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Abstract - This paper is concerned with the application of a
robust control approach based on Sliding Mode Control
(SMC) strategy with proportional integral switching surface
in controlling the position trajectory of a hydraulic
manipulator. This paper also addresses the suppression
technique for the undesirable chattering phenomenon which
usually occurs in SMC by replacing the discontinuous
controller sign function with a proper continuous function.
Chattering is unwanted because it leads to an excessive usage
and damages the actuators and therefore the control law may
become impractical. In this study, an integrated model of
hydraulically actuated robot that considers both the
manipulator linkage and actuator dynamics is used to provide
a more suitable model for controller synthesis and analysis.
The control technique is stable in the large based on
Lyapunov theory. Its performance is evaluated and compared
with the existing Independent Joint Linear Control (IJC)
technique through computer simulation. The results prove
that the controller has successfully force the robot
manipulator to track the desired position trajectory for all
times and has better performance than IJC.

I INTRODUCTION

Hydraulic manipulators find wide applications in heavy
duty jobs since they are capable of providing very large
torque and fast motion. However, in contrast to electric
motor, the modeling and control of hydraulics
manipulators are more complex since the torque developed
by hydraulic actuators is proportional to the pressure
difference or the flow rate towards the cylinder chamber.
In other words, the control voltage or current signal
controls the speed of the hydraulics' spool position rather
than its force or torque directly. Hydraulic actuator also
introduces additional nonlinearities to the control problem.
Most of the past researches in the synthesis of control law

for manipulators deal with electrically actuated
manipulators. Comparatively less work has been done for
hydraulically actuated robot [1]. Previous researches have
studied the control aspect of hydraulic robots with no
manipulator dynamics considered in the model such as in
[2] and [3]. Adaptive Control Technique was proposed in
[2] to control hydraulic cylinders with the application to

robot manipulators, but the control law is synthesized from
the actuator model alone. However, the dynamics of
manipulator should not be ignored, since it contains the
arm dynamic forces such as inertia forces and gravity
effects that the controller needs to compensate [1].
Therefore, in this study, the control law is devised based
on an integrated model of hydraulically actuated robot that
considers both the manipulator linkage and the actuator
dynamics. This model represents a closer dynamic
behaviour of the real system and thus provides a more
suitable dynamic equation for the purpose of controller
synthesis and analysis.
The majority of current industrial approaches to the robot

control arm design treat each joint of the manipulator as a
simple linear servomechanism with proportional plus
integral plus derivative (PID) or Computed Torque (CTC)
controllers [4].The problem with PID controllers is that
they are not adequate for the cases when the robot moves
at high speed and in situations requiring a precise
trajectory tracking. Therefore it is less suitable to control
hydraulic manipulators. On the other hand, the problem
with CTC is that it is based on exact robot arm dynamic
model, where the explicit use of an incorrect robot model
will deteriorate the control performance. Hence, a robust
controller is proposed to drive such a system.
Proportional Integral Sliding Mode Control (PISMC) is

an extended version of conventional SMC technique. It has
been successfully designed for electrically driven robot
manipulator as presented in [5]. It provides the advantages
of zero steady error due to the integral term and robustness
offered by the Sliding Mode Control (SMC). It is suitable
for complex systems and is insensitive to parameters
variations and uncertainties. Different from conventional
SMC, the proposed technique overcomes the problem of
reduced order dynamics by avoiding the need of original
plant transformation into canonical form or reduced form.
In [5], a three DOF revolute electric robot is used in the
simulations. It is verified that the proposed control law is
effective in providing the necessary tracking control.
Therefore, this paper extends the work of [5] to provide
trajectory tracking control of a hydraulically actuated robot
manipulator. The approach is stable based on Lyapunov
theory. The discontinuous sign function which normally
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exists in SMC is replaced by a continuous function to
eliminate the chattering effects, therefore prevents the
actuators from damage and wear. A 3 DOF hydraulic robot
is used in the simulation study.
This paper is organized as follows: The system dynamics,

including mechanical linkage and hydraulic dynamics are
presented in Section II. In Section III, the adopted control
approach is described. Chattering effect elimination is
discussed in Section IV and simulation results are
presented in Section V. Finally, conclusions are drawn in
Section VI.

II DYNAMIC MODELING OF THE ROBOT
MANIPULATOR

A Manipulator Mechanical Linkage Dynamics
The dynamic equation of mechanical linkage ofN DOF

robot manipulator with rigid links is governed by [6]:

An =diag[Anl, An2,. AnN ]'

B diag[B1,B2, ..., BN],
F diag[Fl, F2, ,FN]'
W diag[W W2, ..., WN ]

and X(t) is a 3N x Ivector, U(t) is an N x 1 input vector,
T(t) is the N x 1 mechanical link torque, and T(t) is its
time derivative. The state variables, Xi (t) are the
actuator displacement velocity and acceleration:

Xi (t) = [mi(t) Omi (t) Omi (t)1 ,

and

Ai =

i = 1,2,... , N (3)

Ani = Ai + N, S

0
0

4,8,K,GVIJ

(4)

1 .0

0 1

|4,8,KtBk G +4,8em1~ _ 14,8,K + Bm1
LVtJm J. VI J. VI J.M(O (t), q)O(t) + D(O (t), 0 (t), q)0 (t) +

G(O(t), q)O0(t) = T(t)

where;
M(O(t), J) : N x N inertia matrix

D(O(t), 0(t), )O(t): N x 1 vector of coriolis and
centrifugal forces

G(O(t,J)O(t) N x 1 vector of gravitational
forces

T(t) N x vector of driving torques
applied by the actuators

0(t), 0(t), 0(t) N x 1 vector of generalized joint
displacements, velocities and
accelerations respectively
uncertain parameters of the
mechanism (payload mass)

B. Electrohydraulic Actuator Dynamics
With the assumptions that the hydraulic actuator's piston

is centered, the valve is an ideal critical center valve with
matched and symmetrical orifices; and the return line
pressure is zero, the augmented dynamic equation of the N
N actuators can be written in the following compact form
[4]:

X (t) = AnX(t) + BU(t) + FT (t) + WT(t) (2)
where;

X(t) = [X1 (t), X2 (t), XN (t)
U(t) = [Ul (t) U2 (t) , UN (t)]
T(t) = [TI (t), T2 (t), **,TN (t)]T ,

T(t) = [Tll (t), T2 (t), * ,TN (t)]~

(1)
4t3,(KJGGnr 02± 3G, Gn2

Ni= 0

0

0 0

0 ,

0 0

0 0

4/t3,D.KqK, 4,-K

-V,J.ng - v>Jmn

Kq CdW(P S PL sgn(X,)) pP ,

XV = KIU(t).

0
0I,
J n2

(5)

X is the displacement of the spool in the servo valve, PL
is the load pressure, Kq is the flow gain which varies at

different operating points, Cd is the discharge coefficient,
w is the area gradient, p is the fluid mass density, Ps is
the supply pressure, D is the volumetric displacement,
Omi is the angular displacement of the ith motor shaft,
Omi is the angular velocity of the ith motor shaft, j9i is the
angular acceleration of the ith motor shaft, Kt is the total
leakage coefficient of the hydraulic system, V, is the total
compressed volume, is the effective bulk modulus of the
oil, Jm is the motor inertia, Bm is the viscous damping
coefficient, T is the load torque due to the joint of the ith
manipulator on the ith motor, T is the derivative of the
load torque due to the joint ofthe ith manipulator on the ith
motor, G is the torsional spring constant, GnO. is the
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nonlinear stiffness of the spring, and ng is the inverse of
the gear ratio.

C. Integrated Electrohydraulic Manipulator Dynamics
The integrated model of electrohydraulic manipulator

can be described as:

Let a continuous function Xd (t) E R' be the desired state
trajectory, where Xd(t) is defined as:

(1 1)

In this study, the following assumptions are made:

X(t) = A, (X, J, t)X(t) + B(X, J, t)U(t) (6)

where;

A +[FAAX,,t)
+aCX, C, t)YB

4(XI t) [3N WAXB4 t)ZB] X+[FB(X t)

+KMiXA t)42
B(X, , t) = [I3N - WM(X, J, t)ZB]-1 B (8)

ZB ZBI and ZB2 are the transformation matrices and;

C and D are the matrices associated with the derivative of
the manipulator torques in (1), which can be described as
follows:

T(t) M(O(t), J)O (t) + Ce0(t),0o(t), S9(t) (9)

+ D(0(t), 0(t), S)9(t)

The system matrix, 4(X,4,t) and the input matrix,
B(X, $, t) are of dimensions 3N x 3N and 3N xN
respectively. From (6), (7) and (8), it is clear that the
resulting dynamics description of the robotic system is
analytically complex. Each nonzero element of the system
and input matrices is a function of the instantaneous
position, velocity and payload mass of the manipulator.
The equations are time varying, highly nonlinear, contains
uncertainty due to the mass of the pay load that the
manipulator has to carry; and coupled due to the
mechanical linkage as well as the hydraulic dynamics.
Therefore, a more robust controller that is capable of
catering these plant characteristics as presented in next
section is required.

III PROPORTIONAL INTEGRAL SLIDING MODE
CONTROLLER

The control strategy is to apply the robust controller
based on Proportional Integral Sliding Mode control
(PISMC) to force the robot manipulator to track a
predefined desired trajectory as closely as possible for all
times in spite of the nonlinearity, parameter variations,
uncertainties and coupling effect present in the system.

Define the state vector of the system as

X(t) = [xI (t),x2 (t, ..... ..(t)]T (10)

a. The state vector X(t) can be fully observed;
b. There exist continuous functions H(t) and E(t)

such that for all X(t) c R' and all t:

AA(t) = BH(t);

AB(t) = BE(t);
||H(t)|| <o

||E(t)ll < p

(12)

(13)

where AA and AB are the uncertainties
matrices of the system and input matrices of (6).

c. There exist a Lebesgue function Q(t) E R, which
is integrals on bounded interval such that

Xd (t) = AXd (t) + BQ(t) (14)

d. The pair (A,B) is controllable.

Equations (12) and (13) in Assumption (b) ensures that
the uncertainties AA(X,4,t) and AB(X,4,t) lie in the
range space of the nominal input matrix B so that the
control signal, U(t) which enters the system through the
input matrix, B(X, J, t) can compensate the parameter
variations and uncertainties present in the system.

The Proportional-Integral (PI) sliding surface is defined
as [5]:

(15)
t

a(t) = CZ(t) - J [CA + CBK]Z(T)d',

where Z(t) is the tracking error[5]:

Z(t) = X(t) -Xd (t), (16)

A and B are the nominal matrices of the system and
input matrices of (6) and the structure of the matrix C is as
follows [5]:

C = diag [c, C2 .. ], (17)

where ni is the nth state variable associated to the ith input
of the system. The matrix K is designed to satisfy [5]:

max.(A+BK)<0 , (18)

Equation (14) guarantees that the system is stable by
placing the desired poles in the left half plane. The
elements of matrix K can be determined by pole placement
technique with pre-specified poles locations.
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If the following hitting condition is held, the manifold of
equation (15) is asymptotically stable in the large [8]:

(CY(t) |f()l cy(t) < O (19)

Theorem: The hitting condition (19) is satisfied if the
control u(t) [5]:

u(t) = -(CB)-1 1y1 ||Z(t)| + 72 Xd (1) + 73 |Q(t)O]SGN(g(t)) + Q(t)O
(20)

where
Yi (>(QCB |I + CBK|) /(1 + B)
72 > (uCB) /(1±+ ),

Y3 >(CB|) /(1+ ),

proposed approach. It is assumed that identical hydraulic
motors are used for all the three joints and; the end effector
and the variable load are lumped together as a single mass.
The limits of the manipulator are known and tabulated as

in Table 1. The robot manipulator is simulated to carry a
variation of mass load in between 0 kg to 10 kg.

TABLE I
Manipulator Limit

(21)

(22)

(23)

The proof of this theorem is given in [5].
If both equations (12) and (13) are satisfied, the

system's error dynamics during sliding mode can be
described as [5]:

Z(t)= [A + BK]Z(t). (24)

Equation (24) shows that the system is no longer sensitive
to the plant variations and uncertainties during sliding
mode. Therefore the system error during sliding only
depends on the plant nominal values and can be adjusted
through a proper adjustment of the value of K, which can
be obtained through a proper selection of the desired
closed loop poles locations. The proof of this is given in
the Appendix.

IV CHATTERING ELIMINATION

The discontinuous sign function SGN (a- (t)) in equation
(20) leads to an undesirable phenomenon known as
chattering. Chattering is unwanted because it leads to a
high number of oscillations of the system trajectory around
the sliding surface, and causes an excessive use of the
actuators. This will eventually damage and wear the
motors and therefore the control law may become
impractical [5]. To overcome this problem, each element
of the discontinuous sign function SGN(o7(t)) for the ith
link is replaced by a proper continuous function as [3]:

S6(t) ~ 07(25)
17i |I+g+X, Xj (25

where goi and 8li are positive constants. With an
appropriate selection of these two values, the inevitable
chattering phenomenon may be eliminated.

V RiESULTS AND DISCUSSIONS

A three DOF revolute hydraulic robot manipulator is
used as a test bed in evaluating the performance of the

In the simulation, each of the manipulators joint is
required to track the desired position trajectory described
as in Figure 1.
A linear control approach based on Independent Linear

Joint Controller (IJC) technique is used as a comparison
purpose. IJC is normally used in most industrial robot and
is designed with the dynamics of the mechanical linkage
completely ignored. Each joint of the robot arm is treated
as an independent servomechanism problem. The linear
state feedback controller employed in each of the ith joint
can be described as:

Ui (t) = KiZi (t) + Qi (t), (26)

where, Ki is the linear state feedback gain, Q, (t) is the
control component to eliminate the steady state error and

Zi (t) = Xi (t) - Xdi (t) ( 27)

Fig. 2 illustrates the individual joint tracking error of
the robot utilizing PISMC and IJC with the robot operating
at minimum payload mass or at its lower bound (0 kg).
From the figure, it can be seen that PISMC has
successfully force the manipulator to track the desired
trajectory with negligible error at all times. In comparison,
IJC fails to control the manipulator, in which it exhibits
larger tracking error. This is because the linear controller is
unable to compensate the manipulator's nonlinearities,
parameter variations and coupled effects, where as the
PISMC is capable of catering these problems.

In order to evaluate the robustness of the control system,
the mass of the payload that the robot has to carry is varied
to 10 kg (maximum load). Fig. 3 shows the resulting joints
tracking errors utilizing PISMC while operating at
maximum load (10 kg).It verifies the robustness ofPISMC
strategy against load variation (uncertainty), in which the
controller has efficiently control the robot arm to follow
the specified trajectory although the mass of the payload is
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varied. Therefore, under PISMC control, the system is also
insensitive against uncertainty.

Fig. 4 (a) shows the original control input function, U
and Fig. 4 (b) shows the control input function after
chattering elimination has taken place. Fig. 5 shows that by
using the modified proper continuous function with an
appropriate choice of 85i and 8hi, the chattering
phenomena as illustrated in Fig. 3 can be suppressed.
Moreover, the continuous control inputs still maintain an
accurate tracking result for all the joints as demonstrated in
Fig. 5. The simulation is conducted with the robot carrying
maximum payload mass.

VI CONCLUSION

A robust control technique based on Proportional
Integral Sliding Mode Control (PISMC) for hydraulically
driven robot manipulator is presented in this paper. The
controller is devised based on an integrated model of the
plant that does not only represent a closer dynamic nature
of the real system, but also is formulated such that the
matching condition that is required by sliding mode control
is satisfied. In comparison to conventional SMC, the of the
adopted technique avoids the need of the original plant
transformation into reduced form by including an integral
term in the sliding surface. Simulation results show that the
proposed approach successfully compensate the
manipulator's inertia, coriolis forces, centrifugal forces,
gravitational forces, varying payload mass and
nonlinearities present in the robotic arm, and renders the
robot arm to effectively tracks the pre-specified desired
joints position trajectory with negligible error at all times.
PISMC is by far has better performance than the normally
used IJC, The proposed control strategy is also more
practical since the chattering phenomenon associated with
sliding mode control may successfully be reduced by using
a proper continuous function.
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APPENDIX

The proof of the system dynamics insensitivity to plant
parameter variations and nonlinearities during sliding mode
is briefly presented in the following [5].

In view of equations (12), (13) and (16)the an error
dynamic system can be written as:

Z(t) = [A + BH(t)]Z(t) + BH(t)Xd (t) (28)
- BQ(t) + [B + BE(t)]u(t)

Differentiating equation (15) gives:
c (t) = CZ(t)- [CA + CBK]Z(t)

Substituting equation (28) into equation (29) gives:
c5(t) = CBH(t)Z(t) + CBH(t)Xd (t)

- CBQ(t) + [CB + CBE(t)]u(t) - CBKZ(t)

(29)

30)

Equating equation (30) to zero gives the equivalent control,
Ueq(t):

Ueq (t) = [CB + CBE(t)-l{CBKZ(t) + CBQ(t)
- CBH(t)Z(t) - CBH(t)Xd (t)}

Noting that [CB+ CBE(t)]- =[I3+E(t)]-'(CB) 1, then the

equivalent control of equation (31) can be written as
Ueq (t) =-[I3 + E(t)]-l {(H(t) -K)Z(t) (32)

- Q(t) + H(t)Xd (t)}
The system dynamics during sliding mode can be

found by substituting the equivalent control (31) into the
system error dynamics (27). After simplification, it can be
shown that:

Z (t) = [A + B K ]Z (t) (33)
Therefore, if the matching condition is satisfied

(equations (12) and (13) hold), the system's error dynamics
during sliding mode as described by equation (33) is
independent of the system uncertainties and couplings
between the inputs, and, insensitive to the parameter
variations, and can be determined through a proper
adjustment of the value of K, which can be obtained
through a proper selection of the desired closed loop poles
locations.

DESIRED POSITION TRAJECTORY FOR JOINT 1, JOINT 2 AND JOINT 3
1.5
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-1 ,X Joint 1
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- Joint 3
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Fig. 1 Desired Position Trajectory
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JOINT 1, JOINT 2 AND JOINT 3 CONTROL INPUT USING CONTINUOUS FUNCTION
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Fig. 2 Tracking Errors of (a) Joint 1 (b) Joint 2 (c) Joint 3 by PISMC and

IJC with the Manipulator Handling No Load
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JOINT 1, JOINT 2 AND JOINT 3 TRACKING ERROR USING CONTINUOUS FUNCTION
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Fig. 5 Joints Ttracking Error Using Continuous Control Function

-05.5
Lu

o

-1.5 Joint 1 4
Joint 2

2-Joint 3
-2

0 02 04 06 08 1 1.2 1.4 1.6 1.8 2
Time (s)

Fig. 3 Joints Tracking Error with Manipulator Handling 10 kg Load
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