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Abstract 

This paper presents the development of a Proportional- 
Integral sliding mode controller to control a class of 
uncertain systems. It is assumed that the plant to be 
controlled can be represented by its nominal and 
bounded parametric uncertainties. A robust sliding 
mode controller is newly derived so that the actual 
trajectory tracks the desired trajectory as closely as 
possible despite the non-linearities and input couplings 
present in the system. The Proportional-Integral diding 
mode is chosen to ensure the stability of overall 
dynamics during the entire period i.e. the reaching phase 
and the sliding phase. The controller is applied to the 
contra1 of a two-link planar robot manipulator. 

1 Introduction 

Variable structure control with Sliding Mode 
Control (SMC) has been widely applied to system with 
uncertainties and/or input couplings [l], [2].  The design 
philosophy behind the SMC is to obtain a high-speed 
switching control law to drive the nonlinear plant's state 
trajectory onto a specified and user-chosen surface 
called the sliding or switcbing surface. When a system 
is in the sliding mode, its dynamics is strictly 
determined by the dynamics of the sliding surfaces and 
hence insensitive to parameter variations and system 
disturbances. Nevertheless, the system posses no such 
insensitivity property during the reaching phase. 
Therefore insensitivity cannot be ensured throughout the 
entire response and the robustness during the reaching 
phase is normally improved by high-gain feedback 
control [3]. 

Recently, a variety of the SMC known as Integral 
Sliding Mode Control (ISMC) has surfaced in the 
literature [4], [5],  [6]. Different from the conventional 
SMC design approaches, the order of the motion 
equation in ISMC is equal to the order of the original 
system, rather than reduced by the number of dimension 
of the control input. This is established by making 
use of the integral type switching surface. With this 
approach, the robustness of the system can be 
guaranteed throughout the entire response of the system 
starting from the initial time instance. 

In this paper, the problem of robust tracking for a 
class of dynamical systems with uncertainties is 

considered. On the basis of sliding mode control 
theory, a class of variable structure controllers for 
robust tracking of dynamical signals is proposed. It is 
shown theoretically that for system with matched 
uncertainties, the tracking error is guaranteed to 
decrease asymptotically to zero. In fact the system 
dynamics during the sliding phase can easily be shaped 
up using any conventional pole placement method. 

2 Problem Formulation 

Consider an uncertain system described by 

j r ( t ) = [ A + M ( 1 ) ] X ( f ) + [ B + ~ ( f ) b r ( f )  (1) 
where x ( r > ~ R " , u ( t ) ~ R ~ .  represent the state and 
input vectors, respectively. A and B are constant 
matrices of appropriate dimensions. 
Define the state vector of the system as 

Let a continuous function X,(r) ER" be the desired 
state trajectory, where Xdt) is defined as: 

Define the tracking error, at) as 
In this study, the following assumptions are made: 
i) 

X ( t )  = [., (0 9, (f),...,X"(t)]7 (2) 

XAO = [Xd,(f),Xd2(f),...,Xdh(I)r (3) 

z(t)=x(t)-x,(t) (4) 

The state vector X(t) can be fully observed; 
U) 

M(r) = B H ( ~ )  ; 

M(0 = B W )  ; 

is integrable on bounded interval such that 

There exist continuous functions H(t) and 
E(f) such that for all X ( t )  E R" and all f: 

( 5 )  w ( t ) [  I a 
p(f)[ I B 

iii) There exist a Lebesgue function Q(t) E R, which 

xd(f) =AX,(f)+Bn(f) (6)  
iv) The pair (A, B) is controllable. 

In view of equations (4). (5) and (6), equation (1) can be 
written as 

i(t) = [ A  + B H ( f ) ] Z ( f )  .t BH(t )Xd  (2) (7) . 

Define the Proportional-Integral sliding surface as 
- BC2(t) + [B  + BE(t)]u(t) 

, 
(~(0 = CZ(f)  - [[CA + CBK]Z(x)& (8) 

a 
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where C E R""" and K E R"" are constant matrices. 
The matrix K satisfies 

and Cis  chosen such that CB E R" is nonsingular. 
The control problem is then to design a controller 

using the Proportional-Integral sliding mode given by 
equation (8) such that the system state trajectory X(t) 
tracks the desired state trajectory Xdt) as closely as 
possible far all t in spite of the uncertainties and non- 
linearities present in the system. The whole task can be 
divided into two parts; firstly it must be assured that the 
system error dynamics is asymptotically stable 
(approaching zero) during the sliding mode, and 
secondly a sliding mode controller is designed in such a 
way that whatever error the system has during the initial 
stage, the system must be directed towards the sliding 
surface (without sacrificing the stability aspect of the 
controlled system) during the reaching phase. 

h,, ( A  + BK) < 0 (9) 

3 System Dynamics During Sliding Mode 

Differentiating equation (8) gives 

(T(t) = c Z(t)  - [CA + CBK]Z(t)  
Substituting equation (7) into equation (IO) gives: 

a(t) = CBH(t)Z(r) + CEJi(t)Xd(r) - CBQ(t) (I 1) 

Equating equation (11) to zero gives the equivalent 

(10) 

+ [CB + CBE(f) ]u( f )  - CBKZ(t) 

control, U&): 
U&) =ICs+ cBE(t)]-'{cBKz(t) +CBQ(t) (12) 

- CBH(t)Z(r) - CBH(t)X,,(t) 
Noting that 
[CB +CBE(t)]-' =[I,  +E(t)l-' (CB)-' 
the equivalent control of equation (12) can be written as 

(13) 

(14) 
u,(9 = <I" +W)l-' ( (H( t ) -K)Z( t )  

-W) +H(t)Xd(t))  

Remurk I: The equivalent control u,(t) is only a 
mathematically derived tool for the analysis of a sliding 
motion rather than a real control law generated in 
practical systems. In fact it is not realizable in the real 
controller. 

The system dynamics during sliding mode can be found 
by substituting the equivalent control of equation (14) 
into the system error dynamics of equation (7): 

Z( t )  = [ A  +BH(t)]Z(t)+BH(f)X,(t) -BQ(f) 

- tB + BE(OI[4 + E!t)T'{[H(t) - KIZ(0 
- Q(l> + f i ( W , , ( r ) )  

= [ A + B K ] Z ( t )  (1 5) 
Hence if the matching condition is satisfied (equation 
(5) holds), the system's error dynamics during sliding 

mode is independent of the system uncertainties and 
couplings between the inputs, and, insensitive to the 
parameter variations. 

4 Sliding Mode Tracking Controller 
Design 

The manifold of equation (8) is asymptotically 
stable in the large, if the following hitting condition is 
held [5]:  

(UT (0 /g4t>II> k)  < 0 

V(t )  = Il.(t)U (17) 

t ( t )  = (o'(t) oi(t)) /n.(t)ll 

(16) 
As a prooc let the positive definite function be 

Differentiating equation (17) with respect to time, t 
yields . .  

(18) 
Following the Lyapunov stability theory, if equation 
(16) holds, then the sliding manifold o(t) is 
asymptotically stable in the large. 
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i 3  (0 5 -{U + Ph3 -PIIC-IDIIQ(f)ll (33) 
Let equations (20), (21) and (22) hold, then the global 
hitting condition (16) is satisfied. U 

Remark 2: The conditions imposed by equations (20), 
(21) and (22) not only guarantee that the hitting 
condition (16) is met, but it also assure that based on the 
Lyapunov theory, the system dynamics is stable in the 
large. 

5 Simulation Example 

Consider a two-link manipulator (in the horizontal 
plane) with rigid links of nominally equal length I and 
mass m shown in Figure 1. The dynamics of the 
manipulator is [7]: . . .  
1- 

e, = 
(++COS e,) sin e,. e, + +sin e,.(2 el + e,).@, 

1; cosz e, -- 

Define 

w&, 4 =k z$ 
Then the plant can be represented in the form of 

X ( t )  = A(t )X( t )  + B(t)u(t) 

10 1 o 0 1  1 0  01 
where 

b,l b,, 
A =  lo 0 ', 0 0 O 1 b ' l o  0 1  

10 '42 0 0-441  1641 b4*] 

uZ = ((2/3) +COSg)Shg 'x, /((16/9) -COS? 5 )  
I+, = ( 2 / 3 ) ~ h ~ ,  .(2x2 +~ , ) .~~ / ( (16 /9 ) -co~ '~J  
U,, = -2((5/3) + COSX,)S~X, . X, /((16/9) - COS' g) 
a+, = -((2/3) +cOsx,)sins(2~, +x4)/((16/9)-cos'~) 
b,l = (4/3)/((16/9)-~0~'~,) 
bE = -2((2/3)+ COSX, ) / ( (~~ /~ ) -  COS, %) 
b4, = b, 

Suppose that the bounds of the e,(r) and 6i(r)  are: 

b4, = 4((5/3)+ COSX,)/((~~/~)-COS'X) 

- 1 5 0 ' 2 q  <150', 0's-I se1 < 5 0 ' ~ - ' ,  

- 3 5 ' ~ e , $ i o o ' , o ' ~ - ' c e ~ c 3 0 ' ~ - ~  
With these bounds, the plant can be represented in the 
form of equation (I) with the nominal value ofA and B 
calculated as: 

1 0 0  
A = [  0 1.1684 0 0.9724 

0 0 0 1  
0 -2.6496 0 -2,4310 

0 1  
1.5058 -1.9489 

0 0 
1-1.9489 8.4151 

The uncertainties for system and input matrices are 
(0 o o 0 1  
0 0.9744 0 0.9724 
0 0 0 0  

0.2085 0.3368 
0 0 

12.3368 5.29911 
Using equation (5),  the bounds of H(t) and E(t) can be 
computed 

It is assumed that each sub-system is required to track a 
pre-specified cycloidal function of the form: 

p(tll2 a = 2.6046 ; F(t]l I = 1.9617 
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where A, =ei (7) -e , (0) ,  i =  42. In this example, the 
input trajectory data used are as follows: 

Start time, (0) = 0.0 s 
Final time, 7 = 10.0 s 
Startpositions, B,(O) = 10 deg ; &(O) = 15 deg 
Final positions, &(i) = 50 deg ; e,(T) = 60 deg 

Define the gains: 
2.0125 3.4291 0.0919 0.8735 such that 

K = [  0.3235 0.4080 0.6868 0.4838 1 
1(A+BK) = {-1,-2,-2,-3} 

3 1  0 0  
and c=[o 0 0.2 I] 

Remark 3: The gain K can be chosen arbitrarily but in 
this paper the values of K is intentionally selected to 
represent the case of over-damped response. Since the 
choice of C affects the system response during the 
reaching phase, it must be appropriately selected to give 
the desired result. Nevertheless, C must be chosen such 
that CB is nonsingular. 

The controller parameter y’s can therefore be computed 
from equation (20)-(22): 

For comparison purposes, two sets of the controller 
parameters are chosen: 

y, > 1.1731; yz > 0.8742; y3 > 0.6584 

- Casel: y, = O S ;  yz =0.2; y3 =0.2 
- Case2: y, = 1.5; y2 = 1.0; y1 = 1.0 

In Case 1, the controller parameter is selected to study 
the performance of the system if the gain conditions of 
equations (20)-(22) are not met; while in Case 2 the 
controller parameters is selected to represent a situation 
where the conditions imposed on the controller are met. 
The simulation results for Case 1 and Case 2 are shown 
in Figure 2 and Figure 3, respectively. If the controller 
parameter conditions are not met (Case l), the actual 
output positions fail to track the desired positions 
(Figure 2a and Figure 2b). This  is due to the fact that 
the control inputs not succeed to switch fast enough 
(Figure 2c and Figure 2d) and hence the sliding mode 
fails to materialized (Figure 2e). 
On the contrary, when the controller parameter 
conditions are met (Case 2), the position tracking is 
satisfactory (Figure 3a and Figure 3b). As expected, the 
control inputs switch indiscriminately very fast (Figure 
3c and Figure 3d), resulting the sliding surfaces to 
converge to zero (Figure 3e) and hence making the 
sliding phase took place. 

6 Conclusions 

In this paper, a J?roportional-Integral Sliding Mode 
controkr is proposed for a class of uncertain system. It 
is shown mathematically that the error dynamics during 
sliding mode is stable and can easily be shaped-up using 

the conventional pole-placement technique. Beside 
during the sliding phase, the system stability is also 
guaranteed during the reaching phase. Application to a 
two-link planar robot manipulator is presented to 
illustrate the effectiveness of the proposed controller. 
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Figure I: A two-link manipulator. 
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(b) Time response of state x&) 
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Figure 2: Simulation results for Case 1. 
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(b) Time response of state x&) 
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(c) Control input U&) 
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(d) Control input U&) 
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(e) Switching functions ol(f) and q ( f )  

Figure 3: Simulation results for Case 2. 
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