

78:12–3 (2016) 189–196 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

REFLECTIVE PRISM DISPLAY USING PEPPER’S GHOST

TECHNIQUE SOFTWARE TOOLKIT PLUGIN FOR UNITY 3D

Abu Bakar Abdullah Muhammada, Nor Anita Fairos Ismaila, Mohd

Shahrizal Sunarb*

aDepartment of Software Engineering, Faculty of Computing,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor,

Malaysia
bMaGICX (Media and Games Innovation Centre of Excellence),

UTM-IRDA Digital Media Centre Universiti Teknologi Malaysia,

Malaysia

Article history

Received

26 November 2015

Received in revised form

14 January 2016

Accepted

10 October 2016

*Corresponding author

shahrizal@utm.my

Graphical abstract

Abstract

Reflective prism display is a display technology that has potentials in displaying images with

fascinating effects. However, the process of creating the display is quite challenging

considering the lack of specialized software and bulky hardware setup. In this project, we

propose a software toolkit plugin for Unity 3D, called Prismatic, to simplify the process as an

alternative over the conventional method of creating a reflective prism display. Adopting

the idea from Pepper’s ghost technique, a combination of four cameras facing an object

were setup within Unity to produce four viewport renderings of the object, easily projected

from a device as small as a smartphone to the size of widescreen TVs. This software toolkit

combined with Unity offer simple and centralized control over camera, facets, and object.

Prismatic has the potential in assisting apps developer in creating the display such as in

showcasing models for education and business purposes.

Keywords: Pepper’s ghost, Prismatic, software toolkit, viewport, rendering

© 2016 Penerbit UTM Press. All rights reserved

190 Abu Bakar, Nor Anita & Shahrizal / Jurnal Teknologi (Sciences & Engineering) 78:12–3 (2016) 189–196

1.0 INTRODUCTION

1.1 Reflective Prism Display and Pepper’s Ghost

Technique

Reflective prism display is one of many categories of

display technology. The display, as in Figure 1, allow

viewers to view images of an object from different

perspectives on the prism’s multiple sides.

Figure 1 A reflective prism display [3]. A flat screen is placed

on top of the prism as an image projector

The display is created by applying Pepper’s ghost

technique using a combination of two main

hardwares, a prism with three or four reflective sides

and an image projector [1]. The former serve as the

display while the latter as the image source which

projects different views of an object onto each

surface of the prism (called as facet) – through

different viewports (see Figure 2). The technique

applied is simple as it is about reflecting an image on

the reflective surface at an angle of 45 degree [1],

[2] with common method done by placing the

image projector on the prism top of bottom [7], [8],

[11].

Figure 2 The four viewports with images of a jellyfish as the

viewport content. This final image is ready to be projected

by an image projector onto the front, back, left, and right

side of the prism [16],

Pepper's ghost technique is a renowned illusion

technique preceding to the year 1600's. It was

described first by Giambattista della Porta [4] and

was later developed by Henry Dircks [5] but did not fit

with the stage setup at that time [6]. Professor John

Henry Pepper then simplified the design and built the

first practical version [5][7]. Figure 3 shows the use of

this technique for image display.

Despite the fact that the thechnique is fairly simple,

the resulting image created is undeniably interesting.

They appear to be more or less transparent, but

surely does not appear completely solid [8]. Images

created on each facet of this prism are flat two-

dimensional (2D) but seem to have an illusion as if a

three-dimensional (3D) object is floating midair

[9][10]. Images produced from this display are also

enhanced with a false perception of depth [11].

1.2 Application and Problems

This display could provide ways of presenting physical

inventions and applied in various fields including

education and entertainment as seen in some

showcases and performances [12], [13], [14].

Together with the display setup are a number of

methods of image projection such as placing objects

hidden from view and using images or videos [15].

Figure 3 Pepper’s ghost technique. Image is projected from

the projector onto a surface tilted at 45 degree angle.

Viewers are able to see the reflected image on the screen

However, creating a reflective prism display is not

very easy considering the bulky hardware

requirements. Setting up the hardware necessitate

for quite an amount of time, not to mention the time

required in addition for the software and content

preparation. Moreover, content preparation

(creating the four viewports) are rigid with limited

control over content manipulation. Imagine

recording or rendering each side of an object and

pasting it onto individual viewports for the image

projector which would be troublesome given that

they are plain images or videos [9].

To pin down the mentioned problems, a software

toolkit plugin for Unity was designed and developed.

Titled as Prismatic, the goal of this work is to simplify

the software and content preparation step by

providing a set of tools that helps on preparing four

viewports of an object to be projected onto each

side of a prism - front, back, left, and right. The back

side can be deactivated to suit a three-sided prism

and the viewports must properly project each

viewport and avoiding errors. As for the content, it

could be prepared by using 3D models or 2D sprites

without setting aside the use of images and videos.

191 Abu Bakar, Nor Anita & Shahrizal / Jurnal Teknologi (Sciences & Engineering) 78:12–3 (2016) 189–196

With Unity, user have the freedom to make full use of

its built-in functionalities such as adding animation to

the object, using shader and material, manipulating

by script, and providing interactivity. The toolkit in the

other hand provide simple control over the viewport

setup. Given these possibilities, the user may easily

create their own working reflective prism display to

present models and effects with minimal effort.

The image effect produced are somewhat similar

to the hologram technology depicted in several sci-fi

movies. Hence the terminology ‘hologram’ are often

associated with this display. However it is worth

understanding that it is not a hologram as there exist

no such properties in the produced image [17].

2.0 METHODOLOGY

This section describes the methods and approaches

used to tackle identified problems in the creation

steps of a reflective prism display. As mentioned

earlier, this work focuses on solving or providing an

alternative in relation to the problems regarding

software and content preparation (viewport

creation) without touching on the hardware

difficulties. Included in this section are the initial

plannings to obtain the idea of how the toolkit works,

softwares that were used, asset and hardware

preparations, and finally the development steps.

2.1 Project Initialization

2.1.1 Initial Framework

An initial theoretical framework as in Figure 4 was

planned ahead to obtain the overall reflective prism

display creation process. Based on this framework,

when a user wish to create a reflective prism display,

they only need to import their own 3D object or use

premade objects within Unity and integrate it with

this software toolkit. This toolkit prepares a ready-to-

use and easy-to-control viewport setup for the

object.

Figure 4 The initial theoretical framework

2.1.2 Achieving Four Viewport Renderings

Table 1 shows the procedure of achieving the output

of four viewport renderings using this software toolkit.

This include the input and processes taken in

between before obtaining the output.

Table 1 The input, process, and output of a reflective prism

display creation process using the software toolkit

Input Process Output

User import

assets:

 3D model

 2D sprite

 User - Manipulate

cameras, facets, and

object.

 Software Toolkit - Render

all four cameras onto the

render texture facets and

render all four viewports.

Four

viewport

renderings

The four viewport renderings are achievable by the

user importing their own assets such as 3D models

and 2D sprites into the scene and then manually

setting up the objects as needed. Using Prismatic, the

user can then easily manipulate the cameras and

facets to fit their requirements. Alongside, Prismatic

will automatically produce the viewport renderings.

2.2 Softwares Used

The softwares used during development are listed as

follows:

• Windows 10 64-bit Operation System (OS)

• Unity 3D v5.0.1f

• Monodevelop

 Blender v2.7

192 Abu Bakar, Nor Anita & Shahrizal / Jurnal Teknologi (Sciences & Engineering) 78:12–3 (2016) 189–196

Unity is a game engine that provides control over

content creation providing a huge advantage

compared to the simplistic use of images/videos for

the viewport content. With Unity’s built in

functionalities, 3D models and 2D sprites could be

used to create images and videos without limiting

the fact that premade images and videos could also

be imported and used within. This software toolkit

plugin roots on the game engine and serve as an

extension within. Monodevelop is an open source

integrated development environment (IDE) shipped

alongside Unity. It is used concurrently with Unity

during the software toolkit development. On the

other hand, Blender is an open source 3D modeling

software that is free and lightweight. It is used to

create models for use in this project. 3D models are

exported into Unity from Blender using the .fbx

extension format.

2.3 Asset Preparation

When developing the project, sample objects are

needed for testing purpose. The sample objects will

be used to check for correct camera setting as

obtaining the correct renderings for the viewports are

very important. If one or more of the viewport isn’t

correctly constructed, the resulting image will get

twisted out of the project’s needs.

It is important to use objects which provide a good

way of correction-checking while avoiding objects

with similar or hardly-distinguishable sides. A 3D

object in the shape of a bear and a bird for example

has distinguishable body parts (head, limbs, tail, etc.)

and both help distinguish all four sides. These are

considered good objects. Meanwhile, without a

proper texture, a simple 3D object in the shape of a

sphere and a cube doesn’t.

Take for example, the front camera which is set to

be rendered in the bottom viewport and is positioned

facing the front of the 3D bear should render the

front side which is the head. And the back camera

should do the opposite, rendering the bear’s rear. If

this is not the case, then we consider that the setting

of the camera or viewport is incorrect.

However, it is hard to check for mistakes if we

replace this 3D object with a simple 3D cube which

has the exact similar sides as distinguishing between

the front, the sides and the back is hard. Hence, a

good object used for testing is unavoidable.

2.4 Software Toolkit Development

2.4.1 Camera Setup

Creating a four-sided view of an object means using

four cameras to render each of the object’s side

view and projecting it onto a display. Use of the

default camera provided in the Unity Editor is

sufficient for this purpose without the need of

additional scripting to modify the camera rendering

behavior.

Figure 5 The four-sided camera setup. A camera is placed

on each side of the object in the center and rotated

accordingly to face the center

All four cameras were placed away from each

other with rotation by 90 degrees on the left camera,

180 on the back, and 270 on the right (see Figure 5)

on the y-axis. As for the front camera, the rotation

was left at 0 degree.

However, problem arise when simply positioning

the four cameras and using them without adjusting

the Transformation and Viewport Rect variable in the

camera’s Inspector tab.

In Figure 6, a box-shaped viewport of each

camera can be seen layered on top of each other.

This is problematic when the object is moved as it

may partially cover the object, resulting to an ugly

truncated object rendering. For example, in the left

viewport, the 3D bear’s top part of the body may be

hidden behind the bottom viewport when the object

is moved away from its rendering camera. The

solution to this is rather simple, that is by using a

custom facet model in the shape of a prism’s surface

described in section 2.4.2. Another concern related

to the setup is that more cameras actively used for

rendering means extra computational power is

required. One solution is to use simple shader

materials for the objects in the center such as toon

shading [18].

Figure 6 Simply using four cameras without adjusting

camera variables create an obstructive view on the

viewports in the Game window

193 Abu Bakar, Nor Anita & Shahrizal / Jurnal Teknologi (Sciences & Engineering) 78:12–3 (2016) 189–196

2.4.2 Render texture facet

Practically, render texture is similar to the regular

texture where it is applied to a material used to wrap

around object(s). But unlike the regular texture,

render textures have no image or video source

assigned to it but rather, images from an active

camera do. Render textures are actively updated in

runtime which means any update feed from the

camera will be rendered onto the render texture and

are regularly updated [19]. A 3D model in the shape

of a prism’s facet was modeled and arranged as four

flat surfaces lying on the plane y=0 to make the

viewports. The render textures were then applied to

the facets respective to their corresponding sides. A

camera was placed facing the facets to render the

final view in Unity’s Game window.

2.4.3 Setup Overview

Figure 7 shows the camera setup arranged in Unity. A

camera for each of the side – front, back, left, and

right – were setup facing each other’s center where

the objects are placed. Each camera was assigned

with a render texture and each of the object’s side

will then be rendered by the cameras onto their

respective render textures, and successively, to all

four facets respective to their correct perspective

and position. The blue line for instance shows the

front camera view rendering the front part of the

object onto the bottom render texture.

Figure 7 Overview of the setup. Four cameras were placed

facing the objects in the center with each camera’s

rendering projected onto the associated render texture

facet respective to each colored lines

2.4.4 Software Toolkit Component Programming

The software toolkit was programmed using Unity-

supported language C#. This software toolkit allow a

centralized and simple control over the object,

cameras and facets. Centralizing the controls were

achieved by creating a custom editor using Unity

scripting API: CustomEditor which derives from

Unity’s Editor base class.

There are three main function components

developed within the toolkit, each with specific

functionalities:

• Focus Object – handles the functions associated

with the object in the center. Assigning a focus

object for the toolkit is optional.

• Camera Properties – handles the functions for

the camera attributes with a unified control.

• Camera Transform – handles the position,

distance, and rotation of all four cameras with a

unified control.

Table 2 shows the list of functionalities within the

software toolkit based on the three function

components. Handling the components are

PrismCameraEditor, PrismCameraController, and

PrismFacetController classes.

The PrismCameraController (PCC) and class

takes care of all the software toolkit’s functionalities.

Functions such as follow focus object, change prism

mode, and enable/disable back facet are

implemented within. PrismCameraEditor (PCE)

class creates the interface between the software

toolkit and user. This script overrides the inspector for

PCC and constructs a customized setting for

manipulating the cameras. While the

PrismFacetController (PFC) is the class which

hold control over the four render texture facets.

One key functionality in the toolkit is the Prism

Mode control which allow users to switch between

upright or upside-down prism. Upright prism is used

when the prism is placed upright (with the sharp tip

on top as seen with pyramids) below a bottom-

facing screen projector. Upside-down on the other

hand is placed upside-down below the same screen.

Note that however when the screen projector is

facing upward, upside-down and upright are in the

opposite order. Another thing to note is that both

Prism Modes are mirrored to each other when

rendered on the render texture facets.

The function is implemented by rotating the four-

sided cameras by 180 degrees on each of the

camera’s local z-axis:
cam1_transform.Rotate(Vector3.forward

* angle);

where cam1_transform is the first camera game

object’s Transform property repeated through

cameras 1 to 4, Rotate() is a function from Unity’s

Transform class, and angle is the angle of rotation

which is 180 degrees.

The render texture facets are also flipped on the

local x-axis by x=-1 to mirror the renderings:
facet_Front.localScale = new

Vector3(facet_Front.localScale.x * -1,

facet_Front.localScale.y, 1);

194 Abu Bakar, Nor Anita & Shahrizal / Jurnal Teknologi (Sciences & Engineering) 78:12–3 (2016) 189–196

where facet_Front is the front facet game object

repeated for back, right, and left, localScale is the

game object’s scale from its Transform attribute.

In some occasion of applications or requirements,

the number of facets used for projection may be

reduced to 3 as the back facet is not used and

covered, leaving only the front and two sides. This is

to reduce environmental light as too much light in

the background could interfere with the image

visibility.

Removing the back facet also means less camera

and consequently, one less camera view to render.

This could save processing power especially when a

detailed and high polygon count object are used in

the scene. Accordingly, a function to enable or

disable the back facet were implemented. Enable

and disable could be simply get and set by

GameObject class’ read-only property

activeInHierarchy and its function SetActive():
cam2_camera.gameObject.SetActive(bool);

where cam2_camera is the back camera game

object’s Camera property.

Table 2 Software toolkit functionalities

Action Focus Object Assign a focus object for the Prism Camera to follow
Set Focus Object Assign a focus object for the Prism Camera to follow

Check/ Uncheck Follow Object Check to follow focus object. Accessible only when focus object is assigned

Check/ Uncheck Smooth Follow Check to enable smooth follow. Accessible only when follow object is checked

Click Auto Focus Move the Prism Camera to the position of focus object

Set Clear Color Set background clear color

Click Switch Projection Change camera projection

Drag/Set Size/Field of View Set orthographic size or field of view

Set Near and Far Clipping Set near and far clipping planes

Click Prism Mode Change prism mode

Check/ Uncheck Enable Back Facet Enable/disable back facet

Drag/Set Camera Rotation Set camera rotation

Set Camera Offset Set camera offset

Drag/Set Camera Distance Set camera distance

2.5 Hardware Preparation

To test the final viewport rendering, a hardware setup

is as important as developing the software toolkit.

There were two prism sizes used for testing. One is a

small setup fitting most 4.5 to 5.5 inch smartphone

screens. Another is a huge one covering a much

bigger screen setup. For the bigger counterpart, a

prism was carefully designed together with some

sumptuous measurements to fit a widescreen, 40-inch

LCD screen. Acrylic sheet with a thickness of 5mm

was used as the prism material. Covering each side

of the sheet is a thin layer of tint to allow a vibrant

and a clear image reflection.

2.6 Software Toolkit Testing

During and after software toolkit development, some

testing are required to ensure the completion of the

project objective – simplifying the process of creating

the viewport renderings for the display.

2.6.1 Functionality Testing

All of the constructed functionalities require testing to

ensure that each one is working in perfect order. For

example, functions applied to focus object shall

correctly manipulate the object while functions

made for the cameras should cooperatively manage

every single camera. The same goes for facet-

related functions.

Function testing were made in a straightforward

fashion with any change of value on the parent Prism

Camera object should result instantly on its child

objects - the four cameras and render texture facets

- in the Scene View. Checking for the correct

outcome could also be done by checking individual

focus object, cameras and render texture facets for

any changes in the Inspector window. The changes

done to the cameras and facets should correspond

relative to the changes from the Prism Camera

Inspector.

195 Abu Bakar, Nor Anita & Shahrizal / Jurnal Teknologi (Sciences & Engineering) 78:12–3 (2016) 189–196

Table 3 Functionality testing with given actions and results

Action Attribute Description Result

Set Focus

Object

Assign a focus

object for the

Prism Camera to

follow

Focus Object

set correctly

Check/

Uncheck

Follow

Object

Check to follow

focus object.

Accessible only

when focus

object is assigned

Prism Camera

follow Focus

Object

Click Auto Focus Move the Prism

Camera to the

position of focus

object

Prism Camera

move to

Focus Object

Set Clear Color Set background

clear color

Set correctly

Click Switch

Projection

Change camera

projection

Set correctly

Drag/Set Size/Field of

View

Set orthographic

size or field of

view

Set correctly

Set Near and

Far Clipping

Set near and far

clipping planes

Set correctly

Click Prism Mode Change prism

mode

Prism mode

set correctly

Check/

Uncheck

Enable

Back Facet

Enable/disable

back facet

Enable/disabl

e correctly

Set Clear Color Set background

clear color

Set correctly

Click Switch

Projection

Change camera

projection

Set correctly

2.6.2 Viewport Testing

Correct viewport rendering is the number one factor

considered in this software toolkit. Without it, the final

export will produce errors in the image outcome such

as mirrored image, image obstruction due to window

violation, and other unwanted outcomes.

Performing viewport testing require a scene export

beforehand. Using Unity’s built in exporter, an

Android application containing the sample object (a

bear and bird 3D model) was built and later

exported into a device running on Android OS. A

prism sized to fit smartphone devices was then used

together with the exported Android application. A

desktop PC build was also built to test on a larger size

display.

Figure 8 shows the viewport testing performed on a

mobile display. From the viewport testing, the work

has been confirmed to produce correct viewport

renderings without any errors in the image outcome.

Image on the front side of the prism has correctly

depict the object’s front, so does the sides and rear.

Figure 8 Viewport testing performed on a small size

reflective prism display. Top: Front view of the display.

Bottom: Side view of the display

3.0 RESULTS AND DISCUSSION

The final outcome of this project is the four veiwport

renderings (see Figure 9). There are two deliverables

within the project which will then result with this

project’s final outcome. One is the four-sided

cameras setup, named Prism Camera, which were

positioned and pointed towards their center point.

Another is the four render texture facets along with its

camera named as Prism View Renderer. Both prefabs

carry a total of 5 cameras and a set of four facets.

Both deliverables were prepared in the form of

prefabs. Prefabs are a type of asset that allow

storage of game object(s) complete with its

component and properties. Unlike normal assets,

prefabs are considered asset templates with editable

components. Every single component configuration

attached to an object will remain when the object is

converted explicitly to a prefab [20].

Figure 9 Final outcome, four viewport renderings ready to

be used with a reflective prism to create the display.

196 Abu Bakar, Nor Anita & Shahrizal / Jurnal Teknologi (Sciences & Engineering) 78:12–3 (2016) 189–196

When an instance of the prefab Prism Camera is

created, it will have the PCC class script component

pre-attached to it. User could edit the settings for the

focus object and four-sided cameras in the Prism

Camera Inspector window or just leave everything

with the default setting.

4.0 CONCLUSION

Development of this project was made to expose

one of the way of achieving an interesting image

effect using a reflective prism display by the

application of Pepper’s ghost technique. The theory

behind the technique was fairly easy to understand

but yet, achieving one such display was not quite.

Hence, the project was seen as a bridge that shorten

the process of creating a reflective prism display. In

the end, this project shall help future developers and

end-users to create their own display wonder, with

one less problem to consider.

Acknowledgement

Huge appreciation goes to the initial inventors,

Professor John Henry Pepper and English engineer

Henry Dircks for their idea. A heartfelt gratitude to

those who have helped directly or indirectly to this

project. Mohd Kufaisal Sidik helped build the

hardware setup. Aqly Kamarudin, Ahmad Haryth

Hilmy, and Muhd Faris Nazri helped assembling and

disassembling the hefty setup. Without their ideas

and support, this project wouldn’t have been

successful.

This project was funded by Media and Game

Innovation Centre of Excellence (MaGIC-X), Universiti

Teknologi Malaysia (UTM).

References

[1] P. A. Simonsen. 2008. Display Device For Producing Quasi-

Three-Dimensional Images. Patent US 20080144175.

[2] J. Nickell. 2005. Gorilla Girl. Secrets of the Sideshows.

University Press of Kentucky. 288.

[3] 3D Holographic Pyramid [Online]. Available:

http://youlalight.com/3dpyramid.

[4] Bradbury and Evans. 1863. How we may see in a

Chamber things that are not. Once A Week. 9, London.

362.

[5] J. Brooker. 2007. The Polytechnic Ghost: Pepper’s Ghost,

Metempsychosis And The Magic Lantern At The Royal

Polytechnic Institution. 189-206.

[6] J. H. Pepper. 1890. True History of the Ghost: And All about

Metempsychosis. Cambridge: Cambridge University Press,

[7] T. F. LaDuke and J. A. 2012. Gutierrez. Apparatus and

Method for an Anamorphic Pepper’s Ghost Illusion. Patent

US 8262226 A.

[8] R. T. Beaver. 1997. Apparatus And Method For Creating

Optical Illusion Effects. Patent US 5685625 A.

[9] de Wit, Thomas W., Gill, Mark, Freemon, Scott, & Garland,

Preston. 2013. 3Design - Holographic Telecollaboration

Interface.

[10] I. S. Rivera. 2012. Sefe Visor. Patent US 20120308743 A1.

[11] I. O'Connell and J. Rock. 2011. Projection Apparatus And

Method For Pepper's Ghost Illusion. Patent US 7883212 B2.

[12] The Shirley Spectra. n.d. [Online]. Available:

http://www.shirleyspectra.com.au/CowraN.Html.

[13] Tupac ‘hologram’. 2012. [Online]. Available:

http://arstechnica.com/science/2012/04/tupac-

hologram-merely-pretty-cool-optical-illusion/.

[14] Fondali Specchio Olografico. 2016. [Online]. Available:

http://www.peroni.com/scheda.php?id=55790.

[15] James, Ryan. 2009. 3D Holographic Projection: The Future

of Advertising? [Online]. Available: http://www.activ8-

3d.co.uk/aboutus/articles/3D-holographic-projection-

technology.php.

[16] Youtube – Hologram Technology. 2016. [Online].

Available:

https://www.youtube.com/watch?v=WFvlnYxEJGU.

[17] S. Torok and P. N. Holper. 2016. Ghostly Images. Imagining

the Future: Invisibility, Immortality and 40 Other Incredible

Ideas. Csiro Publishing. 20.

[18] Al-Rousan, R., Sunar, M. S., Kolivand, H., & Alhajhamad, H.

2015. Interactive Non-Photorealistic Rendering. Jurnal

Teknologi. 75(4): 57-64.

[19] Unity - Manual: Render Texture. 2016. [Online]. Available:

https://docs.unity3d.com/Manual/class-

RenderTexture.html.

[20] Unity - Manual: Prefabs. 2016. [Online]. Available:

http://docs.unity3d.com/Manual/Prefabs.html.

