

An Evaluation of Traceability Approaches to Support Software Evolution

Siti Rochimah, Wan M. N. Wan Kadir, Abdul H. Abdullah
Software Engineering Department,

Faculty of Computer Science and Information System,
Universiti Teknologi Malaysia

siti@its-sby.edu, wnasir@utm.my, hanan@utm.my

Abstract

Requirements traceability is becoming increasingly

significant element in software engineering. It provides
critical function in the development and maintenance of a
software system. From the software evolution point of view,
requirements traceability plays an important role in
facilitating software evolution. Since the evolution is
inevitable, a traceability approach must take as much as
possible the important influencing aspects into account to
the evolution processes in order to minimize the evolution
efforts. This paper evaluates several recent traceability
approaches published in literature with the focus on their
contributions to software evolution. The evaluation results
may be used as a basis for improving requirements
traceability approaches that may simplify the software
evolution tasks.

1. Introduction

Requirement traceability is defined as “the ability to

describe and follow the life of a requirement, in both a
forwards and backwards direction” [1]. For over three
decades, researchers keep improving requirement
traceability (or ‘traceability’ for short) approaches to
support many software engineering activities.

There are various traceability approaches that have
been proposed from a very simple way, i.e. using
spreadsheet, until the latest ones that apply some formal or
complex techniques. Most of them using their own
traceability technique specific for their related approaches.

This paper aims at evaluating several recent software
traceability approaches that have been published in
literature. The evaluation focus is primarily on the
capability of the approaches in supporting software
evolution. The initial results obtained by this evaluation
can be used to indicate to what extends each approach has a
capability to support software evolution. Consequently, the
results can be used as a basis for improving the current
approaches related to their support for software evolution.
In addition, the evaluation results may also outline the
desired criteria for a more holistic approach in
requirements traceability.

This paper is organized as follows: Section 2 provide a
brief description on the state-of-the-art software traceability
approachesy. Section 3 presents the evaluation framework
that is utilized to evaluate the approaches. Section 4
discusses the evaluation results as well as the rationale
behind them. Section 5 presents the discussion from overall
results, while Section 6 explains threat of validity relating
the evaluation results. Finally, Section 7 presents the
conclusion.

2. Overview of Traceability Approaches

We reviewed about hundred of recent papers relating

traceability topics. Based on them, we interested in seven
approaches that include specific subject, i.e. they put the
requirement as one of the main artifacts to perform
traceability.

We resume here the traceability approaches, which
will be further evaluated. We cite each approach in term of
the mechanisms and algorithms that are utilized and scope
of tracing that is covered. Those characteristics will be used
to evaluate the approach in the next sections.

2.1 Information Retrieval Approach (IRA)

Recently, there are many researchers attempting to

establish traceability link via information retrieval
approach [2-9]. This approach focuses on automating the
generation of traceability link by similarity comparison
between two types of artifacts. The two basic IR models
which commonly used in traceability generation are
probabilistic and vector space models. Numerous variant
models have also been applied including the popular model
Latent Semantic Indexing which is based on vector space
model. In each model, one type of particular artifacts treats
as a query and another type of artifacts treats as a document
being searched in term of the query. For example, source
code treats as a query against requirements specification as
a document being searched based on the query.

The general steps include (i) preprocessing, i.e. stop-
word removal and or stemming, (ii) analyzing and indexing
of an incoming document collection, followed by
constructing a representation of each document and then
archiving them, (iii) analyzing and representing an

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 19:12 from IEEE Xplore. Restrictions apply.

incoming queries, and using a matching or ranking
algorithm to determine which document representations are
similar to the query representation. The scope of tracing
covers almost of artifacts including high-level and low-
level requirements, manual documents, design elements,
test cases, and source code.

2.2 Rule-Based Approach (RB)

Spanoudakis et al. in [10, 11] propose a method to

automatically create traceability link using rules. They use
two traceability rules, i.e. requirement-to-object-model
traceability rule (RTOM rule) and inter-requirement
traceability rule (IREQ rule). The rules are deployed into
three specific documents types, i.e. (i) requirements
statement documents (RSD), (ii) use case documents
(UCD), and (iii) analysis object models (AOM). RTOM
rules are used to trace the RSD and UCD to an AOM,
while IREQ rules are used to trace between RSD and the
UCD. The method assumes that all of document types are
in XML-based format. The traceability rules are also
represented in XML-based markup language.

The method consists of four stages, i.e. (i) grammatical
tagging of the artifacts, (ii) converting the tagged artifacts
into XML representations (iii) generating traceability
relations between artifacts, and (iv) generating traceability
relations between different parts of the artifacts. RB covers
requirement statement documents, use case documents, and
analysis object models as the objects of tracing.

Also, Nentwich et al. in [12] build rule-based tool for
consistency management for XML-based software artifacts,
namely ‘xlinkit’. First-order logics are utilized to describe
consistency rules. The tool can be applied to all kind of
textual software artifacts as long as these artifacts are in
document-object-model (DOM) trees format

2.3 Event-Based Approach (EB)

Cleland-Huang et al. in [13-15] propose event-based

approach for updating and maintaining traceability
relationships. Traceability relationships are defined as
publisher-subscriber relationships in which dependent
artifacts must subscribe to the requirements on which they
depend. When a requirement change, the dependent
artifacts are notified and subsequently proper action can be
taken.

The method involves three main components, i.e. (i)
the requirement manager which responsible for managing
requirements and for publishing change event messages to
the event server, (ii) the event server which responsible for
establishing traceability by handling initial subscriptions
placed by dependent entities, and also listening for event
notifications from the requirement manager(s) and
forwarding event messages to relevant subscribers, and (iii)
the subscriber manager which responsible for listening on

behalf of the subscribers that it manages for event
notifications forwarded by the event server.

EB assumes that the traceability links among artifacts
have been established before event-based algorithms are
run. Consequently, the algorithms are focused only to
manage up-to-date traceability links based on changes that
may occur during system operational time. The algorithms
have been implemented in a tool prototype to manage and
maintain traceability between requirements and UML
artifacts as well as test cases.

2.4 Hypertext-Based Approach (HB)

Maletic et al. in [16, 17] propose an approach uses

hypertext model that allow complex linking as well as
versioning of links. Also, Sherba in [18, 19] propose a
hypertext-based traceability relationships generation using
open hypermedia and information integration.

The approach utilizes XML as the main tool for
representing models and created links. The models and
their links are converted into XML-based representation.
Models are categorized into anchor model and target
model. The links are established between anchor and target
model with particular link types, i.e. causal, non-causal,
and or navigational links. Once the model-to-model
traceability links have been established, meta-differencing
mechanism is used to indicate if some changes have been
occurred in the models. The evolution is supported by a
fine-grained versioning technique. The scope of tracing
includes all types of artifacts.

2.5 Feature Model-Based Approach (FB)

Riebisch and Pashov in [20, 21] describe feature

model-based method for requirement traceability. They
utilize feature modeling which describes a requirements as
an overview and models the variability of a product line. A
feature model consists of a graph with features as nodes
and feature relations as edges. If the number of features is
very high, then the representation of features and their
relations are displayed by tables. FB is applied for the
definition of a product by a customer. Every feature
describes a property of a product from the customer’s point
of view. There are three categories of features, i.e. (i)
functional features (ii) interface features, and (iii)
parameter features.

The features are structured by hierarchical relations.
Classifications of feature relations are (i) hierarchical
relations which describe the sequence of decisions of
products. The most important features are placed higher in
the hierarchy, (ii) refinement relations which describe
relations of generalization and specialization as well as
aggregation, and (iii) requires or excludes relations or
multiplicity-grouping relations which describe constraints
between variable features that have an influence on the

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 19:12 from IEEE Xplore. Restrictions apply.

sequence of decisions of products. The scope of traceability
includes requirements to features and elements of the
solution, i.e. object model and source code.

2.6 Value-Based Approach (VB)

Zemont in [22] proposes a framework for assessing the

value that traceability can provide to an organization.
Furthermore, Heindl and Biffl in [23] propose value-based
requirement tracing. This approach provides technical
support to perform requirements tracing as well as take
value and cost considerations into account. Thus, it
provides a technical model and an economic model for
requirement tracing based on some criteria.

VB consists of five processes, i.e. (i) requirements
definition, that is identifying atomic requirements and
assigning an identifier to each of them, (ii) requirements
prioritization, that is estimating the value, risk, and effort
of each requirement, (iii) requirements packaging, that is
identifying clusters of requirements, (iv) requirements
linking, that is establishing traceability links between
requirements and other artifacts, and (v) evaluation, that is
utilizing generated traces for certain purposes, e.g. to
estimate the impact of change for particular requirements.

VB combines a manual and semi-automated way in
obtaining the traceability links and in performing a change
in the software artifacts.

2.7 Scenario-Based Approach (SB)

Egyed et al. in [24-26] propose scenario-based

approach. SB uses a hypothesized trace information that
have to be manually entered. Then, it uses runtime
information to creating trace links. Test case scenarios are
executed on a running system and execution information is
obtained using a monitoring tool. The information is then
combined with the hypothesized trace information to form
a footprint graph. This graph shows the relationship among
artifacts in the system.

The traceability links are created automatically, but the
hypothesized trace information must be manually entered.
In SB, traceability links can only be created once a running
system is available.

3. Evaluation Framework

Buckley et al. in [27] propose the taxonomy of

software evolution based on the characterizing mechanisms
of change and the factors that influence these mechanisms.
The taxonomy is organized into the following logical
groupings: temporal properties that is a dimension of
software evolution that captures timing aspect of change;
objects of change that captures location aspect of change,
i.e. which part of software can be changed; system
properties that captures the characteristic of software while

it is changed; and change support that captures support
mechanism while software is being changed [27].

The temporal properties include change frequency
which detects if software can be changed at continuously,
periodically, or arbitrary intervals; change history which is
supported by software versioning capability; time of
change which categorizes software change capability into
compile-time, load-time, or run-time change capability; and
anticipation which refers to the time when the requirements
for a software change are foreseen [27].

The objects of change include artifact which indicates
what artifacts can be changed by the software; granularity
which distinguishes level of granularity that can be
changed into coarse, medium, and fine granularity; impact
which indicates the impact of a change, i.e. local or system-
wide impacted, and change propagation which denote if
the software, upon a change, has capability to propagate to
other part of artifacts. The propagation is implemented
either by change propagation, change impact analysis,
traceability analysis, or effort estimation features [27].

The system properties contain availability which
indicates if the software has to be permanently available or
not while a change is being made; activeness which
indicates whether the software is reactive, i.e. changes are
driven externally, or proactive, i.e. changes are driven by
itself; openness which indicates whether the software is an
open systems, i.e. built to allow for extensions, or closed
system, i.e. do not provide a framework for extensions; and
safety which distinguishes between static and dynamic
safety [27].

The change support includes degree of automation
which distinguishes between automated, partially
automated, and manual change support; degree of formality
which indicates whether the change support is implemented
based on some underlying mathematical formalism or not;
and change type which distinguishes between structural
and semantic changes [27].

4. Evaluation of the Approaches

This section describes a comparative evaluation of

various traceability approaches. The evaluation focus is
primarily on their capability to support software evolution.
The initial results obtained from this evaluation can be used
to indicate to which extent an approach satisfies some
features in term of its support for software evolution.

4.1 Temporal Properties

IR approach generates traceability link by processing

software artifacts in the form of textual file format. Any
other file formats will be transformed into textual file
format before being processed in the preprocessing stage. If
a change is to be performed in one of the software artifacts,
then the changed artifact has to be first transformed into

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 19:12 from IEEE Xplore. Restrictions apply.

textual file format, as well as other impacted artifacts. The
next step is then recovering the traceability links into the
new version of software traceability based on the change.
Traceability generation as well as traceability recovery in
IR approach does not directly invoke into the executable
elements of the software. Thus, any changes in software
artifacts have to be recompiled to get new version. IR
approach implements automatic and dynamic retrieval
methods. It means that traceability can be automatically
generated for the first time as well as be automatically and
dynamically recovered or updated when a change has been
applied on particular artifact. It does not depend upon the
existence of pre-established links. This characteristic
allows IR approach to provide versioning mechanism. IR
approach generates as well as recovers software traceability
links in arbitrary period, depending on a change that can
be performed in arbitrary period also.

RB approach generates traceability link by processing
software artifacts in the form of either XML-based or
DOM-based file format. Like IR approach, RB approach
will transform any other file format into XML or DOM file
format before it can be further processed by the approach.
RB approach also does not directly invoke into executable
element of the software when applying the rules, since the
rules are only invoked into RSD, UCD, and AOM. If a
change is implemented to a particular artifact, then RB
approach will regenerate traceability links the way it
generate links for the first time. If that change is propagate
into the source code then it has to be recompiled to get the
new software version. Versioning in RB approach is
possible since the links regeneration is independent from
the previous established links. RB approach also allows
arbitrary changes applied on the software since changes
can be performed in arbitrary mode as well.

EB approach assumes that traceability links among
artifacts already exist in the maintained system and
therefore it has to maintain those links during operational
system periods. When a change is happened to the
requirements, the dependent artifacts will be notified and
some proper actions will be taken in order to update the
traceability links into the new version. When updating the
links, EB does not directly invoke into the executable
elements of the software. Thus, like previous approaches, if
a change in requirement propagates into its source code,
then the software must be recompiled to make a new
version. EB approach is run under distributed environment
framework allowing more than one users send a change
proposal at the same time. Changes are then resolved and
recorded in the event log in each artifact in parallel way.
These event logs allow EB approach to have versioning
feature as well as parallel mode for applied changes. The
changes can be applied on timely fashioned manner, thus in
arbitrary mode.

HB approach applies traceability links creation for all
types of non-executable artifacts. This means that this
approach does not directly invoke into the executable

elements of the software. Thus, any changes in software
artifacts have to be recompiled to get new version. HB
approach utilizes meta-differencing mechanism allowing
system to indicate if some changes have been occurred in
the models. This is a fine-grained versioning technique
that the approach supports for evolution. Like other
previous approaches, changes that have to be performed
can be done in arbitrary moments.

FB approach does not directly invoke the executable
elements when performing a change. If a change has to be
performed in source code, then the source code has to be
recompiled to get new version. In FB approach,
traceability links are built with a particular feature
management tool. This tool usually saves the built links in
particular file format. It allows multiple version of
document that is saved in different time. If any changes
have to be performed in the impacted artifacts, they can be
done in arbitrary mode.

VB approach generates traceability links in three
different levels of detail, in manual way by human
investigators. These links are applied on non-executable
artifacts. In the evaluation stage, the available traces are
utilized to estimate the impact of change. Any changes in
software artifacts have to be recompiled to get new
version. VB approach has no versioning feature since the
links are built in manual way. However, changes that have
to be performed can be done in arbitrary moments.

In fact, SB approach generates link from runtime
execution of software system. But, if a change in
requirement propagates into its source code, then the
software must be recompiled to make a new version.
Versioning in SB approach is impossible since traceability
links can only be created once a running system is
available. Like other previous approaches, changes that
have to be performed can be done in arbitrary moments.

However, none of the approaches have capability to
anticipate the change of the requirements in the future.
Based on the above explanation, Table 1 below shows the
evaluation result on the temporal properties aspect.

Table 1. The Evaluation on ‘Temporal Properties’ Dimension

Aspects IRa RB EB HB FB VB SB
Time of Change
• Compile √ √ √ √ √ √ √
• Load
• Runtime
Change History
• Versioning √ √ √ √ √
• Sequential
• Parallel √
Change Freq.
• Continuous
• Periodic
• Arbitrary √ √ √ √ √ √ √

4.2 Object of Change
IR approach generates traceability links between free

text documentations and source code [2, 7], between high-

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 19:12 from IEEE Xplore. Restrictions apply.

level and low-level requirements documents [4], and
between requirements documents and UML artifacts,
source code and test cases [3, 8, 9, 28]. Therefore the
artifacts scope of IR approach includes all high-level and
low-level artifacts. This approach has a fine-grained level
of granularity since links can be created at a method level
in the source code. Any changes that are applied to the
system may affect only to the other part of the same
artifact. For example, a change in the local variable name
of particular class may affect only to the class belonging
the variable. But in other case, a change in any artifacts
may affect to other artifacts in other level, for example, a
change in the requirement may affect to the source code,
design document, and test cases. Thus, the impact of
change is local as well as system-wide. IR approach
provides traceability analysis to support change
propagation process in the context of evolution.

RB approach generates traceability links between
RSD, UCD, and AOM [10, 11], and among all textual
artifacts as long as those artifacts are in DOM trees format
[12]. The artifacts scope of RB approach includes all high-
level and low-level artifacts. This approach has a fine-
grained level of granularity since links can be created at a
method level in the source code (in the ‘xlinkit’ tool).
Using the same reason that is mentioned in IR approach,
this approach can make local as well as system-wide
impact upon a change has been implemented. RB approach
also provides traceability analysis to support change
propagation process.

EB approach assumes that there are already available
links between requirements and UML artifacts including
test cases. Source code is excluded. The approach then runs
its maintenance mechanism upon those artifacts and their
links. The artifacts scope of EB approach includes all high-
level and low-level artifacts (UML design documents, i.e.
class diagram, sequence diagram, and other design
diagrams are classified into low-level artifacts). This
approach has a medium level of granularity since the
source code is excluded from the established links. In EB
approach, a change is only applied on requirements. The
change is then used to analyze which parts of other artifacts
are impacted. This change impacts on system-wide level.
EB approach provides traceability analysis as well as
change impact analysis to support software evolution.

HB approach generates traceability links among all
types of artifacts, including source code. Thus, the artifacts
scope of HB approach includes high-level and low-level
artifacts. This approach has a fine-grained level of
granularity since links can be created at a method level in
the source code. A change can be applied on any types of
artifacts and the impact of change can be in local or
system-wide level. HB approach provides traceability
analysis to support software evolution.

FB approach generates traceability links among
requirements, object model, and source code. The artifacts
scope of FB approach includes high-level and low-level

artifacts. This approach has a medium level of granularity
since it does not actually invoke into the source code,
instead it only concerns for the packages bundling the
source code. A change can be applied on any types of
artifacts and the impact of change can be in local or
system-wide level. FB approach provides traceability
analysis to support change propagation process.

In the case study performed by [23] to demonstrate VB
approach, the traceability links are manually generated
between requirements documents and design elements, and
between requirements documents and source codes. Thus,
the artifacts scope of VB approach includes high-level and
low-level artifacts. This approach has a fine-grained level
of granularity since links can be created at a method level
in the source code, although it is done manually. In VB
approach, a change is possible to occur only in
requirements documents allowing the change impact into
system-wide level. VB approach provides traceability
analysis as well as change impact analysis to support
software evolution.

SB approach generates traceability links among
requirements, design model, and source code. The artifacts
scope of SB approach includes high-level and low-level
artifacts. This approach has a fine-grained level of
granularity since links can be created at a method level in
the source code. A change can be applied on any types of
artifacts and the impact of change can be in local or
system-wide level. SB approach provides traceability
analysis to support software evolution.

Based on the above explanation , the evaluation result
of the ‘object of change’ aspects can be seen in Table 2
below.

Table 2. The Evaluation on ‘Object of Change’ Dimension

Aspects IRa RB EB HB FB VB SB
Artifact
• High-level √ √ √ √ √ √ √
• Low-level √ √ √ √ √ √ √
Granularity
• Coarse
• Medium √ √
• Fine √ √ √ √ √
Impact
• Local √ √ √ √ √
• System-wide √ √ √ √ √ √ √
Ch Propagation*
• CIA √ √
• TA √ √ √ √ √ √ √
• EE

* CIA: change impact analysis; TA: traceability analysis; EE: effort estimation

4.3 System Properties
Requirement traceability approaches that are

mentioned in the previous section work in similar manner.
They first create traceability links among artifacts (for
those which assume that the links are not available before
the systems are run), then use the established links to
maintain the software systems, i.e. to estimate the impact of
a change on a particular artifact, and when a change occurs

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 19:12 from IEEE Xplore. Restrictions apply.

in one of the artifacts, they recover the traceability links
based on that change.

When software artifacts are being traced or those
artifacts’ links are being recovered, the software itself does
not have to be at run-time mode. After a change has been
implemented on the impacted artifacts, and subsequently
the change is propagated down into the source code
element, then the software need to be recompiled to get a
new version. This situation complies with all of the
approaches, even if the approach is run under the
distributed environment framework, such as EB approach.
Therefore all of the approaches are partially available,
that is, the running software systems can be stopped while
it is being modified. In other word, the approaches support
for only partially availability of software systems.

Furthermore, all of the approaches are reactive since
changes on the artifacts must be driven by an external
agent, i.e. user or stakeholder. All of the approaches
support for openness of a software system as they facilitate
the software to be extended or modified. If a particular
requirement is changed, then the approaches can either
regenerate links or analyze the available links, to indicate
which other parts of the software will be impacted and
therefore should be modified.

Also, all of the approaches support for static safety
feature as the tracing processes guarantee a certain degree
of behavioral safety, in which the change is behavior-
preserving with respect to the original behavior (although
there is no formal proof of this).

Based on the above explanation , the evaluation result
of the ‘system properties’ aspects can be seen in Table 3.

Table 3. The Evaluation on ‘System Properties’ Dimension

Aspects IRa RB EB HB FB VB SB
Availability
• Partially avail. √ √ √ √ √ √ √
• Permanently av.
Activeness
• Reactive √ √ √ √ √ √ √
• Proactive
Openness
• Open √ √ √ √ √ √ √
• Closed
Safety
• Static √ √ √ √ √ √ √
• Dynamic

4.4 Change Support
IR, RB, and HB approaches generate traceability links

(and recover the links based on a change) in an automated
way. EB generates requirements changes in an automated
way. VB, FB, and SB are semi-automated since they
combine a manual and automated way in obtaining the
traceability links and in performing a change in the
software artifacts.

All of the approaches are implemented on some
underlying mathematical model especially for the core
tracing algorithms while some other parts are based on

informal model. Hence, all of them are semi-formal. The
informal model can also be applied when user have to
decide whether the result are accepted or rejected, since no
mathematical model can be used to judge the decision. It is
based on intuition and knowledge of the user.

All of the approaches support for structural and
semantic change. The rationale is as follows. All of the
approaches are for requirement tracing whether it is
performed for the first time (establishment) or after the
traceability has been accomplished (recovery due to a
change). Therefore, a change can be made on one of the
artifacts, which can be at requirement documents, design
documents, or source code. All of the artifacts are stored as
files. So, the change is made on one of those files and it can
be any kind of change, i.e. addition, deletion, or
modification. It can be structural, semantic-preserving, or
semantic-changing change. Table 4 shows the results,
based on the above explanation.

Table 4. The Evaluation on ‘Change Support’ Dimension

Aspects IRa RB EB HB FB VB SB
Deg. of Automation
• Automated √ √ √ √
• Semi-automated √ √ √
• Manual
Degree of Formality
• Ad-hoc
• Semi-formal √ √ √ √ √ √ √
• Formal
Change Type
• Structural √ √ √ √ √ √ √
• Semantic √ √ √ √ √ √ √

5. Discussion
In the context of software evolution support, we can

divide the discussion into two disjoint groups. The first is
related to the similarity characteristics belong to each
approach, and the second is the opposite.

The similarities arise among them is caused by the
natural or inherent characteristics of requirement
traceability process. For example compile-time change,
arbitrary change, reactive, semi-formal, etc. These
characteristics seem too hard to be improved, since the user
intervention, i.e. the need for user justification in the final
results, can not be avoided in the process.

The second group is related to the characteristics in
which each approach have different value. The way to
improve the value to achieve a better support for software
evolution is by modifying the approach itself (if the
algorithms enable) or by combining a particular approach
to other approach that have a better value (if the technology
is enable). For example RB approach may be combined
with HB to achieve recovery capability as well as
requirement semantic meaning capability (even though it
needs further exploration from both of them).

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 19:12 from IEEE Xplore. Restrictions apply.

6. Threats to Validity

First, the sources that are used to evaluate the
approaches are mainly from the published research papers,
especially from the international journals and or the
conference proceedings. The papers usually contain brief
and compressed information (due to space restriction) in
that some other information probably were disappeared
related to the long version one, i.e. dissertation report, or
technical report. Therefore the justifications are made from
the concise information. However, those papers were
already published and well accepted in international
community, in term of their information ‘completeness’
and clarity.

Second, the justifications are performed without any
formal methodology. We use our comprehension from
reading the papers and concluding the result based on our
understanding and intuition. However, the initial result
presented in the evaluation can be very useful to perform
further and deeper evaluation of the approaches for future
improvement, and also to welcome any open discussions.

7. Conclusion

In this paper, we have presented the evaluation of
state-of-the-art requirements traceability approaches,
especially in the context of software evolution. We have
evaluated the approaches using the taxonomy of software
evolution framework. The results showed us that so far,
there is no approaches fully satisfied all of the requirements
of traceability related capabilities that have to be
accomplished to support software evolution. This means
that much work have to be done to achieve the better
approaches in the future.

Acknowledgements

The authors would like to thank Ministry of Higher
Education (MOHE) Malaysia, Universiti Teknologi
Malaysia (UTM), and Islamic Development Bank (IDB)
for their financial support.

References

[1] O. Gotel and A. Finkelstein, "An Analysis of the

Requirements Traceability Problem," in Proceeding
of 1st International Conf. on Requirement
Engineering, 1994.

[2] G. Antoniol, G. Canfora, G. Casazza, G. De Lucia,
and E. Merlo, "Recovering traceability links between
code and documentation," IEEE Transactions on
Software Engineering, vol. 28, no. 10, October, 2002,
pp. 970-83.

[3] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou,
"Utilizing Supporting Evidence to Improve Dynamic
Requirements Traceability," in Proceedings of the
13th IEEE International Conference on Requirements
Engineering (RE’05). 2005.

[4] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram,
"Improving After-the-fact Tracing and Mapping:
Supporting Software Quality Predictions," IEEE
Software, 2005.

[5] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram,
"Advancing candidate link generation for
requirements tracing: The study of methods," IEEE
Transactions on Software Engineering, vol. 32, no. 1,
January, 2006.

[6] J. Lin, C. C. Lin, J. Cleland-Huang, R. Settimi, J.
Amaya, G. Bedford, B. Berenbach, O. Ben Khadra,
C. Duan, and X. Zou, "Poirot: A Distributed Tool
Supporting Enterprise-Wide Automated Traceability,"
in 14th IEEE International Requirement Engineering
Conference (RE'06), 2006.

[7] A. Marcus and I. J. Maletic, "Recovering
Documentation-to-Source Code Traceability Link
using Latent Semantic Indexing," in Proceedings of
the 25th IEEE International Conference on Software
Engineering, 2003.

[8] R. Settimi, J. Cleland-Huang, O. B. Khadra, J. Mody,
W. Lukasik, and C. DePalma, "Supporting software
evolution through dynamically retrieving traces to
UML artifacts," in Proceedings - 7th International
Workshop on Principles of Software Evolution,
IWPSE 2004 (In Conjunction with RE 2004), 2004.

[9] X. Zou, R. Settimi, and J. Cleland-Huang, "Phrasing
in Dynamic Requirements Trace Retrieval," in
Proceeding of 30th Annual International Computer
Software and Applications Conference
(COMPSAC'06), 2006.

[10] G. Spanoudakis, "Plausible and Adaptive
Requirement Traceability Structures," in Proc. 14th
Int’l Conf. Software Eng. and Knowledge Eng, 2002.

[11] G. Spanoudakis, A. Zisman, E. Perez-Minana, and P.
Krause, "Rule-Based Generation of Requirements
Traceability Relations," Journal of Systems and
Software, 2004, pp. 105-27.

[12] C. Nentwich, L. Capra, W. Emmerich, and A.
Finkelstein, "xlinkit: A Consistency Checking and
Smart Link Generation Services," ACM Transactions
on Internet Technology, vol. 2, no. 2, 2002, pp. 151-
85.

[13] J. Cleland-Huang, C. K. Chang, S. Gaurav, J. Kumar,
H. Haijian, and X. Jinchun, "Automating Speculative
Queries through Event-based Requirements
Traceability," in Proceedings of the IEEE Joint
International Conference on Requirements
Engineering, 2002.

[14] J. Cleland-Huang, C. K. Chang, and G. Y.,
"Supporting Event Based Traceability through High-

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 19:12 from IEEE Xplore. Restrictions apply.

Level Recognition of Change Events," in IEEE Proc.
Int’l Computer Software and Applications Conf.
(COMPSAC), 2002.

[15] J. Cleland-Huang, C. K. Chang, and M. Christensen,
"Event-based traceability for managing evolutionary
change," IEEE Trans. on Software Engineering, vol.
29, no. 9, Sept, 2003, pp. 796-810.

[16] J. I. Maletic, E. Munson, A. Marcus, and T. Nguyen,
"Using a Hypertext Model for Traceability Link
Conformance Analysis," in Proceedings of 2nd
International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE’03), 2003.

[17] J. I. Maletic, M. L. Collard, and B. Simoes, "An XML
Based Approach to Support the Evolution of Model-
to-Model Traceability Links," in Proceedings of 4th
International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE’05), 2005.

[18] S. A. Sherba, "Towards Automating Traceability: An
Incremental and Scalable Approach," PhD Thesis,
Department of Computer Science, University of
Colorado, 2005

[19] S. A. Sherba, K. M. Anderson, and M. Faisal, "A
Framework for Mapping Traceability Relationships,"
in 2nd International Workshop on Traceability in
Emerging Forms of Software Engineering. (TEFSE
'2003), Montreal, Canada 2003.

[20] M. Riebisch, "Supporting evolutionary development
by feature models and traceability links," in
Proceedings - 11th IEEE International Conference
and Workshop on the Engineering of Computer-
Based Systems, 2004.

[21] I. Pashov and M. Riebisch, "Using feature modeling
for program comprehension and software architecture
recovery," in Proc. of 11th IEEE Int’l Conf. and

Workshop on the Engineering of Computer-Based
Systems, 2004.

[22] G. Zemont, "Towards Value-Based Requirements
Traceability," PhD Thesis, Department of Computer
Science, De Paul University, 2005

[23] M. Heindl and S. Biffl, "A Case Study on Value-
Based Requirement Tracing," in International
Conference on Empirical Software Engineering
(ESEC-FSE'05), Lisbon, Portugal, 2005.

[24] A. Egyed, "A Scenario-Driven Approach to
Traceability," in 23rd International Conference on
Software Engineering, Toronto, Ontario, Canada,
2001.

[25] A. Egyed and P. Grunbacher, "Automating
Requirements Traceability: Beyond the Record &
Replay Paradigm," in 17th IEEE International
Conference on Automated Software Engineering
(ASE'02), 2002.

[26] A. Egyed and P. Grunbacher, "Supporting Software
Understanding with Automated Requirements
Traceability," International Journal of Software
Engineering and Knowledge Engineering, vol. 15,
2005.

[27] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G.
Kniesel, "Towards a Taxonomy of Software Change,"
Journal of Software Maintenance and Evolution:
Research and Practice, vol. 17, no. 5, 2003, pp. 309 -
32.

[28] X. Zou, C. Duan, R. Settimi, and J. Cleland-Huang,
"Poirot:TraceMaker: A Tool for Dynamically
Retrieving Traceability Links," vol. 2006, 2005.

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 19:12 from IEEE Xplore. Restrictions apply.

