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Abstract - The research on two-wheel inverted 

pendulum or commonly call balancing robot has 

gained momentum over the last decade in a 

number of robotic laboratories around the world 

This paper deals with the modeling of 2-wheels 

Inverted Pendulum and the design of Proportional 

Integral Sliding Mode Control (PISMC) for the 

system. The mathematical model of 2-wheels 

inverted pendulum system which is highly 

nonlinear is derived. The final model is then 

represented in state-space form and the system 

suffers from mismatched condition. A robust 

controller based on Sliding Mode Control is 

proposed to perform the robust stabilization and 

disturbance rejection of the system. A computer 

simulation study is carried out to access the 

performance of the proposed control law.  

I. INTRODUCTION 
Wheeled inverse pendulum model have 

evoked a lot of interest recently and at least one 
commercial product (Segway) is available 
[1],[2],[3],[4],[5]. The robot in this consideration 
has two independent driving wheels in same 
axis, and the gyro type sensor to know the 
inclination angular velocity of the body and 
rotary encoders to know wheels rotation. Due to 
its configuration with two coaxial wheels, each 
wheel is coupled to a geared dc motor. The 
vehicle is able to do stationary U-turns while 
keeping balance it pole.   Such vehicles are of 
interest because they have a small foot-print and 
can turn on dime. The kinematics model of the 
system has been proved to be uncontrollable and 
therefore balancing of the pendulum is only 
achieved by considering dynamic effects[6]. 
Such robots are characterized by the ability to 
balance on two wheels and spin on the spot. This 
additional maneuverability allows easy 
navigation on various terrains, turn sharp corners 
and traverse small steps or curbs. These 
capabilities have the potential to solve a number 
of challenges in industries and society. For 
example, a motorized wheelchair utilizing this 

technology would give the operator greater 
maneuverability and thus access to places most 
able-body people take for granted. Small cart 
built utilizing this technology allows humans to 
travel short distances in a small area or factories 
area as proposed to using car or buggies which is 
more polluting[4]. 

In this work, a mathematical model of 3 
degree-of-freedom (DOF) 2-wheels inverted 
pendulum is derived and the model will be used 
for the design of a new robust controller. The 
dynamic modeling is done directly in terms of 
variables which are of interest with respect to the 
planning and control of  the 2-wheeled inverted 
pendulum position, inclination, speed and open 
for further exploration on heading orientation. A 
Newtonian approach is used to derive the 
equations[5]. The state space equation of the 
system is in the following form: 

),()()()( tttt XfBXAXX   ! 

where A and B are constant matrices and f (X ,t)
is the uncertainty matrix. The uncertainty matrix 
contains the components of the chassis and both 
wheels disturbance of the system. The 
deterministic approach is used to get the 
bounded condition value of the model for 
controller design purpose. Simulation result of 
pole placement controller versus PISMC 
controller is shown. Result for both controllers is 
discussed. 

II.  DYNAMIC MODEL 
Modeling is the process of identifying the 

principal physical dynamic effects to be 
considered in analyzing a system, writing the 
differential and algebraic equations from the 
conservative laws and property laws of the 
relevant discipline, and reducing the equations to 
a convenient differential equation model [10].  In 
order to develop the control system, 
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mathematical model is established to predict the 
behavior before applied into real system.  
Actually, the dynamics refer to a situation, which 
is varying with time [10]. The dynamic 
performance of a balancing robot depends on the 
efficiency of the control algorithms and the 
dynamic model of the system. 
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Fig. 1: Free Body Diagram of chassis and   
               Wheel. 

For heading control equation: 
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Refer to Figure 2.7. Using the Newton law: 
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Substitute (2.3) into (2.4) 
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The non-linear state space form is given by: 

Which is: )()()( xfuxBxxAx   ! 
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III. CONTROLLER DESIGN 

The theoretical dynamic model is applied to 
govern the entire system to construct the control 
system. The dynamic model in equation (2.6) is a 
nonlinear model. It should be linearized in the 
way to design a linear controller. At zero of tilt 
angle, the robot system has its quasi-equilibrium 
state. So in this case the linearized model is 
assumed that the variation of the tilt angle is 
small enough to neglected. Then we have this 
linearized model in state space form. Parameter 
being used is Ip=0.0041kgm2, Iw=0.000039 
kgm2, Ipdel=0.00018 kgm2, Mp=1.13kg, 
Mw=0.03kg, l=0.07m, R=3ohm, r=0.051m, 
D=0.2m,km=0.006123,ke=0.006087,g=9.81m/s2.
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Which is BuAxx  ! 

Where: 

After conducting the linearization and the 
test of controllability and observability, the 
overall control scheme is develop. As shown in 
figure 2, the tilt sensor, gyroscope and digital 
encoder measured six variables. All variables is 
feedback to the controller. The controller 
computes the state variables and produces the 
control input to stabilize and navigate the robot 
by multiplying the feedback gains and the value 
of the feedback variables subtract the reference 
values. The computed voltage is then decoupled 
and modified to the actual voltage to be applied 
to the right and left drive wheels[6]. 

. Pole-placement controller 

 in this approach is 
to s

ole is then calculated base on 
spec

A

The philosophy of design
elect the poles of the closed loop system in 

such a manner that the specifications for steady 
state accuracy as well as good transient response 
are satisfied[7]. A compensator is then designed 
that forces the closed-loop system to have this 
transfer function, figure 3. 

The closed loop transfer function is design to 
make the damping ratio of the dominant pole 
equal to 1 and the settling time less than 2 
second. Also the steady state error to input 
reference is zero. 

The desired p
ification given above,P=[-1 -9 -50 -80 -100 -

150]. By using matlab tools, the pole has been 
placed to get the feedback gain matrice, K. Value 
of matrice K is using with simulink diagram as 
tuning parameter in simulation work. The result 
is shown in figure 4, figure 5 and figure 6 
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Fig. 2: WIP Control chart 
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B. PISMC Controller Design 

The typical structure of a sliding mode 
controller (SMC) is composed of a nominal part 
and additional terms to deal with model 
uncertainty. The way SMC deals with 
uncertainty is to drive the plants state trajectory 
onto a sliding surface and maintain the error 
trajectory on this surface for all subsequent 
times. The advantages of SMC is that the 
controlled system becomes insensitive to system 
disturbances.  For the nonlinear model in 
equation (2.6), by using deterministic method the 
nominal values of matrices A and B is 
calculated. Let the dynamic model of the system 
take the following state space form: 

0.

Note that is stick to original form 

represent a nonlinear function describing the 
deviation from linearity in term of disturbances 
and un-modeled  dynamics. 

)(xf

The sliding surface is defined such that the 
state tracking error converges to zero with input 
reference. Conventional sliding mode approach 

defines the sliding surface as 5 6 )()( tCxtx !7 ,

where C is a vector of known coefficients to be 
designed base on the linear model of the system. 
The coefficients in the vector C completely 
determine the sliding surface. Proportional 
integral (PI) sliding surface has been proposed 
in[8],[9],[10],[11], to improve the tracking 
performance and disturbance rejection properties 
of conventional sliding mode approach. The PI 
sliding surface is defines as follows: 

5 6 1 2 887 dxCBKCAtCxtx
t

)()()(
0
9 ((!

Where, and are constant 
matrices. The matrix K satisfies 

mxnC :; mxnK :;

0)( < BKA4  and C is chosen so that CB is 

non singular. The control objective now turns to 

find a control law to drive 5 )(tx 67  towards zero 

based on the state space model in equation (3.1). 
By defining a Lyapunov function: 

1 2 5 62
2

1
77 !V

It can be guaranteed that the sliding surface 

5 6 0)( !tx7  is reached in finite time by 

choosing equation (3.4) to ensure that 

.0=! 77   V

)sgn(2 7>7 (! 
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Fig. 4:.Orientation, /  control response 

Fig. 6: Position, x control response 
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Where, > is tunable parameter. Taking the 

derivative of PI sliding surface in equation (3.2), 
the following equation is obtained. 

By substituting equation (3.1) and (3.4) into (3.6) 
and with some mathematical manipulations in 
term u, equivalent control equation (3.7) is 
obtained. 

Then by using same poles with the pole-
placement control method, to maintain the 
desired specifications, the value of K is obtain 
easily using matlab. And the tunable parameter 
>=100 is used. Finally the parameter of matrices 
C=[7899 5400 20 200 77 500;81 1 600 91 150 
13] is tune by heuristic to get the superior 
performances. The result of simulation is shown 
in Figure 7, Figure 8 and Figure 9. 

C.  Stability Analysis. 

The lyapunov’s method of stability analysis 
is in principle the most general method for 
determination of stability for nonlinear or time 
varying system. This concept is introduced by 
Russian mathematician A.M Lyapunov.  

This section will determine the stability for 
the dynamics of the system during sliding mode. 

1 2 1 2txMtx !  :where: M = A+BK   (3.8) 

The system of equation 3.8 is said to be stable if 
every eigenvalue of M has a negative real part. 
This can be shown if and only if for any given 
positive definite symmetric matrix Q, the 
Lyapunov equation: 

QPMPM T (!   (3.9) 

has a unique symmetric solution P and P is 
positive definite. Let the Lyapunov function 
candidate for the system is chosen as 

1 2 1 2 1 2tPxtxtV
T!   (3.10) 

where x(t) represents the solution of equation 3.8 
and P is the solution of the matrix Lyapunov 
equation such as equation 3.9. Differentiating 
equation 3.10 with respect to time, t gives 

1 2 1 2 1 2 1 2 1 2txPtxtPxtxtV
T

    !

        1 25 6 1 2 1 2 1 25 6tMxPtxtPxtMx
TT  !

        1 2 1 2 1 2 1 2tPMxtxtPxMtx
TTT  !

        1 2 5 6 1 2txPMPMtx TT  !

            1 2 1 2tQxtx
T(!

Since the derivative of the Lyapunov function, 
V(t) is negative, the system is said to be 
absolutely stable during sliding mode. 
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IV.  DISCUSSION 

The upright balancing is the most 
fundamental control for two-wheeled inverted 
pendulum robot because no other control is 
possible without stable upright balancing. 
Maintaining the robot’s upright balancing is 
similar to controlling a common inverted 
pendulum. However, the structure of the two-
wheeled inverted pendulum robot is not identical 
to that of the widely known inverted pendulum.  

For instance, in a typical inverted pendulum, 
the inverted rod or body is connected to the base 
with a bearing that allows free rotational between 
the base and upper pendulum however there is 
no bearing between the base and the upper body 
of the two wheeled inverted pendulum robot. 
Nonetheless both cases of the two-wheeled 
inverted pendulum robot more or less similar 
because, when no external force or torque is 
applied, the wheel turns around and the axle and 
the upper body falls on the floor. When the 
upright balancing is occur, this operation is 
consider for more stable operation. The robot 
should stay in the same position. The upright 
balancing enables the robot to keep its original 
position without losing its balance. In the initial 
condition, the robot was tilted at 30? but the 
angular velocity of the tilt angle was zero. In this 
paper the result of speed of robot is not shown.  

As can be seen in figure 3 to figure 8, the tilt 
angle of the mass center of the robot cross the 
horizontal axis were within 5 second for pole-
placement controller and about 2 second for 
PISMC controller. However more than 8 second 
lapsed for position of the center of the robot to 
return to its original position. It happen for both 
controller. But PISMC improve the overshoot 
magnitude less then 0.12 rad if compared to 
pole-placement which has about 0.3 rad. 
Although there is a slight movement (micron 
radian) of the position in PISMC controller to 
make the tilted body return to zero angle, the 
result are satisfactory and upright balancing was 
successful.  

V. CONCLUSION 
In this paper a two-wheeled inverted 

pendulum type robot is discussed. It has the 
advantage of mobility from without caster and an 
innate clumsy motion for balancing. To analyze 
this robot mechanism, Newtonian method of 3-
DOF modeling is used to conduct an exact type 
of dynamic modeling. The simulation result is 
successfully shown that PISMC has a good 
response to achieve the desired characteristic 
compare to pole-placement. The 3-DOF 

dynamical modeling, along with simulation 
analysis on the two-wheeled inverted pendulum 
robot should expedite the introduction of this 
kind of robot in daily life. 

VI. REFERENCES 
[1] Salerno, A. and Angeles, J., “Nonlinear Controllability of 

Quasiholonomic Mobile Robot”. Proc. IEEE ICRA, 
Taiwan, 2003. 

[2] Salerno, A. and Angeles, J.,”The control of semi-
autonomous two-wheeled robot undergoing large 
payload variations”. Proc. IEEE ICRA, New Orleans, 
April 2004, pp. 1740-1745. 

[3] Ha, Y.S. and Yuta, S.,”Trajectory tracking control for 
navigation of the inverse pendulum type self-contained 
mobile robot”, Robotics and autonomous systems, 17, 
pp.65-80, 1996. 

[4] Baloh, M. and Parent, M.,”Modeling and Model 
Verification of an intelligent self-balancing two-
wheeled vehicle for an autonomous urban 
transportation system”. Conf. Comp. Intelligence, 
Robotic and Autonomous systems, Singapore, Dec, 15, 
2003. 

[5] Grasser, F., D’Arrigo, A., Comlombi, S., and Rufer, 
A.,”Joe: A mobile inverted pendulum”, IEEE Trans. 
Electronics, vol. 49, no 1, pp. 107, no. 114, 2002. 

[6] Kim, Y.H., Kim, S.H., and Kwak, Y.K. ”Dynamic 
Analysis of a Nonholonomic Two-wheeled Inverted 
Pendulum Robot”, Proc. of the Eighth Int. Symp. on 
Artificial Life and Robotics(AROB8th, '03), P.415-418, 
Beppu, Oita, Japan, 24-26 January, 2003. 

[7] Nise, N.S.,”Control System Engineering, 3rd ed.”, John 
Wiley and Son, US, 2000. 

[8] Nawawi, S.W., Osman, J.H.S, Ahmad, M.N.,”A PI 
Sliding Mode Tracking Controller with Application to a 
3-DOF Direct drive Robot Manipulator”, 
TENCON2004, Vol 4, pp455-458, 2004, Chengmai 
Thailand.

[9] Sam, M.Y., Osman, J.H.S., Ghani, R.A., ”Proportional 
integral sliding mode control of a quarter car active 
suspension”, TENCON02, Vol. 3, Oct 2002, pp 1630 – 
1633, Beijing. 

[10] Kane, T.R. and Levinson, D.A.,”Dynamics, Theory and 
Applications”, McGraw-Hill, 1985. 

1-4244-0527-0/06/$20.00 © 2006 IEEE                 199 

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 4, 2009 at 23:48 from IEEE Xplore.  Restrictions apply.


