
Research Article
Study of Model Predictive Control for Path-Following
Autonomous Ground Vehicle Control under Crosswind Effect

Fitri Yakub,1 Aminudin Abu,1 Shamsul Sarip,2 and Yasuchika Mori3

1Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur, Malaysia
2UTM Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia, Jalan Semarak,
54100 Kuala Lumpur, Malaysia
3Graduate School of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065, Japan

Correspondence should be addressed to Fitri Yakub; mfitri.kl@utm.my

Received 4 November 2015; Revised 1 March 2016; Accepted 17 March 2016

Academic Editor: Yongji Wang

Copyright © 2016 Fitri Yakub et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present a comparative study of model predictive control approaches of two-wheel steering, four-wheel steering, and a combi-
nation of two-wheel steering with direct yaw moment control manoeuvres for path-following control in autonomous car vehicle
dynamics systems. Single-track mode, based on a linearized vehicle and tire model, is used. Based on a given trajectory, we drove
the vehicle at low and high forward speeds and on low and high road friction surfaces for a double-lane change scenario in order
to follow the desired trajectory as close as possible while rejecting the effects of wind gusts. We compared the controller based on
both simple and complex bicycle models without and with the roll vehicle dynamics for different types of model predictive control
manoeuvres. The simulation result showed that the model predictive control gave a better performance in terms of robustness for
both forward speeds and road surface variation in autonomous path-following control. It also demonstrated that model predictive
control is useful to maintain vehicle stability along the desired path and has an ability to eliminate the crosswind effect.

1. Introduction

Today, model predictive control (MPC) is one of the more
popular optimal control techniqueswhich iswidely employed
for the control of constrained linear or nonlinear systems.
MPC uses amathematical dynamics processmodel to predict
the future behaviour of the system and optimize the process
control performance over a prediction horizon [1]. The MPC
model can be used easily at different levels of the process
control structure, such as multiple input and multiple output
dynamics systems that offer attractive solutions for regulation
and tracking problems, while guaranteeing stability [2]. Since
the end of the 1980s, robust MPCs which explicitly take
account of model uncertainties, constraints, and faults in the
control actuator, plant-model mismatch, and disturbances
or noise have been studied for more practical applications
[3]. Numerous research studies have investigated the stability
properties of MPC for systems without uncertainty and for
uncertain linear systems. Several robust predictive formula-
tions utilize the min–max approach, where the manipulated

input trajectory is computed by solving an optimization
problem that requires minimizing the objective function and
satisfying the input and state constraints over all possible real-
izations of the uncertainty. These have been applied mainly
to impulse response models and state-space approaches by
solving a finite horizon open-loop control optimization prob-
lem [4]. Due to its advantages,MPChas been implemented in
several applications for automotive and other transportation
active safety systems, such as active steering, active traction,
active braking, and active differentials or suspension systems,
in order to coordinate and improve vehicle handling, stability,
and ride comfort [5–8].

A vehicle capable of handling many things at once,
without any human intervention, can be termed as an auto-
nomous vehicle. Basic functions of autonomous braking
and steering however are insufficient; the vehicle has to
have the ability to sense its surrounding plus being able to
determine desired location, which can be achieved using a
variety of instruments and pieces of equipment such as radar,
global positioning system, on-board camera for vision, and
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an independent operating unit. All sensory data are then
computed for obstacle identification; avoidance is then exe-
cuted using advanced control system. In this paper, we limit
autonomous vehicles to ground vehicles, which are increas-
ingly being studied by several researchers from academia,
industry, and military. Several control methods are being
used, including fuzzy logic [9], hybrid control [10], H-infinity
control [11], and linear quadratic regulators [12]. The best
comparative studies on model predictive control strategies
for autonomous guidance vehicles can be found in Park et al.
[13], Yoon et al. [14], and Falcone et al. [15], where a nonlinear
dynamics model of a vehicle is used for the controller design
of an active front steeringmanoeuvre in a double-lane change
scenario. Keviczky et al. [16] studied the effect of side wind via
an active front steeringmanoeuvre for an autonomous vehicle
using nonlinear MPC. Since nonlinear MPC poses consid-
erable challenges due to its real-time implementation algo-
rithm,many researchers opted for linearMPC for their study.

The assumption of this study are as follows: vehicle trajec-
tory is known, as per Borrelli et al.’s [17] study, and the cross-
wind effect will be assigned as a step response, since the
crosswind effect disturbance on the vehicle can be approx-
imated as a constant. In this paper, we extend the concept
of MPC for application in vehicle manoeuvring problems
where a trajectory optimization is solved at each time step.
The trajectorywas designed to be a double-lane changing sce-
nario. The autonomous vehicle manoeuvring was simulated
in a variety of conditions: low (10ms−1) and high (30ms−1)
forward speed and low (icy) and high (concrete, wet) road
friction surface with the intention of following predeter-
mined trajectory as close as possible while maintaining
vehicle stability. The control inputs were front steering angle,
rear steering angle, and direct yawmoment control, while the
output controls were the yaw angle and lateral vehicle posi-
tion. Two different controllers were compared to evaluate
the performance of the six-degree-of-freedom (6DoF) vehi-
cle model: a simple (2DoF) controller without vehicle roll
dynamic and a complex (3DoF) bicycle model controller
with roll dynamics. Other performance indexes evaluated
were efficacy and robustness of the MPC for the autonomous
vehicle in terms of control and stability.

Themain objective of this paper is to evaluate the robust-
ness of model predictive control approaches for autonomous
path-following car dynamics control with simple and com-
plex models of the vehicle, while rejecting the effects of wind
gusts to the system.There are many studies to be consulted in
stabilization of the vehicle; examples are two-wheel steering
(2WS) [15, 18], four-wheel steering (4WS) [19], and 2WS with
direct yaw moment control (DYC) [5, 20, 21] with different
control strategies. The first contribution of this paper is the
effect of vehicle roll dynamics motion consideration to the
system, whereas most previous papers only focused on a
2DoF vehicle model (lateral and yaw motion). Moreover,
based on the authors’ knowledge, there is no comparative
study for autonomous path-following vehicle control using
MPC techniques for three control signalmanoeuvres (includ-
ing the three control signals here); the robustness evaluation
discussed here becomes the main novelty of this paper.
Furthermore, we would like to investigate the effectiveness

of model predictive control manoeuvres in the case of the
crosswind effect to the system in a variety of forward speeds
and road adhesions. The rest of the paper is organized as
follows: Section 2 describes the linear vehicle model, linear
tire model, and wind model. Next, a linear model predictive
control algorithm concept is explained in Section 3. Section 4
examines and describes the effectiveness of the linear MPC
for a car dynamics system on a two-lane change scenario.
Lastly, conclusions and future works are given in Section 5.

2. Vehicle Model

2.1. Bicycle Model. Figure 1 shows a well-known vehicle
model, which is a single-track model based on the simplifica-
tion that the right and leftwheels are lumped in a single wheel
at the front and rear axles. The simplified vehicle model used
in this paper illustrates the motion movement and dynamics
concerning the car vehicle subject to the longitudinal, lateral,
yaw, roll, and rotational dynamics of the front and rear wheel
motion, represented as 6DoF. The longitudinal, lateral, and
yaw dynamics effects are shown in Figure 1(b) as a top view
of the car vehicle, and in Figure 1(a), the roll dynamics effect
is explained with the nomenclature for a front view of the
vehicle. In this paper, the nonlinear vehicle was linearized
based on the assumption that sin 𝜃 = 0 and cos 𝜃 = 1 for both
steering angles, the vehicle side slip angle, and the roll angle.
We also assumed that thewhole vehiclemass is sprung, which
is ignoring the suspension and wheel weights for unsprung
mass. This linearized model still behaves and represents the
actual nonlinear vehicle model at certain operating points of
the region.The details of themathematical calculation for the
vehiclemodel are presented inChen andPeng [22] for further
knowledge.

In this paper, we use the following nomenclature: 𝐹
𝑥

and 𝐹
𝑦

represent the longitudinal and lateral tire forces,
respectively, 𝐹

𝑧

is the normal tire load, 𝐹
𝑤

and 𝑀
𝑤

rep-
resent the force and moment exerted by the side wind,
respectively, 𝑥, 𝑦, and 𝑧 correspond to the coordinates of the
body frame of a car position, 𝑙 is the vehicle wheelbase, 𝑇

𝑏

is
the wheel torque, V

𝑥

and V
𝑦

are the longitudinal and lateral
wheels velocities, respectively, 𝛿

𝑓

and 𝛿
𝑟

express the steering
angle of the front and rear wheels, respectively, 𝑀

𝑓

and𝑀
𝑟

represent the reaction yaw moment appearing at the front
and rear wheels, respectively,𝑀

𝑧

is the total reaction of yaw
moment of the wheels produced by the DYC, 𝜇 acts as the
track friction coefficient, 𝜓 is the yaw/heading angle and �̇� is
the yaw rate,𝛽 is the vehicle side slip angle, and𝜙 and �̇� are the
roll and roll rate angles, respectively. The variable at the front
and rear wheels is denoted by lower subscripts (⋅)

𝑓

and (⋅)
𝑟

.
The motion of longitudinal, lateral, yaw, roll, and rota-

tional dynamics of the front and rear wheels using a 6DoF
system based on a linear vehicle model is described through
the following differential equations [23]:

𝑚�̈� = 𝑚�̇��̇� + 2𝐹
𝑥𝑓

+ 2𝐹
𝑥𝑟

− 2ℎ𝑚�̇��̇� (1a)

𝑚�̈� = −𝑚�̇��̇� + 2𝐹
𝑦𝑓

+ 2𝐹
𝑦𝑟

+ ℎ𝑚�̈� + 𝐹
𝑤

(1b)

𝐼
𝑧𝑧

�̈� = 2𝑙
𝑓

𝐹
𝑦𝑓

− 2𝑙
𝑟

𝐹
𝑦𝑓

+ 𝐼
𝑥𝑧

�̈� + 𝑀
𝑓

+𝑀
𝑟

+𝑀
𝑤

(1c)
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Figure 1: Simplified bicycle model.

(𝐼
𝑥𝑥

+ 𝑚ℎ
2

) �̈� = 𝑚𝑔ℎ𝜙 − 2𝑘
𝜙

𝜙 − 2𝑏
𝜙

�̇�

+ 𝑚ℎ (�̈� + �̇��̇�) + 𝐼
𝑥𝑧

�̈�

(1d)

𝐽
𝑏

�̇�
𝑤𝑖

= −𝑟
𝑤

𝐹
𝑥𝑖

− 𝑇
𝑏𝑖

− 𝑏
𝑤

𝜔
𝑖

, 𝑖 = (𝑓, 𝑟) . (1e)

The motion equations for the vehicle in an inertial frame or
on 𝑦-𝑥 axis under the assumption of a small yaw angle may
be given as

�̇� = �̇� cos𝜓 − �̇� sin𝜓 = V
𝑥

− �̇�𝜓,

�̇� = �̇� sin𝜓 + �̇� cos𝜓 = V
𝑥

𝜓 + �̇�.

(2)

2.2. Tire Model. Tire dynamics must be considered for the
vehicle model, since the tires are the only contact that the
vehicle has with the road surface. Besides the forces of
gravity and aerodynamics, all the forces are induced by the
tires, which may affect the vehicle chassis, handling, and
stability.Their complexity and nonlinear behaviourmust also
reflect the operating condition of the controller over their
whole region throughout varied manoeuvring range in long-
itudinal, lateral, and roll directions.Themost frequently used
existing nonlinear tire models of application and structure
are determined through key parameters and analytical con-
siderations based on tire measurement data. They are called
semiempirical tire models or Pacejka tire model [24].

On the other hand, the nonlinear tire model can also
be described linearly for some parts of the operating con-
ditions; therefore in this paper, we will consider the linear
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𝛼
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Tb

Figure 2: Tire model.

tire model. Figure 2 illustrates the terminology used for
describing the longitudinal, lateral, and vertical tire forces
and their orientation. Thus, the linear tire model is valid
under constant normal load forces on the tires, constant
longitudinal slip of tires, and neglected aerodynamic drag.
The relationship between the longitudinal force, vertical
force, and the longitudinal tire slip ratio is given by the
following equations:

𝐹
𝑥

= 𝜇
𝑥

(𝑠) 𝐹
𝑧

(3a)

𝑠 =
𝑟
𝑤

𝜔
𝑤

V
𝑥

− 1 (3b)
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𝐹
𝑧𝑓

=
𝑙
𝑟

𝑚𝑔

2𝑙
,

𝐹
𝑧𝑟

=
𝑙
𝑓

𝑚𝑔

2𝑙
,

(3c)

where 𝑟
𝑤

is the tire’s geometric radius,𝜔
𝑤

is the angular veloc-
ity of the tires, V

𝑥

in (3b) is the tire’s forward velocity, 𝐹
𝑥

is
proportional to the normal force, 𝐹

𝑧

, and 𝜇
𝑥

(𝑠) represents the
longitudinal wheel slip friction coefficient of road adhesions
and is a function of slip ratio 𝑠.

The lateral forces on the front and rear tires are char-
acterized and modelled by a linear function with the front
and rear tire slip angles 𝛼

𝑓

and 𝛼
𝑟

denoted by 𝐹
𝑦,𝑓

and
𝐹
𝑦,𝑟

, respectively. The linear tire model yields the following
expression for the front and rear tire forces:

𝐹
𝑦,𝑓

= 𝐶
𝑓

𝛼
𝑓

,

𝐹
𝑦,𝑟

= 𝐶
𝑟

𝛼
𝑟

,

(4)

where 𝐶
𝑓

and 𝐶
𝑟

are the tire cornering stiffness parameters
for the front and rear tires, respectively. The slip angles for
the front and rear wheels, with a small angle assumption, are
given such that

𝛼
𝑓

=
V
𝑦

+ 𝑙
𝑓

�̇�

V
𝑥

− 𝛿
𝑓

,

𝛼
𝑟

=
V
𝑦

− 𝑙
𝑟

�̇�

V
𝑥

− 𝛿
𝑟

.

(5)

The details of mathematical equations for a linear tire model
can be read through in [25]. Assumptions and approxi-
mations presented in this paper are representative of the
nonlinear tire model at certain regional points; this provides
a good balance between capturing the important features and
regions of laterally unstable behaviour [26].

2.3. Wind Model. The effect of wind on the stability of the
vehicle is an important and primary safety consideration of
this paper. A strong gust of wind from the inward or outward
side will generate force and torque that could be large enough
for a vehicle to roll over or go outside of the lane.The resulting
wind pressure forces and torques acting on the rigid body, in
general, can be represented by three axes: longitudinal, lateral,
and vertical. A general expression of force and torque is given
by the following equations:

𝐹
𝑤

=
𝐶
𝐹

𝜌𝐴V2
𝑟

2
,

𝑀
𝑤

=
𝐶
𝑀

𝜌𝐴𝐿V2
𝑟

2
.

(6)

In the above equations, 𝐴 is the vehicle area, 𝐿 is the vehicle
length, 𝐿 = 𝑙

𝑓

+ 𝑙
𝑟

, 𝜌 is the density of air, V
𝑟

is the relative
wind speed, and 𝐶

𝐹

and 𝐶
𝑀

are the force and moment
nondimensional coefficients, respectively. The wind speed
or crosswind is represented by V

𝑤

as shown in Figure 3. In

�w

�r

�x

𝜓

Figure 3: Vehicle wind speed in crosswind situation.

general, crosswind can be at various angles, but, for simplicity,
in this paper we will assume the crosswind to be at a 90-
degree angle andwill focus on the wind’s impact on the lateral
forces and yaw torques [27].

The vehicle motion in ((1a), (1b), (1c), (1d), (1e))–(6) can
be described by the following compact differential equation:

�̇� = 𝐴𝑥 + 𝐵
1

𝑢 + 𝐵
2

𝑤 + 𝐵
3

𝑟,

𝑦 = 𝐶𝑥 + 𝐷𝑢

(7)

with 𝑥 ∈ 𝑅𝑥, 𝑢 ∈ 𝑅𝑢,𝑤 ∈ 𝑅
𝑤, 𝑟 ∈ 𝑅𝑟, and 𝑦 ∈ 𝑅𝑦 representing

the state vectors, control input vectors, crosswind effects as a
disturbance vector, desired trajectory vectors, and measured
output vectors, respectively. We define

𝑥 = [V
𝑦

𝑌 �̇� 𝜓 �̇� 𝜙 𝜔
𝑓

𝜔
𝑟

]
𝑇

,

𝑢 = [𝛿
𝑓

𝛿
𝑟

𝑀
𝑧

]
𝑇

,

𝑤 = [𝐹
𝑤

𝑀
𝑤

]
𝑇

,

𝑟 = [𝑌des 𝜓des]
𝑇

,

ℎ (𝜉) = [𝑌 𝜓]
𝑇

.

(8)

The state vectors represent the states for lateral velocity, lateral
position, yaw rate, yaw angle, roll rate, roll angle, and front
and rear wheels angular speed, respectively, and the output
vectors represent lateral position and yaw angle.

3. Linear Model Predictive Control

MPC has been used as a highly effective and very successful
control scheme with the simple design framework proving
to be a practical controller able to combine multivariable
systems and utilize online optimization process control. The
stability guarantees of existing predictive control approaches
for nonlinear systems with uncertainty, however, remain
contingent upon the assumption of the initial feasibility of
the optimization, and the set of initial conditions, starting
from where feasibility of the optimization problem and,
therefore, stability of the closed-loop system is guaranteed, is
not explicitly characterized [28]. For example, the occurrence
of faults in control actuators adds another layer of complexity
to the problem of controller design for nonlinear uncertain
systems. Note that the stability guarantees provided by a
controller may no longer hold in the presence of faults in
the control actuators that prevent the implementation of
the control action prescribed by the control law, and these
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faults can have substantial negative ramifications owing to the
interconnected nature of processes [29].

In order to implement MPC with a receding horizon
control strategy, the following strategy method is adopted:

(1) A dynamics process model is used to predict the
behaviour of the plant and future plant outputs at
each instant 𝑘 based on both previous and the latest
observations of the system’s inputs and outputs.

(2) The control signal inputs are calculated by minimiz-
ing the error of tracking between the predicted output
and desired trajectory signal to keep the process as
close as possible to following the trajectory, while
considering the objective functions and constraints.

(3) Only the first control signal is implemented on the
plant, whilst others are rejected in anticipation of the
next sampling instant, where the future output will be
known.

(4) Step (1) is repeated with updated values and all orders
are updated.

In this paper, we use the linear model of predictive control.
The hierarchical control structure is adopted in MPC, as
shown in Figure 4. Figure 4 illustrates the control structure
for 2WS that uses front steering only, 𝛿

𝑓

, for 4WS that uses
front and rear steering, 𝛿

𝑓

and 𝛿
𝑟

, and for 2WS with DYC
that produces external yaw moment (𝑀

𝑧

) at both front and
rear wheels as a control input to the system. These systems
are used to control the vehicle in order to follow a given
reference trajectory. They include the vehicle speed, desired
reference trajectory, modelled predictive control, and linear
vehicle model with linear tire model.

Using the equations from the vehicle and tire model, as
explained and defined in (7), the basic equations of linear
vehicle motion can be given as follows:

𝑚V̇
𝑦

=
1

𝐼
𝑥𝑥

V
𝑥

[− (𝜇𝐶
𝑟

+ 𝐶
𝑓

) 𝐽
𝑥𝑞

V
𝑦

+ (𝜇 (𝐶
𝑟

𝑙
𝑟

− 𝐶
𝑓

𝑙
𝑓

) 𝐽
𝑥𝑞

− 𝐼
𝑥𝑥

𝑚V2
𝑥

) �̇�]

−
1

𝐼
𝑥𝑥

[(ℎ𝑏
𝜙

) �̇� − ℎ (𝑚𝑔ℎ − 𝑘
𝜙

) 𝜙 − 𝜇𝐶
𝑓

𝐽
𝑥𝑞

𝛿
𝑓

+ 𝜇𝐶
𝑟

𝐽
𝑥𝑞

𝛿
𝑟

]

(9a)

𝐼
𝑧𝑧

�̈� =
1

V
𝑥

[𝜇 (𝐶
𝑟

𝑙
𝑟

− 𝐶
𝑓

𝑙
𝑓

) V
𝑦

− 𝜇 (𝐶
𝑓

𝑙
𝑓

2

+ 𝐶
𝑟

𝑙
𝑟

2

) �̇�] + 𝜇𝐶
𝑓

𝑙
𝑓

𝛿
𝑓

− 𝜇𝐶
𝑟

𝑙
𝑟

𝛿
𝑟

+𝑀
𝑧

(9b)

𝐼
𝑥𝑥

�̈� =
ℎ

V
𝑥

[𝜇 (𝐶
𝑟

𝑙
𝑟

− 𝐶
𝑓

𝑙
𝑓

) �̇� − 𝜇 (𝐶
𝑓

+ 𝐶
𝑟

) V
𝑦

]

− 𝑏
𝜙

�̇� + (𝑚𝑔ℎ − 𝑘
𝜙

) 𝜙 + 𝜇𝐶
𝑓

ℎ𝛿
𝑓

+ 𝜇𝐶
𝑟

ℎ𝛿
𝑟

,

(9c)

where 𝐽
𝑥𝑞

= 𝐼
𝑥𝑥

+ 𝑚ℎ
2. A DYC that produces the reaction

moment occurring at the front and rear wheels due to the
steering angle effect (as an external yaw moments (𝑀

𝑧

)) can
be approximated with the following equations:

𝑀
𝑓

≈ 2𝑙
𝑓

𝐶
𝑓

𝑀
𝑧

,

𝑀
𝑟

≈ 2𝑙
𝑟

𝐶
𝑟

𝑀
𝑧

.

(10)

We define front steering angle, rear steering angle, and direct
yaw moment control as the inputs to the system. Thus, the
vehicle motion can be represented in a given discrete state-
space structure, as follows:

𝑥
𝑙

(𝑘 + 1 | 𝑘) = 𝐴
𝑙

𝑥
𝑙

(𝑘 | 𝑘) + 𝐵
𝑙

𝑢
𝑙

(𝑘 | 𝑘)

+ 𝐵
𝑟

𝑟
𝑙

(𝑘 | 𝑘) ,

𝑦
𝑙

(𝑘 | 𝑘) = 𝐶
𝑙

𝑥
𝑙

(𝑘 | 𝑘) + 𝐷
𝑙

𝑢
𝑙

(𝑘 | 𝑘) ,

(11)

where 𝑥
𝑙

(𝑘 | 𝑘) is the state vector at time step 𝑘 and 𝑥
𝑙

(𝑘 +

1 | 𝑘) is the state vector at time step 𝑘 + 1, with 𝑥
𝑙

(𝑘 | 𝑘) ∈

𝑅
𝑥𝑙(𝑘|𝑘), 𝑢

𝑙

(𝑘 | 𝑘) ∈ 𝑅
𝑢𝑙(𝑘|𝑘), 𝑟

𝑙

(𝑘 | 𝑘) ∈ 𝑅
𝑟𝑙(𝑘|𝑘), and 𝑦

𝑙

(𝑘 | 𝑘) ∈

𝑅
𝑦𝑙(𝑘|𝑘) representing the state vectors, control input vectors,

reference vectors, and measured output vectors, respectively.
We define

𝑥
𝑙

(𝑘) = [V
𝑦

𝑌 �̇� 𝜓 �̇� 𝜙]
𝑇

,

𝑟
𝑙

(𝑘) = [𝑌des 𝜓des]
𝑇

,

𝑦
𝑙

(𝑘) = [𝑌 𝜓]
𝑇

.

(12)

For 2WS, 4WS, and 2WS with DYC, the control signal to the
systems with the same tuning control parameters is given as
follows:

𝑢
𝑙

(𝑘) = [𝛿
𝑓

] ,

𝑢
𝑙

(𝑘) = [𝛿
𝑓

𝛿
𝑟

]
𝑇

,

𝑢
𝑙

(𝑘) = [𝛿
𝑓

𝑀
𝑧

]
𝑇

.

(13)

We formulate the optimization of the predictive control
system, which takes the constraints imposed on the input and
input rate, respectively, as given in the following form:

−𝑢
𝑙

≤ 𝑢
𝑙

(𝑘) ≤ +𝑢
𝑙

,

−Δ𝑢
𝑙

≤ Δ𝑢
𝑙

(𝑘) ≤ +Δ𝑢
𝑙

.

(14)
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One approach to maintain closed-loop stability would be to
use all available control actuators (13) so that even if one of
the control actuators fails, the rest can maintain closed-loop
stability which the reliable control approaches. The use of
redundant control actuators, however, incurs possibly pre-
ventable operation and maintenance costs. These economic
considerations dictate the use of only as many control loops
as is required at a time. To achieve tolerance with respect to
faults, control-loop reconfiguration can be carried out in the
event of failure of the primary control configuration based on
the assumption of a linear system.

Based on the linear vehicle model in (11) and by defining
the outputs in (12), we consider the following cost functions
to the system:

𝐽 (𝑥
𝑙

(𝑘) , 𝑈
𝑙
𝑘

) =

𝐻𝑝

∑

𝑖=1

�̃�𝑙 (𝑘 + 𝑖 | 𝑘) − 𝑟 (𝑘 + 𝑖 | 𝑘)

2

𝑄𝑖

+

𝐻𝑐−1

∑

𝑖=0

Δ�̃�𝑙 (𝑘 + 𝑖 | 𝑘)

2

𝑅𝑖

.

(15)

In (15), the first summation of the given cost function
reflects the reduction of trajectory tracking errors among the
predicted outputs �̃�

𝑙

(𝑘 + 𝑖 | 𝑘) (𝑖 = 0, . . . , 𝐻
𝑝

− 1) and the
output reference signals 𝑟(𝑘+𝑖 | 𝑘) (𝑖 = 0, . . . , 𝐻

𝑝

−1), and the
second summation reflects on the penalization of the control
signal effort Δ�̃�

𝑙

(𝑘 + 𝑖 | 𝑘) (𝑖 = 0, . . . , 𝐻
𝑐

− 1) of the steering
control manoeuvre. The aim of the predictive control system
is to determine the optimal control input vector Δ�̃�

𝑙

(𝑘+ 𝑖 | 𝑘)

so that the error function between the reference signal and
the predicted output is reduced.

The difference in the steering angle Δ�̃�
𝑙

(𝑘 + 𝑖 | 𝑘) is given
in the case that the cost function is at a minimum value.
The weight matrices 𝑄(𝑖) and 𝑅(𝑖) are semipositive definite
and positive definite, respectively, and can be tuned for any
desired closed-loop performance. 𝑄(𝑖) is defined as the state
tracking weight, since the error �̃�

𝑙

(𝑘 + 𝑖 | 𝑘) − 𝑟(𝑘 + 𝑖 | 𝑘) can
become as small as possible by increasing 𝑄(𝑖). In a similar
fashion, 𝑅(𝑖) represents the input tracking weight and the
variation of the input is decreased to slow down the response
of the system by increasing 𝑅(𝑖). The predictive and control
horizon are typically considered to be 𝐻

𝑝

≥ 𝐻
𝑐

, while the
control signal is considered constant for 𝐻

𝑐

≤ 𝑖 ≤ 𝐻
𝑝

.
Matrices 𝑄(𝑖) and 𝑅(𝑖) represent the matrix weight of their
appropriate dimensions for outputs and inputs, respectively,
giving the state feedback control law as follows:

𝑢
𝑙

(𝑘, 𝑦
𝑙

(𝑘)) = 𝑢
𝑙

(𝑘 − 1) + Δ𝑢
𝑙

(𝑦
𝑙

(𝑘)) . (16)

An optimal input was computed for the following time step
rather than being calculated for the immediate time step by
addressing convex optimization problems during each time
step. After that, the first input is applied on the plant in (11),
and the others are rejected, which yield the optimal control
sequence as (16). The optimization problem in (15) is iterated
with the new value at a time 𝑘 + 1 via new state 𝑥(𝑘 + 1), and
all orders are then updated.

The required direct yaw moment control𝑀
𝑧

is obtained
from the variation between the two sides of the vehicle torque,

as in (1e). In this research, the braking torque is only used
based on the yaw rate; in otherwords, it is only activated in the
case that the vehiclemoves toward instability or in emergency
manoeuvres, since it impacts the longitudinal motion, while
the rear steering angle is assumed for the total manoeuvre to
be in control or in standard drivingmanoeuvres.We take into
account three control inputs, that is, front and rear steering
angles, as well as differential braking at rear right and left tire,
but only one control input is used at a time [30].

4. Simulation Results

4.1. Scenario Description. The linear model predictive con-
troller explained andpresentedwas implemented for a vehicle
path following a double-lane change scenario with a cross-
wind effect present throughout the simulation. A double-lane
change manoeuvre approximates as an emergency manoeu-
vre case and generally demonstrates the agility and capabili-
ties of the vehicle in lateral and roll dynamics. During such a
manoeuvre, an understeering or oversteering, or even a roll-
over situation, may occur. In this scenario, the vehicle is con-
sidered travelling horizontally or straightforward, following
the path with a constant velocity of 10ms−1 and 30ms−1
without braking or accelerating. The drag force and torque
given by (6) in the initial driving conditions are assumed to
act in the direction of the path at time 𝑡 = 1 sec with a wind
velocity of V

𝑤

= 10ms−1. The forces and torques arising from
this sidewise acting wind gust are assumed to be persistent
and are applied as step functions throughout the simulation
time, as shown in Figure 5. Table 1 shows the sport utility
passenger car model parameters and their definitions used in
this paper, based on Solmaz et al. [31].

For stability analysis, we simulated the system with only
one input—in particular, the front steering angle 𝛿

𝑓

or 2WS.
We set the vehicle velocity to be constant at V

𝑥

= 15ms−1;
the road adhesion coefficient 𝜇 = 1 and wind velocity V

𝑤

=

10ms−1. Figure 6(a) shows a stability analysis based on the
root locus of the open-loop system in (7) showing matrix 𝐴
without the crosswind effect (𝐵

2

= 0) and references signal
(𝐵
3

= 0). Those settings contribute to a stable region for both
outputs (vehicle side slip and yaw rate responses). Matrix 𝐴
is given in (8) with input signal being front steering angle
(𝐵
1

= 𝛿
𝑓

). Since the root locus command inMATLAB is only
working on the single-input single-output, therefore we eval-
uate separately the output response with single input signal.

Figure 6(b) illustrates the effect of these factors: a cross-
wind effect (𝐵

2

̸= 0), references signal (𝐵
3

= 0), and con-
trol signal (𝐵

1

= 0), with the same matrix 𝐴 as in (8) that
yields unstable responses for both vehicle side slip and yaw
rate. We can also notice that the poles are different for both
cases due to 𝐵

2

matrices that are based on the crosswind
effect. Furthermore, Figure 6(b) shows that within a wind
velocity, V

𝑤

= 10ms−1, the system is stable with the appropri-
ate matrices of 𝐴, 𝐵

1

, and 𝐵
2

. Figure 6(a) also illustrates that
paired 𝐴 and 𝐵

1

are controllable, based on the model para-
meters listed in Table 1.

In this paper, the predictive controller was implemented
by minimizing vehicle deviation from the target path to
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Figure 5: Force and torque for crosswind speed of 10ms−1.

Table 1: Car vehicle parameters.

Parameter Value
Car mass [kg] 1300
Inertia around the roll, 𝑥-axis [kgm2] 370
Inertia around 𝑧-axis [kgm2] 2167.56
Distance of front and rear wheels from centre of gravity (CoG) [m] 1.45, 1.07
Distance between the vehicle CoG and the assumed roll axis [m] 0.45
Equivalent suspension roll damping coefficient [Nms] 4200
Equivalent suspension roll stiffness coefficient [Nm] 40000
Linear approximation of tire stiffness for front and rear tire [N/rad] 133000, 121000
Gravitational constant [m/s2] 9.8

achieve the main aim, which is to follow the desired or refer-
ence trajectory as close as possible. The controllers are com-
pared against each other for 2DoF and 3DoF bicycle models,
which excludes vehicle roll dynamics at various speeds,
specifically low (10ms−1) and high (30ms−1), and also under
wet concrete (𝜇 = 0.7) and icy (𝜇 = 0.1) road surfaces.

Since our study focused on an autonomous vehicle, it is
reasonable to assume that the controllers will adapt to the
road or environment, such as in the case of road adhesions,
adverse weather, visual cues, traffic, and overall relevant
driving conditions. Therefore, both controllers (2DoF and
3DoF) were designed and implemented with the parameters
and conditions given in Tables 2, 3, and 4 for different vehicle
forward speeds and road adhesion coefficients. The path-
following tracking error is a measurement of how closely
the output responses follow the reference trajectory, which
is a measure of the deviation from the benchmark. In this

paper, we use the standard deviation of the root-mean square
formula to calculate the tracking error, given by the following
equation:

𝑒
𝑡

= √Var (𝑦
𝑜

− 𝑦
𝑟

) = √
1

(𝑛 − 1)
∑ (𝑦
𝑜

− 𝑦
𝑟

)
2

, (17)

where 𝑒
𝑡

is the tracking error, 𝑛 represents the number of
time periods, and 𝑦

𝑜

and 𝑦
𝑟

express the measured output and
reference.

4.2. Results and Discussions. Prior to proposed simulations,
we carried out standard vehicle manoeuvres tests to validate
our model in the open-loop simulation scenario. Standard
tests available are the J-turn, fishhook, and double-lane
change [32], which are representative of on-roadmanoeuvres
without tripping (caused by external force from road curb or
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Figure 6: Open-loop system in (7).

collisionwith other vehicles).We performed only the double-
lane change and roll rate feedback fishhook test, for vehicle
validation purposes in the open-loop simulation, as shown in
Figures 7 and 8. The vehicle speed was set at 30ms−1, which
is suitable for both tests, with a road surface coefficient of 0.1.
As illustrated in Figures 7 and 8, the vehicle response in terms

of yaw rate, roll rate, and lateral acceleration has been proven
to be validated, thus being suitable for other simulations.

For easier comparison between controllers’ perfor-
mances, in achieving vehicle stabilization when subjected
to various conditions, controllers tuning parameters from
Tables 3 and 4 were selected as suitable. The weighting gains
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Figure 7: Vehicle manoeuvre test of single-lane change at 30ms−1 with 𝜇 = 0.1.

Table 2: Model predictive control parameters.

Parameter Value
Predictive horizon 20
Control horizon 9
Sampling time [s] 0.05
Constraints on max and min steering angles [deg.] ±20
Constraints on max and min changes in steering angles [deg./s] ±10
Constraints on max and min changes in moment torque [Nm/rad] ±2000
Constraints on max and min moment torque [Nm/rad/s] ±1500
Simulation time [s] 15

for controllers input and output were selected using trial-
and-error method, where selection criteria were based on the
best response output for both input and output for weighting
gains.

The first simulation revolves around various road surface
friction coefficients, from wet concrete (𝜇 = 0.7) to icy sur-
face condition (𝜇 = 0.1), with a constant forward speed of
10ms−1. The MPC weighting tuning parameters are listed
in Table 3. We evaluated the controller’s robustness for the
output responses by comparing the performance of 2WS,
4WS, and 2WS with DYC manoeuvres at a forward speed of

10ms−1, as shown in Figures 9–11. The controller tracking
errors, based on (17) for lateral position and yaw angle
responses, are summarized in Table 5. From Figure 9, there
are not many differences between both controllers under
the conditions of lowest speed and high road adhesion
coefficient; both controllers yielded perfect response when
following a given trajectory, while maintaining vehicle stabil-
ity and rejecting external crosswind effect. It can be seen that,
for 4WS and 2WS with DYC manoeuvres, the rear steering
angle and the direct yaw moment are almost unused, since
the front steering can provide sufficient control ability. This
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Figure 8: Vehicle manoeuvre test of roll rate feedback at 30ms−1 with 𝜇 = 0.1.

Table 3: Model predictive control weighting matrices parameters for V
𝑥

= 10ms−1.

Control manoeuvres 2DoF 3DoF

2WS
V
𝑥

= 10ms−1, 𝜇 = 0.7 𝑅
1

= 0.1, Δ𝑅
1

= 0.03 𝑅
1

= 0.1, Δ𝑅
1

= 0.03
𝑄
11

= 1.95, 𝑄
22

= 0.5 𝑄
11

= 5.25, 𝑄
22

= 0.5

V
𝑥

= 10ms−1, 𝜇 = 0.1 𝑅
1

= 0.1, Δ𝑅
1

= 0.03 𝑅
1

= 0.1, Δ𝑅
1

= 0.03
𝑄
11

= 1.52, 𝑄
22

= 0.5 𝑄
11

= 3.95, 𝑄
22

= 0.5

4WS

V
𝑥

= 10ms−1, 𝜇 = 0.7
𝑅
1

= 0.1, Δ𝑅
1

= 0.03 𝑅
1

= 0.1, Δ𝑅
1

= 0.03
𝑅
2

= 0.1, Δ𝑅
2

= 0.03 𝑅
2

= 0.1, Δ𝑅
2

= 0.03
𝑄
11

= 1.95, 𝑄
22

= 0.5 𝑄
11

= 4.5, 𝑄
22

= 0.5

V
𝑥

= 10ms−1, 𝜇 = 0.1
𝑅
1

= 0.1, Δ𝑅
1

= 0.03 𝑅
1

= 0.1, Δ𝑅
1

= 0.03
𝑅
2

= 0.1, Δ𝑅
2

= 0.03 𝑅
2

= 0.1, Δ𝑅
2

= 0.03
𝑄
11

= 1.53, 𝑄
22

= 0.5 𝑄
11

= 3.5, 𝑄
22

= 0.5

2WS + DYC

V
𝑥

= 10ms−1, 𝜇 = 0.7
𝑅
1

= 0.1, Δ𝑅
1

= 0.03 𝑅
1

= 0.1, Δ𝑅
1

= 0.03
𝑅
2

= 0.1, Δ𝑅
2

= 0.03 𝑅
2

= 0.1, Δ𝑅
2

= 0.03
𝑄
11

= 1.93, 𝑄
22

= 0.5 𝑄
11

= 3.7, 𝑄
22

= 0.5

V
𝑥

= 10ms−1, 𝜇 = 0.1
𝑅
1

= 0.1, Δ𝑅
1

= 0.03 𝑅
1

= 0.1, Δ𝑅
1

= 0.03
𝑅
2

= 0.1, Δ𝑅
2

= 0.03 𝑅
2

= 0.1, Δ𝑅
2

= 0.03
𝑄
11

= 1.52, 𝑄
22

= 0.5 𝑄
11

= 3.5, 𝑄
22

= 0.5
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Figure 9: 2DoF controller at 10ms−1 and 𝜇 = 0.7 by 2WS, 4WS, and 2WS + DYC.

may be partly due to the fact that the rear steering and DYC
were not used in lower speed manoeuvres.

Moreover, when the road surface friction was set to icy,
the output responses from both controllers and all control
manoeuvre techniques did not perfectly follow the desired
trajectory as shown in Figures 10 and 11. 2WS with DYC
yielded the best performance output compared to the others,
especially in yaw rate response. 4WSwas the next best, follow-
ing 2WS, where the lateral position and yaw angle look
almost identical. It seems that the rear steering and direct yaw
moment controls were used in conjunction with front steer-
ing for vehicle stabilization along the trajectory. However,
from Table 5, the controller with 3DoF gives slightly better
tracking error performance manoeuvres compared to con-
troller 2DoF due to the fact that roll dynamics will not have
much influence during low speed manoeuvres. Another fact
is that, at low vehicle speed, all control inputs (front steering
angle, rear steering angle, and direct yawmoment control) are
under constraints.

Next, we tested the vehicle at various road friction coef-
ficients again; however this time the vehicle was tested under
a high forward speed of 30ms−1. The same MPC design was
used, of which the parameter controls are listed in Table 4.We
compared the simulation results for 2WS, 4WS, and 2WSwith
DYC control manoeuvres for both controllers and present
the comparison in Figures 12–15.The simulation results show

that, for 2DoF controller at 30ms−1 and on wet concrete
(𝜇 = 0.7), all control manoeuvres give slightly similar out-
puts performances. Better responses were achieved in lateral
positioning, and although the tracking performance of yaw
angle and yaw rate deteriorated, the system still allowed
the vehicle to track and follow the trajectory, successfully
rejecting the effects of wind gust that impact the vehicle.

As tabulated in Table 6, 4WS and 2WS with DYC show
slightly better tracking performance compared to 2WS only.
However, in the case of the 3DoF controller, it can be clearly
seen that 2WS with DYC and 4WS control manoeuvres
offered amuch higher performing response, especially in yaw
angle and yaw rate response, than 2WS. This is shown in
Figure 13. In this scenario, the rear steering and direct yaw
moment control was fully utilized to control and enhance
vehicle stability. It is therefore very important to consider roll
dynamics in order to enhance vehicle stability and to follow
the path trajectory. From Figures 12 and 13, there are some
strong frequency oscillations in front of some responses;
that is, front lateral force, vehicle side slip angle, and lateral
acceleration trace, based on authors’ knowledge, come from
the numerical calculation, or associated glitches, and initial
condition of the system.

Furthermore, when we simulated vehicle manoeuvre for
high speed (30ms−1) and icy road condition (𝜇 = 0.1) for
2DoF controller, it can be seen that all manoeuvres control
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Figure 10: 2DoF controller at 10ms−1 and 𝜇 = 0.1 by 2WS, 4WS, and 2WS + DYC.

Table 4: Model predictive control weighting matrices parameters for V
𝑥

= 30ms−1.

Control manoeuvres 2DoF 3DoF

2WS
V
𝑥

= 30ms−1, 𝜇 = 0.7 𝑅
1

= 0.1, Δ𝑅
1

= 0.03 𝑅
1

= 0.1, Δ𝑅
1

= 0.03
𝑄
11

= 5.65, 𝑄
22

= 0.5 𝑄
11

= 3.55, 𝑄
22

= 0.5

V
𝑥

= 30ms−1, 𝜇 = 0.1 𝑅
1

= 0.1, Δ𝑅
1

= 0.03 𝑅
1

= 0.1, Δ𝑅
1

= 0.03
𝑄
11

= 0.083, 𝑄
22

= 0.042 𝑄
11

= 0.03, 𝑄
22

= 0.45

4WS

V
𝑥

= 30ms−1, 𝜇 = 0.7
𝑅
1

= 0.1, Δ𝑅
1

= 0.03 𝑅
1

= 0.1, Δ𝑅
1

= 0.03
𝑅
2

= 0.1, Δ𝑅
2

= 0.03 𝑅
2

= 0.1, Δ𝑅
2

= 0.03
𝑄
11

= 1.55, 𝑄
22

= 2.5 𝑄
11

= 1.35, 𝑄
22

= 3.5

V
𝑥

= 30ms−1, 𝜇 = 0.1
𝑅
1

= 0.1, Δ𝑅
1

= 0.03 𝑅
1

= 0.1, Δ𝑅
1

= 0.03
𝑅
2

= 0.1, Δ𝑅
2

= 0.03 𝑅
2

= 0.1, Δ𝑅
2

= 0.03
𝑄
11

= 0.005, 𝑄
22

= 0.001 𝑄
11

= 0.04, 𝑄
22

= 0.5

2WS + DYC

V
𝑥

= 30ms−1, 𝜇 = 0.7
𝑅
1

= 0.1, Δ𝑅
1

= 0.03 𝑅
1

= 0.1, Δ𝑅
1

= 0.03
𝑅
2

= 0.1, Δ𝑅
2

= 0.03 𝑅
2

= 0.1, Δ𝑅
2

= 0.03
𝑄
11

= 5.05, 𝑄
22

= 0.5 𝑄
11

= 3.5, 𝑄
22

= 0.5

V
𝑥

= 30ms−1, 𝜇 = 0.1
𝑅
1

= 0.1, Δ𝑅
1

= 0.03 𝑅
1

= 0.1, Δ𝑅
1

= 0.03
𝑅
2

= 0.1, Δ𝑅
2

= 0.03 𝑅
2

= 0.1, Δ𝑅
2

= 0.03
𝑄
11

= 0.092, 𝑄
22

= 0.04 𝑄
11

= 0.5, 𝑄
22

= 2.5

simulation; the tracking responses become unstable and
impossible to control, especially under the crosswind effect
as shown in Figure 14. The most probable cause is the roll
dynamic motion neglect in the 2DoF controller design, when
the vehicle itself was modelled by including roll dynamic
factor. It can be said that the inclusion of roll dynamic factor

is important for vehicle manoeuvre, in terms of stability and
controllability, at high speed and icy road condition. Since
high speed coupled with icy road condition will render the
equation to become highly nonlinear, it is impossible for
a linear tire model to react positively, since the handling
propertiesmay be significantly different from those generated
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Figure 11: 3DoF controller at 10ms−1 and 𝜇 = 0.1 by 2WS, 4WS, and 2WS + DYC.

Table 5: Path following tracking errors with road friction surface 𝜇 = 0.7.

Vehicle speed Manoeuvre control Controller 2DoF Controller 3DoF
𝑌 [m] Ψ [rad] 𝑌 [m] Ψ [rad]

10
2WS 0.0637 0.0085 0.0623 0.0074
4WS 0.0548 0.0054 0.0526 0.0051

2WS + DYC 0.0542 0.0051 0.0527 0.0051

30
2WS 0.0639 0.5348 0.0616 0.5215
4WS 0.0558 0.5239 0.0528 0.0023

2WS + DYC 0.0549 0.5226 0.0524 0.0254

by the linear tire model. These results show that linear tire
model is only suitable for analyzing a stable vehicle behaviour
under the assumption of small steering and acceleration.

Next, for the 3DoF controller simulation, 2WS with DYC
manoeuvres provides a much better tracking response in
comparison to 4WS, particularly in the case of lateral output.
On the contrary, 4WS manoeuvre demonstrates a much bet-
ter tracking response in the yaw angle and yaw rate responses,
as tabulated in Table 6. With appropriate weight tuning gain,
the rear steering angle and direct yaw moment control are
fully optimized in order to become stable along the given tra-
jectory. However, for the 2WS manoeuvre, the vehicle
responses become unstable, despite several instances where
the weighting tuning gains are adjusted for output and input
gains. With the inclusion of another input control to the con-
troller design, we can enhance the vehicle responses for both

2WS with DYC and 4WS control manoeuvres show. This
means that, for 2WS controller design, it may have to use
more than just front steering to stabilize the vehicle under the
effects of wind gusts. Figure 15 shows that rear steering angle
and direct yaw moment are fully utilized in order to stabilize
the vehicle for 2WS with DYC and 4WSmanoeuvres control.

In contrast to the 2DoF controller as shown in Figure 14,
in the 3DoF controllers, the 2WS control manoeuvre can
still be used to track a given trajectory, despite not perfectly
following the trajectory in a satisfactory manner, especially
under crosswind effects. In Figure 15, we can see some oscil-
lations in few traces responses, at the end of the responses.
Based on the authors’ knowledge, these oscillationsmay come
from the vehicle model and some initial conditions of the
system with imperfect controllers tuning weighting gains. In
these conditions, neither 2WS nor 4WS control manoeuvres
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Figure 12: 2DoF controller at 30ms−1 and 𝜇 = 0.7 by 2WS, 4WS, and 2WS + DYC.

for lateral response and neither 2WS nor 2WS with DYC
control manoeuvres for yaw angle or yaw rate response
performed well, causing an increase in vehicle instability,
increased vibration, and tracking responses deterioration.We
will next focus on how to enhance the controller in order to
stabilize vehicle manoeuvrability and handling stability.

We can therefore conclude that, for 4WS, the rear wheels
were helping the car to steer by improving the vehicle
handling at high speed, while decreasing the turning radius
at low speed, as shown by the control signal in Figures 12 and
13. Meanwhile, for 2WS with DYC, active front steering was
used in low speed manoeuvres for lateral acceleration, while
inclusion of DYC was adopted for high lateral acceleration
when the tires were saturated and could not produce enough
lateral force for vehicle control and stability as intended.
In 2WS vehicles, the rear set of wheels do not play an

active role in controlling the steering. From Table 5 it can
be seen that, among the three controllers, 4WS gave the best
performance by reducing the tracking error for lateral and
yaw angle responses when compared with 2WS with DYC
and 2WS only. Tables 5 and 6 tabulated the MPC robustness
and the tracking errors in (17) for all types of manoeuvre at
10ms−1 and 30ms−1 vehicle speeds and under various road
surfaces. Furthermore, all controlmanoeuvre signals for both
controllers were within the input constraints. We would like
to highlight that, in MPC approaches, although there was an
advantage in multivariable systems, in this study there was a
trade-off between theweighting tuning parameter to focus on
either lateral position or yaw angle trajectory. In this paper, we
have chosen lateral position as the weighting tuning priority,
so we may get a better response on yaw angle and yaw rate
response by sacrificing lateral position precision.
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Figure 13: 3DoF controller at 30ms−1 and 𝜇 = 0.7 by 2WS, 4WS, and 2WS + DYC.

Table 6: Path following tracking errors with road friction surface 𝜇 = 0.1.

Vehicle speed Manoeuvre control Controller 2DoF Controller 3DoF
𝑌 [m] Ψ [rad] 𝑌 [m] Ψ [rad]

10
2WS 0.0874 0.0115 0.0841 0.0104
4WS 0.0838 0.0109 0.0832 0.0094

2WS + DYC 0.0838 0.0110 0.0835 0.0083

30
2WS Uncontrolled Uncontrolled 2.1352 0.5264
4WS Uncontrolled Uncontrolled 0.8824 0.2982

2WS + DYC Uncontrolled Uncontrolled 0.9964 0.4580
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Figure 14: 2DoF controller at 30ms−1 and 𝜇 = 0.1 by 2WS, 4WS, and 2WS + DYC.

5. Conclusion

This paper presents the robustness of model predictive con-
trol for an autonomous ground vehicle on a path-following
control, with consideration of wind gust effects subjected
to the variation of forward speeds and road surfaces condi-
tion, in a double-lane change scenario. The predictive con-
trollers were designed based on two- (lateral-yaw model)
and three- (lateral-roll model) degree-of-freedom vehicle
models. The only difference between the models is the roll
dynamics factor, which is taken into consideration, and
both controllers were implemented into a six-degree-of-free-
dom vehicle model. Based on linear vehicle and tire model
approximations of a known trajectory, we evaluated the effect
and impact of roll dynamics at low and high forward vehicle

speeds and at various road frictions (wet concrete to icy
roads) in order to follow a desired trajectory as close as pos-
sible while rejecting the crosswind effects and maintaining
vehicle stability. We also evaluated and compared the effi-
ciency of the different manoeuvres via two-wheel steering,
four-wheel steering, and two-wheel steering with direct yaw
moment control.

The simulation results showed that, with the inclusion of
roll dynamics in the linear vehicle model, the vehicle stability
and adherence to trajectory was considerably improved for
the case of high speed manoeuvres on a higher road surface
friction coefficient (𝜇 = 0.7) and improved even more for the
case of a lower road surface coefficient (𝜇 = 0.1). Further-
more, the obtained results showed and proved that the rear
wheels and direct yaw moment are beneficial to help steering
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Figure 15: 3DoF controller at 30ms−1 and 𝜇 = 0.1 by 2WS, 4WS, and 2WS + DYC.

the car by improving the vehicle handling at high speed,
decreasing the turning radius at low speeds, and reducing the
tracking error for lateral position and yaw angle response.

The simulation also demonstrated that model predictive
control has an ability to reject the side wind effect as a
disturbance to the system, which is particularly effective at
10ms−1 for all cases, except for the 2DoF controller during
simulation of higher speeds on lower road surface adhesion.
However, both controllers were not able to provide a better
response when the vehicle performed at a high forward
speedwith a low road adhesion coefficient; particularly, when
2DoF controller was simulated, all results showed unstable
vehicle response. Thus, for this scenario, we are currently
investigating new approaches with a real-time implementable

control scheme. Further improvement for future works on
control methodology will also be considered to minimize
tracking error and to enhance vehicle stability.
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