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Abstract - This paper is concerned with the mathematical 

modeling and the application of a new position tracking control 

technique for hydraulic manipulators. The integrated model 

takes into account both the manipulator linkage as well as the 

actuator dynamics to represent a closer dynamic behaviour of the 

real system, thus providing a more suitable model for the 

purpose of advanced controller synthesis and analysis. Although 

hydraulic manipulators provide large torque and fast response, 

they possess highly nonlinear dynamics, parameter variations, 

uncertain load disturbances and strong couplings among various 

joints. Therefore, a robust control approach based on 

Proportional Integral Sliding Mode Control (PISMC) technique 

is adopted to provide position tracking for the system. It will be 

shown that the proposed controller is practically stable and is 

successful in forcing the robotic system to track the predefined 

desired trajectory at all time. A 3 DOF revolute robot 

manipulator is used in this study. 

Index terms – Robot Manipulator, Hydraulic System, Hydraulic 

Manipulator, Sliding Mode Control, Proportional Integral Sliding 

Mode Control 

 
I. INTRODUCTION 

Hydraulically actuated manipulators are widely used in a 
number of applications.  Manipulators in construction, 
industry, and heavy load motion control and mobile equipment 
applications take the advantage of the high power to weight 
ratio, stiffness and short response time of hydraulic drives in 
performing their tasks [1]. In order to increase the hydraulic 
manipulators’ productivity and performance, it is essential to 
be able to control the system well. However, in spite of their 
advantages, and unlike electric manipulators, the modeling 
and control of such system is a challenging task both 
theoretically and experimentally since hydraulic robots are 
more complex, due to their nonlinear mechanical linkage 
dynamics, dependence of the effective driving torque on joint 
angle, payload uncertainties, strong couplings among various 
joints and nonlinearities present in the hydraulic actuators 
themselves.  

The majority of the previous work in the synthesis of 
control law for manipulators deals with the electrically 

actuated manipulators. Comparatively less work has been 
done for hydraulic actuated robot [1]. Previous research has 
spanned from both modeling and control of pure hydraulic 
servo systems to the control of hydraulic robot with no robotic 
manipulator dynamics considered in the model such as in [2] 
and [3]. Adaptive Control Technique was proposed in [2] to 
control hydraulic cylinders with the application to robot 
manipulators, but none of the mechanical linkage dynamics 
are incorporated in the model. The dynamics of the actuator 
alone is not sufficient to represent the hydraulic manipulator, 
since it does not include the arm dynamic forces such as 
inertia forces and gravity effects that the controller needs to 
compensate [1]. Thus tracking performance of the system can 
be improved by considering also the robot dynamics in the 
controller design since it is part of hydraulic servo actuating 
system. This approach has been successfully shown in many 
electrical robots in the past.  

The majority of current industrial approaches to the robot 
control arm design treat each joint of the manipulator as a 
simple linear servomechanism with proportional plus integral 
plus derivative (PID) or Computed Torque (CTC) controllers 
[4].The problem with PID controllers is that they are not 
adequate for the cases when the robot moves at high speed and 
in situations requiring a precise trajectory tracking since the 
hydraulic manipulator is nonlinear, time varying, coupled and 
uncertain in nature. On the other hand, the problem with CTC 
is that it is essentially based on exact robot arm dynamic 
model, where the explicit use of an incorrect robot model will 
deteriorate the control performance. Hence, a robust controller 
is proposed to drive such a system. 

A robust control technique based on Proportional Integral 
Sliding Mode Control (PISMC) method has been successfully 
designed for electrically driven robot manipulator as presented 
in [5]. This technique takes the advantages of zero steady error 
due to the integral term and robustness offered by the Sliding 
Mode Control (SMC). Once the system is in the sliding mode, 
its response depends thereafter on the gradient of the surface 
and remains insensitive to variations in the system parameters 
and external disturbances. Different from conventional SMC, 
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the proposed technique avoids the need of transformation on 
the original plant into canonical form or reduced form. 
Therefore, the order of the motion equation in PISMC is equal 
to the order of the original system. In [5], a three DOF 
revolute electric robot is used in the simulations. It is verified 
that the proposed control law is effective in providing the 
tracking control and efficient in compensating the nonlinear, 
coupled and time varying inertia, coriolis, centrifugal and 
gravitational forces of the mechanical manipulator linkage.  

This paper is concerned with the modeling and control of 
hydraulically driven robot manipulator. In terms of modeling, 
this paper presents the formulation of dynamic model for an N 
DOF electrohydraulic robot manipulator that integrates both 
the actuator dynamics and the mechanical arm dynamics in 
state space representation. The proposed model is believed to 
provide a better and much more suitable mathematical 
representation for the purpose of controller synthesis and 
analysis. In terms of control strategy for this particular system, 
this paper extends the control approach as proposed in [5] to 
provide trajectory tracking control of a hydraulically actuated 
robot manipulator. The stability proof based on Lyapunov 
theory is also presented. A 3 DOF electrohydraulic robot is 
used in the simulation study. 

This paper is organized as follows: The system dynamics, 
including mechanical linkage and hydraulic dynamics are 
presented in Section II. In Section III, the adopted control 
approach is described. Simulation results are presented in 
Section IV. Finally, conclusions are drawn in Section V.  

 
II. DYNAMIC MODELING OF THE HYDRAULIC ROBOT 

MANIPULATOR 
A.Manipulator Mechanical Linkage Dynamics 

The dynamic equation of an N DOF mechanical linkage 
of a robot manipulator with rigid links is governed by [4]: 
 

)()),(()),(),(()()),(( tTtGttDttM  !! "#"###"#      (1)                      

 
Where; 
           )),(( "# tM         : NN $ Inertia matrix 

           :  vector of coriolis and  

                                        centrifugal forces 

)),(),(( "## ttD  1$N

           )),(( "# tG           : vector of gravitational forces 1$N

                            : vector of driving torques  

                                        applied by the actuators  

)(tT 1$N

           : vector of generalized joint  

                                       displacements, velocities and  
                                       accelerations respectively 

)(),(),( ttt ###    1$N

           "                       : uncertain parameters of the  

                                       mechanism (payload mass) 
 

The terms  and )),(),(( "## ttD  )),(( "# tG in (1) can also 

be written as:  
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B. Electrohydraulic Actuator Dynamics 

The physical model of an ith nonlinear hydraulic actuator 
dynamics can be described in state space representation as in 
[3], [6], and [7]: 
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where is the displacement of the spool in the servo valve, 

 is the load pressure,  is the flow gain which varies at 

different operating points,  is the discharge coefficient,  

is the area gradient, 
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mi# 

mi#  

tK
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effective bulk modulus of the oil,  is the motor inertia,  
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mJ mB

T  is the load torque due to 

the joint of the ith manipulator on the ith motor, T  is the 
derivative of the load torque due to the joint of the ith 
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constant,  is the nonlinear stiffness of the spring, and  

is the inverse of the gear ratio.  

3

minG #
gn

 
The equation is derived based on the assumptions that:  
a. the piston is centered such that the volume of the 

fluid trapped at the sides of the actuator are equal, 
b. the valve is an ideal critical center valve with 

matched and symmetrical orifices, 
c. return line pressure is zero  
 

For an N DOF robot manipulator (N actuators), the augmented 
dynamic equation of the actuators can be written in the 
following compact form as follows [4]: 
 

                 (13) NtTWtFTtBUtAXtX !!!! )()()()()(   

 
where; 

% &TT

N

TT tXtXtXtX )(,),(),()( 21 "  

% &TN tUtUtUtU )(,,)(,)()( 21 "  

% &TN tTtTtTtT )(,,)(,)()( 21 "  

% &TN tTtTtTtT )(,,)(,)()( 21
 "     

% &NAAAA ,,,diag 21 "  

% &NBBBB ,,,diag 21 "  

% &NFFFF ,,,diag 21 "  

% &NWWWW ,,,diag 21 "  

and  is a vector, is an input vector, 

 is the mechanical link torque, and is its time 

derivative. 

)(tX 13 $N )(tU 1$N

)(tT 1$N )(tT 

C. Integrated Electrohydraulic Manipulator Dynamics 

The integrated model of the hydraulic manipulator can be 
obtained by first defining the following transformations [4]: 
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Then, the manipulator torque in (1) is differentiated with 

respect to time to obtain its derivative [4]: 
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Substituting (1) and (15) into (13) and utilizing (14) yields the 
integrated model of the hydraulic robot manipulator as:  
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The system matrix, ),,( tXAN "  and the input matrix, ),,( tXB "  

are of dimensions NN 33 $  and  respectively.  

Therefore, for a 3 DOF revolute hydraulic robot manipulator, 

the size of its system matrix is  while its input matrix is 

of size

NN $3

99$
39$ . Each nonzero element of these matrices is a 

function of the instantaneous position, velocity and payload 
mass of the manipulator. From (16), (17) and (18), it is clear 
that the resulting dynamics description of the robotic system is 
analytically complex. The equations are time varying, highly 
nonlinear and coupled due to the nonlinear mechanical linkage 
as well as hydraulic dynamics. These equations also contain 
parameter uncertainty which is the varying payload mass. 
Therefore, a more robust controller that is capable of catering 
these plant characteristics as presented in next section is 
required. 

  
III. PROPORTIONAL INTEGRAL SLIDING MODE  

          CONTROLLER 
The controller design involves two stages. The first part 

deals with the design of a sliding surface for which the system 
dynamics to slide and remain on it. The second part aims in 
deriving a control signal to maintain the system dynamics on 
this particular surface.  

The bounds on elements of the matrices ),,( tXAN "  and 

),,( tXB "  can be computed and specified since the physical 

parameters of the manipulator mechanical linkage and 
hydraulic actuator are known (specified by the manufacturer). 
Therefore (16) can be decomposed into nominal and uncertain 
matrices and rewritten as: 

 

  )()],,([)()],,([)( tUtxBBtXtxAAtX "" 9!!9!    (19) 

 

A  and B  are the time-invariant, nominal values of ),,( tXAN "  

and ),,( tXB "  respectively, with     
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A9  and B9  are uncertainty value of values of ),,( tXAN "  and 

),,( tXB " respectively, with  
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MINNAAA . 9                   (22)                   

    

  

MINBBB . 9                    (23) 

 
Define the state vector of the system as 
 

                        (24) % &Tn txtxtxtX )(),...,(),()( 21 
 

Let a continuous function  be the desired state 

trajectory, where X

n

d RtX :)(

d(t) is defined as: 
 

                   (25) % T

dnddd txtxtxtX )(),...,(),()( 21 &
 
Define the tracking error, Z(t) as 
 

)()()( tXtXtZ d.                    (26) 

 
In this study, the following assumptions are made: 
a.      The state vector X(t) can be fully observed; 
b.   There exist continuous functions H(t) and E(t) such  

         that for all  and all t: 
nRtX :)(

          )(;)()( ; 9 tHtHBtA                (27) 

        !)(;)()( ; 9 tEtEBtB            (28) 

c.      There exist a Lebesgue function , which is   

 integrals on bounded interval such that 

Rt :< )(

            )()()( tBtXAtX dd <! 
=

       (29) 

d.       The pair 0 1BA,  is controllable. 

 
Equations (27) and (28) in Assumption (b) ensures that 

the matching condition is satisfied, that is the uncertainties  

),,( tXA "9  and ),,( tXB "9 lie in the range space of the 

nominal input matrix B. This assumption is needed so that the 
control signal, U(t) which enters the system through the input 
matrix, ),,( tXB "  can compensate the parameter variations 

and uncertainties present in the system. 
Define the Proportional-Integral (PI) sliding surface as 

[5]: 

                   > !. 
t

dZKBCACtCZt
0
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where Z(t) is defined as  the tracking error: 
 
                                                             (31) )()()( tXtXtZ d. 

 
The structure of the matrix C is as follows:  
 
                               (32) ][ 21 incccdiagC # 

 

where  is the nth state variable associated to the ith input of 

the system. The matrix C is chosen such that 

in
mmRBC $:  is 

nonsingular. The matrix K is designed to satisfy [5]: 
 

                              0)($max ?! KBA                              (33) 

 
(33) guarantees that the system is stable by placing the desired 
poles in the left half plane. The elements of matrix K can be 
determined by pole placement technique with pre-specified 
poles locations[5].  

Next, the control problem is to design a tracking 
controller using the PI sliding mode given by equation (30) 
such that the robotic system state trajectory X(t) tracks the 
desired state trajectory Xd(t) as closely as possible for all t in 
spite of the uncertainties and nonlinearities present in the 
system.   

The manifold of equation (30) is asymptotically stable in 
the large, if the following hitting condition is held [5]: 
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As a proof, let the positive definite function be 
 

         )(#)( ttV                                    (35) 

 
Differentiating equation (35) with respect to time, t yields 

           )(#/))(#)(#()( T ttttV i

==

       (36) 

Following the Lyapunov stability theory, if equation (34) 
holds, then the sliding manifold )(t@  is asymptotically stable 

in the large. 
Theorem: The hitting condition (34) of the manifold given by 
(30) is satisfied if the control u(t) is governed by [5]:  
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where                  
          !)1/() (%1 !!A KBCBC                    (38) 

                         )!1/() (%2 !A BC                                  (39) 

                          )!1/()!(%3 !A BC                    (40) 

Let (38), (39) and (40) hold, then the global hitting condition 
(34) is satisfied. The proof of this theorem is given in the 
Appendix.  

 
IV. RESULTS AND DISCUSSIONS 

A computer simulation is performed on the developed 
control system to evaluate its performance in compensating 
the plant’s nonlinearities, parameter variations and 
uncertainties. Three DOF revolute hydraulically driven robot 
manipulator is used in this study. The desired trajectory, 

)(tdi# for each of the joints is specified as a smooth function 

represented by [4]: 
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where,   
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  siiii 23,2,1),0()"(   . 9 B##          (42) 

   
The joint trajectories are set to start at the initial position of 

radians, to a 

desired final position of  

radians in time 

TT ]5.05.18.0[)]0()0()0([ 321 ... ###
TT ]2.12.01[])()()([ 321  B#B#B#

2 B  seconds.  

For performance comparison, a linear control approach 
based on Independent Linear Joint Controller (IJC) technique 
is presented. IJC which is normally used in most industrial 
robot is designed with the dynamics of the mechanical linkage 
completely ignored. Each joint of the robot arm is treated as 
an independent servomechanism problem. The linear state 
feedback controller employed in each of the joint is described 
as: 

 

)()()( ttZKtU iiii <!         (43) 

 

where,  is the linear state feedback gain, 
iK )(ti< is the 

control component to eliminate the steady state error and 
  

              (44) )()()( tXtXtZ
idii . 

 
The simulation results for the manipulator operating 

under no load condition as can be observed from Figures 1 – 3 
show that the system has successfully tracks the desired 
trajectory. 

Figure 1 illustrates the tracking performance of PISMC 
and IJC on all the three joints with the robot operating at 
minimum payload mass or at its lower bound (0 kg). The 
result demonstrates that PISMC performance is by far better 
than IJC, in which it has successfully force the robotic system 
to track the desired trajectory very closely at all times. The 
tracking error as shown in Figure 2 verifies that the control 
system is insensitive against the plant’s nonlinearities, 
parameter variations and couplings.  

To validate the controller robustness against load 
variation (uncertainty), the simulation is repeated with the 
manipulator handling 10 kg load (upper bound). From Figure 
3 it can be clearly observed that the manipulator efficiently 
tracks the desired trajectory with almost negligible error 
although the payload mass in increased. Therefore, it can be 
deduced that the control system is robust against uncertainty 
(payload mass variation). 

 

V. CONCLUSION 

An integrated mathematical model of a hydraulically 
driven robot manipulator in state space representation is 
formulated and a robust control technique based on 
Proportional Integral Sliding Mode Control (PISMC) 
algorithm to control the system is presented in this paper. The 
developed integrated model is more feasible for controller 
synthesis and analysis, in which it does not only represent a 
closer dynamic nature of the real system, but also is 
formulated such that the matching condition that is required by 
sliding mode control is satisfied. Dissimilar from conventional 
SMC, the adopted technique avoids the need of original plant 

transformation into reduced form by including an integral term 
in the sliding surface. Simulation results show that the 
proposed approach has successfully compensate the 
manipulator’s inertia, coriolis forces, centrifugal forces, 
gravitational forces and varying payload mass originated from 
the robot mechanical linkage; as well as the nonlinearities 
originated from the hydraulic actuator, in which the control 
system has effectively tracks the pre-specified desired joints 
position trajectory with zero error at all times.   
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Fig.  1: Joints 1, 2 and 3 Tracking Response by PISMC and IJC with the 
Manipulator Handling No Load 
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Fig.  2: Joints Tracking Error with Manipulator Handling No Load 
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Fig.  3: Joints Tracking Error with Manipulator Handling 10 kg Load 

 

APPENDIX A 

The proof for the theorem is as in [5] which are briefly 
presented in the following: 

Differentiating (30) and substituting (37) gives: 
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Substituting (45) into (36) gives the rate of change of the 

Lyapunov function: 
 
 
 
 
       
 
 
 
 

 
Alternatively, equation (46) can be broken down into: 
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Then, each of the Lyapunov terms can be simplified as 
follows.  First term of equation (48): 
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Noting that: 
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Then, the second term of (48) can be simplified as:                
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Using (51) and (53), (48) becomes: 
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              (54) 

 
Similarly, equation (49) and (50) can be simplified in a 

same manner and the results are summarized as follows: 
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