

Abstract—Providing Quality of Service (QoS) and Traffic

Engineering (TE) capabilities in the internet is essential,
especially in supporting the requirement of real- time traffic, as
well as mission critical applications. Differentiated Services
(DiffServ) is an emerging technology that provides QoS and
traffic engineering features in Internet Protocol (IP) Network by
programming the IXP2400 Intel Network Processor. Since the
introduction of the network processors, there have been a
number of network services developed based on the special-built,
packet processing optimized programmable microprocessors.
This paper is mainly concerns on how to deploy DiffServ in order
to assess priority functionalities. A scheduling mechanism was
developed on the IXP2400 network processor to provide QoS by
maintaining priority of incoming packets based on criteria i.e.
class of packets and traffic. The queuing mechanism improves the
QoS of the traffic at the expense of some performance
degradation. To reduce the performance degradation, a cache
unit has been added into the operation of the QoS mechanism to
cut down SRAM access during the lookup operation. A
performance study was then carried out to evaluate the
performance of the QoS mechanism after adding the cache unit.
The overall speed is enhanced and delay is minimized. At the
same time, the mechanism can be implemented on the ENP-2611
Evaluation Board to verify the functionality of the application on
hardware.

Index Terms— DiffServ, Microengine, QoS provisioning,
WRED.

I. INTRODUCTION
t present, the Internet utilizes best effort delivery based on
IPv4 which is not reliable for real time data. There is no

guarantee of real time data transfer. A significant percentage
of packets are dropped and the delay jitter is high. This jitter,

Manuscript received February 1, 2008. This work was supported in part by

the Faculty of Electrical Engineering, University Technology Malaysia.
Kashif Saleem is PhD research student in the Faculty of Electrical

Engineering, University Technology Malaysia, Skudai, 81310, Johor, Malaysia
(phone: 607-553-5428; e-mail: kashnet@hotmail.com).

Dr. Norshiela Bt. Fisal is the Head of Telematic Research Group and
Professor in the Faculty of Electrical Engineering, University Technology
Malaysia, 81310-Skudai, Johor, Malaysia. (e-mail: sheila@fke.utm.my).

Muhammad Mun’im B Ahmad Zabidi is Associate Professor in Faculty of
Electrical Engineering, University Technology Malaysia, 81310-Skudai, Johor,
Malaysia (e-mail: raden@fke.utm.my).

also causes unpredictable variabiliy of delay caused by
congestion. Latency in terms of end-to-end delay must be
emited in a network throughout the communication process. In
the next generation Optical Internet, one must address, among
other issues, how to support quality of service (QoS) at the
Wavelength Division Multiplexing (WDM) layer [1] [2]. This
is because current IP provides only best effort service, but
mission-critical and real-time applications require a high QoS
(e.g., low delay, jitter, and loss probability) [3]. Supporting
basic QoS at the WDM layer will facilitate as well as
complement a enhanced version of IP (such as IPv6) [4].
DiffServ architecture can be considered as a refinement to this
model, since we more clearly specify the role and importance
of boundary nodes and traffic conditioners, and since our per-
hop behavior model permits more general forwarding
behaviors than relative delay or discard priority [5]. In
addition, various service disciplines and scheduling
algorithms, which govern per-hop behavior, have been
proposed in the literature [6]. However, to date, there are no
QoS schemes that take into account the unique properties.
Real-time data transfer (voice, video, etc) require QoS
guarantee. The following approaches provide QoS guarantees:
• Differentiated Services (DiffServ) - Categorizes traffic into

different classes, also called class of service (CoS), applies
QoS parameters to those classes [2].

• Integrated Services (InterServ) - Application that requires
some kind of guarantees has to make an individual
reservation [3].

• Multiprotocol Label Switching (MPLS) - Tagging each
packet to determine priority [4].

In this paper we propose a mechanism which can handle
priority queuing for IPv4 and IPv6 network traffic by enabling
DiffServ. Simulation studies have already shown that there is
0% of packet lose and have proved that delay is minimized as
shown in figure 5 and described in [7]. By programming ENP-
2611 card with the given mechanism, the IXP2400 will
provide better and efficient throughput to the real-time traffic
on optical network. The remainder of the paper is organized as
follows: in Section II will elaborate the internal process of a
network processor. Section III shows the implementation of
QoS on the ENP-2611. Section IV describes the study on
simulation. Section V illustrates the test case settings and

QoS Provisioning for Real Time Services on
DiffServ aware IPv6 Optical Network using

IXP-2400 Intel Network
Kashif Saleem, Norshiela Bt. Fisal and Muhammad Mun’im B Ahmad Zabidi.

A

978-1-4244-1980-7/08/$25.00 ©2008 IEEE.

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 7, 2009 at 19:11 from IEEE Xplore. Restrictions apply.

verification results. Traffic delay measurement and figures are
given in section VI. Section VII contains conclusion of this
research and future work suggestions.

II. NETWORK MODEL & INTERNAL PROCESS
The processors inside the Intel Network Processor IXP2400

is programmed to route the data by maintainning quality
described as in figure 1, when the packets are generated from
the user end based as of different categories, some of which
having data like e-mail, messaging, file, voice, video etc.
According to this real time application packets (surgery, video
conference, HDTV, Internet telephony, and digital audio)
which can tolerate loss but require dealy eligent.

Figure 1: Network Model

Non-real time traffic like e-mail, file transfer, etc can
tolerate delay but loss is not affordable. By keeping all of these
issues in mind, the priority and sheduling is maintained by
programing a IXP2400, to work with buffering, located in
physical memory or DDR-RAM of Intel Network Processor
[8] [9] as shown in figure 1. When voice and video packets
need to pass through router (IXP2400), they will be treated as
a real time traffic and processed at the highest priority level.

The first priority will be for the Expedited Forwarding (EF)
which handles real time traffic. When EF traffic got some
break then second priority for Assured Forwarding (AF) traffic
will be forwarded. In this process both incoming traffic and
stored packets in the memory will be moved if there is any.
The third priority packets are buffered accordingly, when there
is no packets or traffic for both EF or AF then the packets for
third priority means Best Effort (BE) will be forwarded. Eight
processors will work in parallel way to process the packets and
maintain the quality of service [7].

III. IMPLEMENTATION OF QOS ON THE ENP-2611
Although the final stage, implementing the QoS on the

ENP-2611, had been called off, some researches had been
done on this stage. After coming to Stage Three, it had been
learnt that the ENP SDK 3.5 only provides sample application
for Static Forwarding. There is no support for the IPv6
Forwarder in ENP SDK 3.5. If the QoS Application is to be
implemented on hardware using ENP SDK 3.5, it would

involve a great deal of changes to be made on the microblocks
structure of the Static Forwarding sample application since the
QoS is built on the IPv6 Forwarder application.

As a solution, a newer version of the ENP SDK i.e. version
4.2 was suggested. This version provides support for the IPv6
Forwarder sample application besides the Static Forwarding
sample application. In order to apply ENP SDK 4.2, the
software mentioned on Stage Two needed to be updated to
newer version as well. The software utilize are Ubuntu version
6.06, MontaVista Preview Kit 3.1, IXA SDK 4.2 and ENP
SDK 4.2. The installation and configuration of the software is
of not much difference from the previous combination of
software [7].

IV. SIMULATION STUDY
The Workbench provides packet simulation of media bus

devices as well as simulation of network traffic. There is a
feature under the Packet Simulation called Packet Simulation
Status that enables the observation of the number of packets
being received into the media interface and number of packets
being transmitted from the fabric switch interface. Besides,
there is another feature called Stop Control that enables the
user to specify a condition to stop or to continue the packet
reception (simulation). This feature can be access by select
Simulation > Packet Simulation Options > Stop Control in the
menu bar of the Workbench. The Packet Simulation Status is
used to verify the packet filtering function of the QoS. This is
necessary to make sure that the added cache unit does not
affect the service ability of the application.

A. Network interfaces
The physical layer or the machine access code (MAC) can be

configured by this interface. This is done by characterizing the
protocol, data rate, and any parameters which is applicable to
the protocol [10].

B. Data Structures
Most of the tasks as access data structures are maintained,

and therefore data structures are typically defined prior to Task
drawings. Data structures are created and managed in the Data
Store pane of the project editor [10].

C. Thread Executables
Thread executables allow the tasks to be grouped and to be

allocated for the various threads on the MEs. To allocate the
threads, the AT Thread Allocation view may be used [10]
Weighted Random Early Detection (WRED) and DiffServ
process is added in tasks which are then defined in threads to
be processed accordingly.

D. Pipeline Editor
The pipeline editor displays data streams and thread

executables on the same canvas. The entries shown within a
thread executable are the execution trace entries that refer to
code paths contained in the tasks assigned to the thread
executable [10].

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 7, 2009 at 19:11 from IEEE Xplore. Restrictions apply.

3

V. TEST CASE SETTINGS AND VERIFICATION RESULTS
To verify the service mechanism, we run 1000000 numbers

of cycles which generates the traffic through simulator as
shown in figure 2. Under the Stop Control command, the
simulation set to be stopped after the desired number cycles.

Figure 2: Settings of Rules Configuration for the Test Case
When the analysis is complete, the results are displayed in

the AT Analysis view. The AT Analysis view can be
maximized to view the results for better inquiry. The analysis
results are shown separately through sections, which can be
accessed by tabs within the window as shown in figure 3:
• Functional Unit Utilization. (Figure 3)
• Internal bus utilization.
• Microengine Utilization. (Figure 6)
• Execution Trace Throughput. (Figure 4 &Figure 5)
• Thread History.

Figure 3 displays the utilization of each functional unit in
the system through bar chart, which includes both static and
dynamic utilizations. sram0, sram1, dram, RX & TX shows
some utilization because of the I/O reference in the task's code
path [7]. The scratch shows utilization because of the idle code
path.

Figure 3: Functional Unit Utilization

Figure 4 & figure 5 shows the packet throughput result of
each execution trace. If the throughput for an execution trace
is less than the rate injected, then this indicates it in failing to
keeping up the line rate.

 Figure 4: Uneven ME utilization and Without DiffServ

In figure 4 the simulation indicates that some of the packets
were being dropped and thus the number of packet being
transmitted would never reach the destination. This method
provides a quick verification on the correctness of the
function.

Figure 5: ME configured properly & with DiffServ

Figure 5 shows that all the traffic is transmitted without any
drop of packet. This is due to the proper utilization of the
Microengines by dividing the tasks accurately in between

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 7, 2009 at 19:11 from IEEE Xplore. Restrictions apply.

Home
Text Box

4

Delay in Different Quality of Service

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 70 90 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200

Usage in %

Pa
ck

et
 D

el
ay

 [s
]

BE
AF3y
AF2y
AF1y
EF

0

0.0005

0.001

0.0015

0.002

0.0025

0 90 105 115 125 135 145 155 165 175 185 195

Usage in %

Pa
ck

et
 D

el
ay

 [s
]

EF

AF1y

AF2y

these microengines. Figure 5 shows the screenshot of the
Packet Simulation Status. This also shows the throughput of
all traffic which is received and transmitted without packet
loss.

Figure 6: Microengine Utilization

A. Figure 6 shows the compute utilization result of the
microengines in the system. The microengine utilization is at
a maximum the process is functioning at its full performance.

VI. TRAFFIC DELAY
Table 1: Delay in different incoming traffic

The deployment of the usage in percentage on x axis and
packet delay on y axis and ploting the values as mentioned in
table 1, we get the graph as shown in figure 7 (a) and figure 7
(b). The graph shows upward or increasing trend for some
traffic. In figure 7 (a) and figure 7 (b) five classes of traffic are
shown. Describe through figure 7 (a); BE traffic is having the
maximum delay. The delay start rising for AF class 3 packets
when traffic utilization reach at 110 %. AF class 2 packets
having less delay but slightly graeter then AF class 1 packets.
The minimum delay we have get is for the EF traffic which
have the real-time data transfer as mentioned in figure 7 (a)
and figure 7 (b).

Figure 7 (a): Delay in different incoming traffic (including all
five kinds)

Figure 7 (b): Delay in different incoming traffic (EF, AF1y,
AF2y are included).

After the cache unit was verified to be able to function as
expected, it was evaluated in terms of performance. Through
out the performance study, the original design of the QoS
application was being compared with the new design of the
application in which a cache unit was added. As the average
one way delay without adding cache unit is 165msec, while
transferring packet having payload size of 500 bytes, which is
minimized to 110msec when enhanced with cache unit.

Usage
in %

Expedited
Forwarding

(EF)

Assured
Forwarding

(AF1y)

Assured
Forwarding

(AF2y)

Assured
Forwarding

(AF3y)

Best-
Effort
(BE)

0 0.001 0.001 0.001 0.001 0.082
70 0.001 0.001 0.001 0.001 0.09
90 0.001 0.001 0.001 0.001 0.1
100 0.001 0.001 0.001 0.001 0.103
105 0.001 0.001 0.001 0.001 0.106
110 0.001 0.001 0.001 0.001 0.109
115 0.001 0.001 0.001 0.005 0.112
120 0.001 0.001 0.001 0.01 0.115
125 0.001 0.001 0.001 0.015 0.118
130 0.001 0.0015 0.001 0.02 0.121
135 0.001 0.001 0.001 0.025 0.124
140 0.001 0.001 0.001 0.03 0.127
145 0.001 0.001 0.002 0.035 0.13
150 0.001 0.0017 0.001 0.038 0.133
155 0.001 0.001 0.0015 0.045 0.134
160 0.001 0.001 0.001 0.05 0.1345
165 0.001 0.001 0.0017 0.055 0.135
170 0.001 0.0019 0.0015 0.057 0.1355
175 0.001 0.0013 0.002 0.06 0.136
180 0.001 0.001 0.001 0.0635 0.1365
185 0.001 0.001 0.0014 0.0667 0.137
190 0.001 0.0016 0.0015 0.0699 0.1375
195 0.001 0.001 0.0019 0.0731 0.138
200 0.001 0.001 0.0018 0.0763 0.1385

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 7, 2009 at 19:11 from IEEE Xplore. Restrictions apply.

Home
Text Box

In this project, performance study were conducted at three
levels, namely macro-level, function-level and system-level.
The performance was evaluated in term of latency which is
represented by the number of microengine clock cycles.

VII. CONCLUSION
Utilizing Intel® IXP2400 network processor to enhance

DiffServ aware IPv6 network for real-time services with
minimized packet loss, delay (approx. 5500 micro sec) and
managed the data throughput at 7.14 Gbps (2.38 Gbps x 3
ports). Maintain priority scheduling of the packet’s in the
ENP-2611 and getting the maximized reliability by IXP2400
network processor.

This research aims to provide QoS in IPv6 network through
DiffServ service. Packets will be generated from the user end
with the help of simulator to analyse the program code and to
generate result. IXP2400 is programmed to provide the
scheduling based on WRED. The implementation of WRED
enables the congestion avoidance and minimization of packet
delay in DiffServ aware IPv4 & IPv6 Network. Manage data-
dependent operations among multiple parallel processing
stages with low latency.

The IXP2400 provide the QoS by maintaining the priority of
different kind of packets and having different characteristics.
This minimize the packet delay for the real-time data packets
in IPv6 DiffServ Network to maximize the throughput of the
data like voice, video etc in which delay is not tolerable.
Manage data-dependent operations is optimized to reduce
latency among multiple parallel processing stages.

The cache unit has been successfully designed and
implemented for QoS provisioning. The cache unit comprises
of CAM and Local Memory which was designed to reduce the
SRAM access during the lookup operation. A performance
study was carried out on the application to compare the
performance of the scheduling with and without the cache unit
applied. The results show in figure 5, that the cache unit helps
in improving the performance of application [7].

ENP-2611 is flashed by the code, which is analyzed and
generates the better result in this project [7]. To check the
network processor properly; deployment of card ENP-2611 in
the test bed is essential before it utilize for some real time
project.

The hardware implementation could be continued after the
corresponding switch is available. Implementing the QoS on
one ENP-2611 as mentioned. With these, the expected
performance as indicated in simulation could be achieved. As
mentioned previously, the original QoS used a software hash
to retrieve the rule entries from the SRAM whereas this project
introduced a cache unit in the operation. In fact, there is still
another suggestion on implementing the lookup operation i.e.
using the real hardware-support hash unit. The hardware-
support hash unit can support up to 128 bits of hash key.

That is, each of the packet header field is compared one-by-
one using the arithmetic instructions. For the case of the
hardware-support hash unit, since it can support up to 128 bit

of hash key, it is recommended that all of the related incoming
packet header fields are used as the hash key to retrieve
accordingly. This is expected to be able to further improve the
performance operation.

ACKNOWLEDGMENT
I wish to express my sincere appreciation, sincerest

gratitude to University Technology Malaysia for their support
and special thanks to researchers in Telematic Research
Group.

REFERENCES
[1] C. Qiao and M.Yoo, “Optical Burst Switching (OBS) - A new Paradigm

for an optical internet,” J High Speed Nets., vol. 8, no. 1, Jan.1999,
pp.69-84

[2] Yijun Xiong, Marc Vandenhoute, and Hakki C. Cankaya, “Control
Architecture in Optical Burst-Switched WDM Networks,” IEEE JSAC,
vol.18, no.10, oct.2000, pp. 1838–51.

[3] M. Yoo, C. Qiao, and S.Dixit, “QoS Performance of Optical Burst
Switching in IP-Over- WDM Networks,” IEEE JSAC, vol. 18, no. 10,
Oct. 2000, pp. 2062-71.

[4] Ch. Bouras, A. Gkamas, D. Primpas, and K. Stamos, Performance
Evaluation of the Impact of QoS Mechanisms in an IPv6 Network for
IPv6-Capable Real-Time Applications, Journal of Network and Systems
Management, Vol. 12, No. 4, December 2004.

[5] S. Blake et al., “An architecture for differentiated services,” RFC 2475,
Dec. 1998.

[6] Mark Allman and Aaron Falk, "On the Effective Evaluation of TCP",
ACM SIGCOMM Computer Communication Review, vol. 29, no. 5, pp.
59-70, 1999.

[7] Kashif Saleem, “QoS Provisioning for Real Time Services in MPLS
Diffserv aware IPv6 Network using IXP-2xxx (Intel® Network
Processor),” Master’s thesis, Faculty of Electrical Engineering,
University Technology Malaysia, 2006.

[8] Intel Corp. (2003b). Intel® IXP2400 Network Processor Hardware
Reference Manual. US: Manual.

[9] Intel® IXP2400/IXP2800 Network Processor Programmer’s Reference
Manual, US: Manual. Intel Corp. (2003c).

[10] Intel® Internet Exchange Architecture Software Building Blocks
Developer’s Manual, US: Manual, Intel Corp. (2003d).

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 7, 2009 at 19:11 from IEEE Xplore. Restrictions apply.

