparent problems in the autism gene expression dataset

used in this study; the high variance may be due to the nature of the data [46]. Moreover, the

fact that the high-dimensional data in this set consisted of 54,613 genes and only 146 samples

emphasizes the existence of similar expression of autism-related and non-autism-related

Fig 1. Experimental setup used to select autism-related genes and to perform classification.

https://doi.org/10.1371/journal.pone.0187371.g001
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genes. Statistical theories [47] indicate that the genes that show similar expression in both sets

of individuals are not useful and that they do not include the discriminant genes. For this rea-

son, removing very similar genes facilitates the subsequent steps in the proposed method, espe-

cially the steps involving feature selection. This is because the presence of similar genes,

particularly those with high variance, affects the mean and median values for the expression of

individual genes, thereby affecting the next filter steps. In a previous study [48], the ratio of the

mean was used as a basis for removing similar genes. It has been proven that when there are

outliers in the features, the application of the median criterion is a better choice than the appli-

cation of the mean criterion since the mean values of gene expression are affected by the vari-

ance. However, the median is not a strong statistical criterion to depend on throughout the

experiments, and it is not popular. Therefore, in this study, a new approach was taken in

which genes whose expression showed very high variance were identified among the genes in

each class. Since high variance leads to mean values that do not reliably present the population,

it creates a non-desirable result with respect to feature selection. To avoid this problem and to

facilitate the next steps in the analysis, in this study the mean and median ratios are applied in

different contexts. The ratio of the mean values is used in the case of genes whose expression

values do not show high variance within the class, whereas for genes with high variance within

the class the ratio of the median values is applied. This strategy is used in a creative way to

overcome the problems associated with the variance of the dataset. In this approach, the fea-

tures in each class are divided into two groups according to their variance. A set of high-vari-

ance features (variance >15%) are separated from those with low variance (variance =<15%).

The median ratio criterion is then applied to the high- variance group, and the mean ratio cri-

terion is used for the rest. This is performed similarly for both classes of observations. The next

step in the analysis reduces the high-dimensional features of the dataset by removing genes

that have quite similar medians in both classes as well as those that have quite similar means in

both classes. In this step, features for which the median and mean ratios for both classes are

between 0.95 and 1/0.95 are removed from the dataset. This threshold range is chosen inten-

tionally to remove the non-significant genes from the whole dataset as well as to reduce the

effect of high-variance genes, hence making the next steps of the analysis smoother. By follow-

ing this procedure, the number of genes in the dataset is significantly reduced.

Selection using statistical filters

The reduced set of genes identified in the previous steps is used as input for three gene selec-

tion methods that are based on the filter approach. The statistical filters are the two-sample

t-test (TT), feature correlation with class (COR) and the Wilcoxon rank sum test (WRS). Each

of these depends on a specific statistical criterion for feature selection. The reason for choosing

more than one filter is that, because the methods have different relative power, the use of a

combination of these methods might yield better selection performance than the use of a single

filter [32, 48]. Prior to the application of the filters, the dataset was divided into two parts; one

part consisted of 85% of the data and was used in the process of model training and validation

(testing); the other part, which consisted of 15% of the data, was set apart as a non-involved set

to be used as a new real-world dataset for gene classification based on the predefined model.

This was done because researchers in the field of data science have recently recommended that

the whole process should be divided into three main steps, namely, training, validation and

testing [49]. The best approach is to apply training and 10-fold validation to avoid overfitting.

Hence, the last step in the process would involve generalizing the model against new datasets

that may be obtained in the future. Since in our study no new separate dataset was available,

we set aside a portion of the data to be used at the last step of the analysis as a new real-world
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case study. Moreover, utilization of the whole dataset for feature selection produces a biased

result that does not demonstrate the real ability of the model during the test phase. Therefore,

the statistical filtering was repeated in 10-fold runs on the trained dataset. In each method, the

positions of the filtered genes in all the runs were compared based on their position weights.

Next, the weight values were summed, and the genes were ordered from most attributed to

least attributed according to the final ranks achieved within the 10-fold runs. The equation

used in this calculation is a global weight equation that is given by

wðf Þ ¼
XK

i ¼ 1
wiðf Þ ð1Þ

where each i in K = the number of current fold iterations in the whole 10-fold run.

The first applied filter was the t-test, which is a univariate filter feature selection that is

often employed in binary class applications [50, 51]. The common assumption of the t-test is

that the values for the two compared groups of genes are normally distributed. The null

hypothesis of the t-test assumes equal means and equal variances, and the alternative hypothe-

sis rejects this assumption. The equation of the t-test is

t ¼
c1 � c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1

2

n þ
s2

2

m

q ð2Þ

where n and m denote the population sizes of the first and second classes, respectively. The

result of the assessment calls t, which is equal to 1 or 0; 1 represents the rejection of the null

hypothesis at the 5% significance level and 0 denotes the acceptance of the null hypothesis at

the same significance level. The p-value is also returned by the test; a small value of p indi-

cates a significant difference among the compared samples. For the autism dataset, a normal

distribution of the expressed genes is not guaranteed due to the presence of outliers. There-

fore, the non-parametric version of the t-test was considered in MATLAB programming by

assuming unequal variances in the two classes. This method was adopted to provide a more

accurate measurement. The t-test has long been used in the application of microarray feature

selection [50]. It has powerful scalability when the number of features is high [51]. Some

studies used filters such as the t-test as the only feature selection step followed by direct

application of the classification algorithms [52, 53]. In the current work, the t-test is used as

a filter followed by wrapper-based gene selection; after this, the classification algorithm is

applied.

The second applied filter method was feature correlation with class (COR), a univariate fil-

ter feature selection method that can be used as a pre-selection step in microarray gene selec-

tion [54, 55]. The value of feature discrimination, S(f), is expressed by

S fð Þ ¼
PK

k¼1
Pkðck � cÞ

2

s2ðf Þ
PK

k¼1
Pkð1 � PkÞ

ð3Þ

where c is the mean value for the gene among both classes, ck is the mean value for the kth

class gene, σ2(f) is the gene variance, and Pk is the probability of appearance of the kth class in

the dataset. A high value of S(f) represents good discrimination capability of feature f in dis-

tinguishing a particular class from other K classes. Here, the number of classes is two, so

K = 2.

The third applied filter method was the Wilcoxon rank sum (WRS) test. Because the WRS

test is a non-parametric filter method [56], it is not necessary for the gene expression data in

the classes to be normally distributed. Hence, at first glance, it appears more appropriate to

apply the WRS test to the present dataset. The rank sum test is also known as the Mann-
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Whitney test [57, 58]. To distinguish between the two classes, the criterion used by this test is

based on the median value. The test compares the medians of the samples and produces the

result as a ranking instead of as numerical values [59]. By arranging the results in ascending

order, the rank and the index value of the arrangement are determined. The WRS test consid-

ers as the null hypothesis the hypothesis that all genes originate from one class. The statistical

formula of the Wilcoxon rank sum is as follows [60]:

sðgÞ ¼
X

i2N0

X

j2N1

IððxðgÞj � xðgÞi ÞÞ � 0 ð4Þ

where I is the function used to distinguish the classes. If the logical expression ðxðgÞj � xðgÞi Þ � 0

is true, I is 1; otherwise, it is 0. xðgÞi is the expression value of gene g in sample I, N0 and N1 rep-

resent the number of observations in each of the two classes, respectively, and s(g) denotes the

difference in the expression of the gene in the two classes. Based on whether s(g) becomes 0 or

reaches the maximum of N0 × N1, the considered gene is ranked in importance in the classifi-

cation process. The following equation is used to calculate the gene’s importance:

qðgÞ ¼ maxðsðgÞ; No � N1 � sðgÞÞ ð5Þ

This method was used in the literature for the pre-selection of genes [60, 61], and it was

shown to produce a powerful statistical result, especially when the data are severely skewed

and approximately symmetric [62]. Usually, at the end of the analysis, WRS will give the rank

of the genes, beginning with the most discriminative genes and proceeding to the less discrimi-

native ones.

Selection using a wrapper-based GBPSO-SVM algorithm

The last step in the selection of discriminative genes was conducted using geometric binary

particle swarm optimization (GBPSO) in wrapper form with the support vector machines

(SVM) algorithm; in this method, the GBPSO uses the accuracy prediction of the SVM to

choose the best subset of genes. GBPSO begins with a random number of selected genes and

searches for the optimal subset of genes in each iteration. The SVM classifier is used to evaluate

the performance of each candidate subset using 10-fold cross-validation. The GBPSO algo-

rithm leads to the selection of an optimal subset of genes that provides the best classification

accuracy. Furthermore, it chooses the most discriminative genes to contribute to the next gen-

eration of gene subsets. Thus, each new candidate subset of genes is usually better than the pre-

vious subset.

Particle swarm optimization (PSO) is a stochastic population-based optimization technique

that was first suggested by Kennedy and Eberhart (1995). PSO has received a great deal of

attention from researchers in various fields due to the simplicity of its implementation and its

rapid convergence towards acceptable solutions [35, 36, 63]. The PSO algorithm was inspired

by the social behavior of birds flocking and fish schooling. The prototype algorithm of PSO

comprises three steps: generating the positions and velocities of particles, updating their veloc-

ities, and finally updating their positions [37]. In PSO, a swarm is made up of individuals

known as particles that communicate with each other through iterations to search for optimal

solutions while they are moving in the search space [35]. Fig 2 shows the principle of particle

movement in PSO. In each iteration, a particle velocity is updated according to the personal

best (pbest) and the global best (gbest), where pbest is the best position that the particle has

explored and gbest is the best position among all particles in the swarm. By assuming a search

space having D dimensions, the ith swarm particle can have a D-dimensional position vector

represented by Xi = [xi1, xi2, . . .; xiD]. The velocity of the ith particle is therefore denoted by
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Vi = [vi1, vi2, . . .; viD]. It is also considered that the visited position that produces the best fitness

value for the particle is PBi = [pbi1, pbi2, . . .; pbiD], while the best explored position so far is

GB = [gb1, gb2, . . .; gbD]. Thus, each particle’s velocity is updated based on the following equa-

tion:

vnewid ¼ w:voldid þ c1:rand1ð. . .Þ � ðpbest
old
id � x

old
id Þ þ c2:rand2ð. . .Þ � ðgbest

old
id � x

old
id Þ ð6Þ

where d = 1, 2. . ., D, c1 is the cognitive learning factor and c2 is the social learning factor. The

inertia weight (w) acts to reduce the particle’s velocity in steps and hence controls the swarms.

The w value is usually between 0.4 and 0.9, whereas the random variables rand1 and rand2
have values that are uniformly distributed between 0 and 1 [35].

Consequently, the particles’ velocities are bounded within the range [vmin, vmax]. These

bounds maintain the vector function of the velocity to avoid very abrupt movements of parti-

cles in the search space. The formula that is used to update the particle’s position is

xnewid ¼ xoldid þ v
new
id ð7Þ

where d = 1, 2, . . .. D, i = 1, 2, . . ... N, and N is the size of the swarm.

Binary PSO (BPSO) is a modified version of standard PSO that was developed to handle

variables with discrete design [37], whereas the original PSO was proposed for continuous var-

iables. When BPSO is used for gene selection, a gene subset is expressed by a string vector of n
binary bits Xi = (x1, x2,. . .xn) comprising ‘0’ and ‘1’. Consequently, if xid is ‘0’, then the dth gene

is not selected in this subset, and an xid of ‘1’ is alternatively chosen in the subset. In this regard,

each binary string vector (Xi) defines the particle’s position in BPSO. For instance, a particle

with seven genes is encoded as ‘0100010’, implying that the second and sixth genes are selected.

Therefore, the length of each particle is initially the same as the number of genes in the dataset.

The population of particles is randomly initialized. However, it is effective to initialize the

particles in such a way as to produce better selection results. In the geometric version of BPSO,

the particle’s current position, its pbest and its gbest are used as the three parents in a three-par-

ent mask-based crossover operator (3PMBCX) to create a new position for the particle instead

of using velocity. The equation for position updating is as follows [36, 43]:

xnewid ¼ w1:x
old
id þ w2:pbest

old
id þ w3:gbest

old
id ð8Þ

where, for each element in the crossover mask, w1, w2 and w3 indicate the weight values associ-

ated with each parent represented by xoldid ; pbest
old
id and gbestoldid , respectively. A condition is that the

Fig 2. Illustration of the PSO principle.

https://doi.org/10.1371/journal.pone.0187371.g002
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geometric crossover forces w1, w2 and w3 must be non-negative and must sum to one. In addi-

tion, an operator with a probability value of 0.01 is added to take care of bit-flip. This is to

avoid early convergence. The advantage of this version of GBPSO is that it enables the general-

ization of PSO to virtually any solution representation in a natural and straightforward way

[36]. The key issue of the GBPSO is the concept of particle movement. In this approach,

instead of the notion of velocity added to the position, a three-parent mask-based crossover

(3PMBCX) operator is applied to each particle to move it. According to the definition of

3PMBCX [43], given three parents a, b and c in {0, 1}n, a random crossover mask of length n
with symbols from the alphabet {a, b, c} is generated. The offspring filling each element with

the bit from the parent appearing in the crossover mask at the position is then built. The

detailed parameters of the GBPSO model are illustrated in Table 1.

In the current work, GBPSO is used as a wrapper feature selection method with a support

vector machine (SVM). The support vector machine (SVM) algorithm is used because it is

able to provide reasonable classification accuracy for high-dimensional data despite the avail-

ability of limited training samples.

Support vector machines are a group of supervised machine-learning methods known as a

support vector network; they were developed by Vapnik [64]. The forms of this algorithm are

widely applied in a variety of real-world problem domains [18, 36, 63], especially for gene clas-

sification of diseases [65–67]. Furthermore, the LIBSVM algorithm, which is a type of software

for SVM classification and regression, was utilized by Liu et al. [68] for effective identification

of human pre-microRNAs and hence to discriminate real pre-miRNAs from false ones. More-

over, SVM can perform both linear and nonlinear separable data classification. In the linear

case, the boundary of linear decision is performed such that the smallest distance between the

training samples and the boundary (margin) is maximized. The training data samples near the

class boundary and along the hyperplanes are known as support vectors [18]. Nonlinear data

can be handled by SVM upon mapping the gene space of low dimensionality extracted from

the input space into a gene space of high dimensionality to achieve efficient classification. A

cost is involved to consider the wrongly classified examples if there are linearly inseparable

mapped data points, while the margin is maximized along with minimization of the cost [66].

Another property of SVM is that the number of coefficients to be determined is essentially

dependent on the number of samples rather than on the number of genes. This is a useful char-

acteristic of SVM for microarray data due to the presence of a low ratio of samples to genes in

this type of dataset. However, it has been shown that decreasing the number of genes increases

SVM performance [36, 69]. To utilize SVM as a classification algorithm in gene expression

and sequence datasets, kernel functions are usually used. This allows the user to obtain an

orthogonal hyperplane to distinguish the genes in a specific dimension. A number of research

works have used SVM for gene selection or classification or both using different types of ker-

nels [36, 70, 71]. This is because each type of kernel is suitable for different data. However,

because it is not initially known which kernel is best for a specific set of data, it may be neces-

sary to test multiple SVM types. Liu et al. [72] employed LIBSVM in a python package for

DNA/RNA and protein/peptide sequence analysis based on pseudo components and kernel

methods. In their studies, the kernel function of the radial basis function (RBF) was used to

Table 1. Detailed parameters of the GBPSO model.

Individual weight Inertia weight Social weight

3PMBCX parameters 0.34 0.33 0.33

Mutation probability 0.01

https://doi.org/10.1371/journal.pone.0187371.t001
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train the SVM classifier; in the current study, the polynomial kernel is applied owing to its

higher classification accuracy for our dataset. Following further optimization of the kernel

parameters, the identification of DNA-binding proteins by incorporating amino acid distance-

pairs and reduced alphabet profile into the general pseudo amino acid composition upon a

new predictor (iDNA-Prot|dis) outperformed the existing predictors for the same purpose

[73]. Liu et al. also reported that each kernel contains different discriminative information and

that combining the kernels automatically is, therefore, a promising way to improve the perfor-

mance of the model. Consequently, the combination of sequence-based kernels with evolu-

tionary information extracted from frequency profiles, in which three top-performing

Fig 3. Application of GBPSO-SVM in gene selection.

https://doi.org/10.1371/journal.pone.0187371.g003

Fig 4. Expression of a representative gene in samples from control and autistic individuals.

https://doi.org/10.1371/journal.pone.0187371.g004
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sequence-based kernels (SVM-Ngram, SVM-pairwise and SVM-LA) were combined with the

profile-based protein representation, was proposed to predict protein remote homology [74].

In this study, SVM was applied using the polynomial kernel because this kernel method

showed the highest classification accuracy.

The fitness function in GBPSO is used as an evaluator to select the best subsets of features,

which are constructed based on the accuracy so far obtained by the SVM classifier. The parti-

cles having the best fitness values are recorded to maintain the optimal solution for a given

population. This defines the best subset of genes and gives better accuracy. This is applied in

10-fold cross-validation such that the entire training set can be used in the process of finding

the best genes. Fig 3 shows the operation principle of the GBPSO-SVM method, in which the

genes are expressed from the dataset and the best subset of genes is selected. The PSO particles

are represented by vectors of bits, where each bit corresponds to a specific gene. A gene is

retained in the subset if it holds an encode value of 1 and is not included in the subset if it

holds an encode value of 0. Hence, the number of genes in the dataset determines the length of

each particle.

Results and discussion

Dataset reduction

Despite the presence of a high-dimensional dataset from autistic individuals, most of the fea-

tures appeared as outliers, indicating that the gene expression values in the observations are

Fig 5. Absolute values of the differences between the mean and median values of gene expression for

the autism observations.

https://doi.org/10.1371/journal.pone.0187371.g005
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highly varied. It was noted that the gene expression values of both classes exhibited a high vari-

ance, as shown in Fig 4. The deviation of the expression value of a gene from its mean value is

statistically explained in terms of variance. It is certainly true that not every single gene is

responsible for autism disorder or can be used as a discriminative biomarker. Therefore, to

identify the attributed genes, the genes with similar mean values in the two datasets, i.e., those

with mean ratios close to unity, should be removed. However, this approach does not yield an

accurate result if it is directly applied to the current dataset. This is because several genes show

high variance among both classes. Consequently, the utilization of the mean ratio criterion

alone to remove the genes unrelated to autism from the two classes does not provide a reliable

result. It was reported that due to the high variance in the expression of genes related to

autism, the median ratio can be considered as an alternative to the mean ratio for removing

similar genes [70]. Again, using the median ratio only is not a reliable approach since genes

with low variance will be negatively affected under this reduction process.

The absolute value of the difference between the mean and the median of the expression of

individual genes was measured to determine the strength of outliers, as shown in Figs 5 and 6.

It was seen that this variation is larger in the autism group than in the control group, implying

that there are some alterations in the gene expression values in the autistic group. Upon close

inspection of the figures, it is clear that this variance is not associated with only one gene or

with a small group of genes but with a wide range of genes. This can be regarded as another

confirmation of the fact that autism is a spectrum disorder and that several genes may contrib-

ute to the occurrence of the disorder.

Fig 6. Absolute values of the differences between the mean and median values of gene expression for

the control observations.

https://doi.org/10.1371/journal.pone.0187371.g006
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It is seen that genes with high variance are more tolerated when the median ratio is applied,

and vice versa. Therefore, to remove the most similar genes and to reduce the dataset, an alter-

native strategy was followed in this work. This strategy relied on the fact that genes with high

variance in expression can be treated according to the median ratio criterion, whereas those

with low variance can be treated according to the mean ratio criterion. In this way, among the

genes that present variance of 15% and higher, the median ratio was applied to remove similar

genes, and for genes with a variance of 15% or smaller the mean ratio was applied. Hence,

genes with median ratios or mean ratios of 0.95 or greater were removed from both classes, as

illustrated in Fig 7. Based on this removal process, the number of genes was reduced from

54,613 to 9454. The reduced dataset that was obtained at this stage is provided in the supple-

mentary information as the S1 Dataset. It will be shown later that this reduction process

improves the accuracy of the SVM classifier at threshold ratio of 0.95. In other studies [48, 70],

Fig 7. Illustration of the discriminative regions and removal of similarly expressed genes from both

classes of observations.

https://doi.org/10.1371/journal.pone.0187371.g007

Table 2. Similarity percentages for sets of 200 discriminative genes selected by various filtering

methods.

Filtering method TT COR WRS

TT 100 93 69

COR 93 100 69

WRS 69 69 100

https://doi.org/10.1371/journal.pone.0187371.t002
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a mean or median ratio threshold of 0.96 was used separately to reduce the dataset to 17,831 or

16,230 genes. In yet another study, a mean ratio of 0.98 was applied as a threshold to reduce

the dataset to 16,230 [32]. In comparison, our reduced dataset of 9454 genes could help

improve classification accuracy and reduce memory complexity.

First stage of selection

The reduced dataset resulting from the reduction step is not satisfactory for direct application

in the classification process or as a basis for building the model since, with 9454 genes, its

dimensionality is still high, and not all of the genes are discriminant. Hence, further reduction

is conducted using the three filtering methods TT, COR and WRS in parallel to select the most

discriminative genes. It was observed that each filtering method identifies different sets of

genes with a specific repetition of the discriminative genes among them (see S2–S4 Datasets).

This is due to the high variance of several genes in the samples from individuals with autism

disorder, indicating the necessity of using further selection steps. In this stage, the 200 most

discriminative genes were selected based on their rank positions in descending order. Table 2

shows the percentage of similar genes that were selected by each method. The greatest similar-

ity (93%) between the sets of 200 selected genes occurred between TT and COR, whereas WRS

showed 69% similar genes with both TT and COR. It is noteworthy that the repetitive genes

that appeared in the three filtered sets were not assigned the same ranking positions. The three

discriminative genes that were assigned the highest rankings among 30 sets of filtered genes,

i.e., within a 10-fold run for each filter, were ZSCAN18, CFC1B and CAPS2.

To determine the discriminative ability of the genes identified in the filtration process,

three selected genes were examined using matrix scatter plots. Figs 8–10 show a qualitative

Fig 8. Matrix plots for three representative selected genes from the reduced dataset before the

application of filter methods.

https://doi.org/10.1371/journal.pone.0187371.g008

Selection and classification of genes in autism

PLOS ONE | https://doi.org/10.1371/journal.pone.0187371 November 2, 2017 15 / 25

https://doi.org/10.1371/journal.pone.0187371.g008
https://doi.org/10.1371/journal.pone.0187371


assessment of the genes obtained from the initial reduced dataset (before using filters) and of

the genes obtained using the TT and COR filters, respectively. The significant impact of the

filtration process on the selection of attributed genes, in which the expression values of the

autism-related genes are clustered apart from those of the non-autism-related genes, is readily

apparent in Figs 9 and 10. However, no such clustering occurs in the matrix plot of the genes

extracted from the non-filtered dataset; in that plot, the expressed genes are uniformly distrib-

uted in the whole space without any pronounced clustering between the two classes of

observation.

Another method of estimating the impact of filtration on the selection of discriminative

genes in autism disorder used an Andrews plot. Figs 11 and 12 show Andrews plots for three

genes selected from the initial reduced dataset (before using filters) and the dataset obtained

using the WRS filter, respectively. In Fig 11, the gene expression for the non-filtered dataset

appears as a wide bundle with no distinguishable separation between the two classes. It is

worth noting that the filtration process narrowed and aggregated the expression bundle of the

filtered genes, as shown in Fig 12, in which the autistic class of genes is separable from the

non-autistic class.

Classifier assignment

One of the most important tasks in conducting gene expression analysis using machine-learn-

ing algorithms is the building of a classification model that recognizes the discriminative genes

with the highest possible accuracy. However, not every classifier works effectively on all data-

sets. For each dataset, a unique classifier or a limited number of classifiers typically work best.

To explore this, the discriminative genes identified using different filtration methods were

Fig 9. Matrix plots for three representative selected genes from the 200 genes filtered by the TT

method.

https://doi.org/10.1371/journal.pone.0187371.g009
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analyzed using six different classifiers, and the performance of each classifier was noted.

Table 3 shows the accuracy of each classifier; of the tested classifiers, SVM had the highest

accuracy.

Based on the classification results, SVM was chosen as the ultimate classifier to be com-

bined with the GBPSO algorithm in wrapper form to perform the final stage of the gene

selection and classification process, as will be discussed later. Further analysis was also

conducted to elucidate the impact of dataset reduction on the accuracy of the SVM classi-

fier. The details of this analysis are provided in Table 4. It was observed that the utilization

of a combined mean and median ratio as a reduction criterion to remove the most similar

genes results in remarkable improvement in the classifier accuracy. Furthermore, this com-

bination was found to outperform the results obtained using the mean ratio or the median

ratio alone. Using this method, the initial selection results showed better classification accu-

racy and less computational complexity, and the dimensionality of the dataset was reduced

from 54,613 genes to 9454 genes. As such, the best classification accuracy of the SVM for

the TT filtered genes in this stage was found to be 86.3%, higher than the values previously

reported (of about 86.1% and 78.4%) for fused genes of eight filter methods [32, 48]. The

improvement in the accuracy of the SVM classifier is attributed to the impact of the thresh-

old value of mean and median ratio that is defined and used to remove the most similar

genes.

Fig 10. Matrix plots for three representative selected genes from the 200 genes filtered by the COR

method.

https://doi.org/10.1371/journal.pone.0187371.g010
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Final stage of selection and classification

The last step of gene selection was conducted using the GBPSO optimization algorithm

wrapped with the SVM classifier; in this step, those particles (gene subsets) having the best val-

ues of fitness were recorded to maintain a better solution at given population. As such, the best

subset of genes that provided the highest classification accuracy was identified and returned.

Table 5 shows the classification accuracy (10-fold cross-validation) as well as the prediction

accuracy for the new dataset using the model. Gene subsets #1, #2 and #3 correspond to the

sets of discriminative genes that were identified using the TT, COR and WRS filters, respec-

tively (see S5–S7 Datasets). It is worth noting that the merged form of these subsets (the S8

Dataset) produced the highest classification accuracy of 92.1%, which is higher than previously

reported classification accuracies [32, 48, 70]. The inclusion of the genes in each GBPSO-SVM

branch and in the fused set was based on the number of times that gene was repeated in the

10-fold selection. Genes with repeatability of less than 7-fold were not included in the sets. The

improvement in classification accuracy may be due to the effect of stepwise selection proce-

dures that were followed during the pre-selection operations as well as the incorporation of a

relatively high number of filtered genes (200 genes) at the final stage of selection by the

GBPSO-SVM algorithm. In previous studies [75], superior performance of PSO over GA in

terms of accuracy was reported. To determine the real difference between the time taken by

GA and GBPSO, in this study GA was tested against GBPSO. It was observed that the time

required for feature selection by the GBPSO method is one-third of that required by the GA

Fig 11. Andrews plot for three representative selected genes from the reduced dataset before the

application of filter methods.

https://doi.org/10.1371/journal.pone.0187371.g011
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method. Moreover, GBPSO involves fewer steps and requires less memory to perform feature

selection. The ten most frequent repetitive and/or similar genes in the 10-fold selection among

the three achieved subsets were FKBP4, RHPN2, SEMA6B, ZNF230, LARS, LOC283075,

CAPS2, ANKUB1, B3GNT7, and CASP2. A comparison between the most discriminative

genes that were chosen during the initial and last selection steps identified a common gene,

CAPS2. Therefore, it might be possible for us to assign this gene as one of the most important

ASD risk genes. It was reported that the Ca2+-dependent activator protein for the CAPS family

of secretory proteins regulates neuropeptide-containing dense-core vesicles (DCVs) at sites of

secretion such as nerve terminals [76]. It was also claimed that genes associated with autism

are responsible for Ca2+ regulation in brain membranes, and CAPS2 is one of the genes that

Fig 12. Andrews plot for three representative selected genes from the 200 genes filtered by the WRS

method.

https://doi.org/10.1371/journal.pone.0187371.g012

Table 3. Accuracy percentages of six different classifiers used after the first selection stage in 10-fold

cross-validation.

Classifier TT filter COR filter WRS filter

Decision Tree 62.9 65.3 57.3

Discriminant Analysis 75.0 72.6 74.2

Logistic Regression 46.8 41.9 52.4

SVM 86.3 81.8 83.8

K-Nearest Neighbor 73.4 74.2 76.6

Ensemble Bagged Trees 71.0 69.4 69.4

https://doi.org/10.1371/journal.pone.0187371.t003
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contribute to the regulation of Ca2+ levels [77]. Consistent with our observations, a recent

study showed that CAPS2 may be a risk factor for autism [78].

Conclusions

The gene expression values of autism spectrum disorder (ASD) were successfully analyzed

with the goal of improving the selection and classification process. This was accomplished

using a combination of statistical filters and a wrapper-based GBPSO-SVM algorithm. It was

noted that the expression of genes potentially associated with ASD varies greatly among the

observations; hence, the utilization of the mean ratio criterion alone to remove similar genes

does not provide a reliable result. Instead, both the mean and median ratio should be utilized

simultaneously. It was shown that the pre-reduction process improves the accuracy of the

SVM classifier. The results showed that each filter method identifies different sets of genes

with a specific repetition of the discriminative genes among them. This is due to the high vari-

ance of several genes in autism disorder and necessitates the use of additional selection steps.

During the filtration stage, the three most discriminative genes that received the highest repeti-

tion ranking among 30 sets of filtered genes were found to be ZSCAN18, CFC1B and CAPS2,

whereas after further gene selection using GBPSO-SVM, a set of ten genes, namely FKBP4,

RHPN2, SEMA6B, ZNF230, LARS, LOC283075, CAPS2, ANKUB1, B3GNT7, and CASP2,

was selected. A comparison of the most discriminative genes identified during the initial and

final selection steps pointed to the existence of a common gene (CAPS2), which was desig-

nated as the gene that showed the greatest association with ASD risk. The merged forms of the

gene subsets that were selected by the GBPSO-SVM wrapper produced an improved classifica-

tion accuracy of 92.1%, higher than those reported previously, in spite of its improved

Table 4. Accuracy percentage of the SVM classifier at different stages of removal of similar genes and applied filtration results for 200 discrimina-

tive genes.

Reduction criterion Genes, # TT filter COR filter WRS filter

Without reduction 54,613 72.7 75.0 68.2

Mean & Median ratio 0.99 37,125 72.7 75.0 68.2

Mean & Median ratio 0.98 26,644 72.7 75.0 68.2

Mean & Median ratio 0.97 18,975 75.0 75.0 70.5

Mean & Median ratio 0.96 13,470 77.3 75.0 77.7

Mean & Median ratio 0.95 9454 86.3 81.8 83.8

Mean & Median ratio 0.94 6655 80.4 78.5 82.5

Mean & Median ratio 0.93 4606 76.4 75.4 75.4

Mean & Median ratio 0.92 3231 73.5 74.5 73.5

Mean & Median ratio 0.91 2165 69.6 70.5 70.6

Mean & Median ratio 0.90 1490 72.5 69.6 71.5

Mean ratio 0.95 13,324 75.0 77.3 72.7

Median ratio 0.95 14,440 77.3 77.3 75.0

https://doi.org/10.1371/journal.pone.0187371.t004

Table 5. Accuracy percentage of the SVM classifier at the final stage of gene selection by the GBPSO-SVM algorithm in 10-fold cross-validation

and the accuracy of the new dataset in terms of the model.

Dataset Classification accuracy, %

Gene subset #1 Gene subset #2 Gene subset #3 Merged set

Validation/testing set 91.1 89.5 87.3 92.1

Non-involved set 83.2 80.1 82.5 84.7

https://doi.org/10.1371/journal.pone.0187371.t005
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efficiency. This enhancement was attributed to the effect of using GBPSO-SVM as an accurate

and fast algorithm.

Supporting information

S1 Dataset. The reduced dataset. The dataset contains 146 observations and 9454 genes.

(CSV)

S2 Dataset. The dataset selected by the TT filter. This dataset contains 124 observations and

200 genes.

(CSV)

S3 Dataset. The dataset selected by the COR filter. This dataset contains 124 observations

and 200 genes.

(CSV)

S4 Dataset. The dataset selected by the WRS filter. This dataset contains 124 observations

and 200 genes.

(CSV)

S5 Dataset. The first dataset selected by GBPSO-SVM. This dataset was derived from the

dataset selected by the TT filter. It contains 124 observations and 48 genes.

(CSV)

S6 Dataset. The second dataset selected by GBPSO-SVM. This dataset was derived from the

dataset selected by the COR filter. It contains 124 observations and 46 genes.

(CSV)

S7 Dataset. The third dataset selected by GBPSO-SVM. This dataset was derived from the

dataset selected by the WRS filter. It contains 124 observations and 37 genes.

(CSV)

S8 Dataset. The merged set of the datasets selected by GBPSO-SVM. The merged set was

generated by fusing the three datasets selected by GBPSO-SVM. It contains 124 observations

and 101 genes.

(CSV)
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