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Abstract 
 

The paper focuses on the practical implementation of a new robust control method to an automotive active 
suspension system using skyhook and adaptive active force control (SANAFC) strategy. The overall control system 
essentially comprises four feedback control loops to cater for a number of specific taks. Neural networks (NN) with 
modified adaptive Levenberg-Marquardt (LM) learning algorithms were used to approximate the estimated mass 
and inverse dynamics of the pneumatic actuator in the AFC loop. A number of experiments were carried out on a 
physical test rig with hardware-in-the-loop feature that fully incorporates the theoretical elements. The performance 
of the proposed control method was evaluated and benchmarked to examine the effectiveness of the system in 
suppressing the vibration effect of the suspension system. It was found that the experimental results demonstrate the 
superiority of the active suspension system with SANAFC scheme compared to the proportional-integhral-derivative 
(PID) and passive counterparts. 
 
Keywords: Skyhook, Active Force Control, Automotive Suspension 
 
 
1   Introduction 
 
 It is deemed necessary and useful to isolate 
disturbance elements that are prevalent in many 
mechanical systems. A clear example can be seen in 
an automotive system in which the passenger/s of a 
car should ideally be isolated from vibration or 
‘shaking’ effects of the car’s body when the car hits 
a bump or hole. In conventional passive suspension 
system, the mass-spring-damper elements are 
generally fixed, and are chosen based on the design 
requirements of the vehicles. Passive suspension 
utilizing mechanical springs and dampers is known 
to have the limitations of vibration isolation and lack 
of attitude control of the vehicle body.  
 In any vehicle suspension system, there are a 
number of performance parameters that need to be 
optimized. Four important parameters of 
considerable interest are: (i) ride comfort which is 
related to acceleration sensed by passengers in the 
vehicle when traversing a rough road surface, (ii) 
body motion which is associated with the pitch and 
roll of the sprung mass created primarily by 

cornering and braking maneuvers, (iii) road handling 
which can be related to the contact force between the 
tyres and road surface, and (iv) suspension deflection 
which refers to the relative displacement between the 
sprung and unsprung masses [1].  
 To solve the problems in suspension systems, 
many researchers have studied numerous active 
vehicle suspension strategies both theoretically and 
experimentally [2-6]. Many of these approaches are 
proposed for complicated models with non-linearity 
and uncertainty. Numerical and experimental results 
showed that such active suspension systems give 
relatively more satisfactory performance, but at the 
expense of increasing more loads to achieve active 
control, compared with the linear active suspension 
systems as reported in [7]. Intelligent control of 
suspension system was also proposed using fuzzy 
logic [8] and neural network [9]. Both methods use 
the intelligent mechanisms as direct or main 
controllers and are found to be rather time 
consuming to design and implement, particularly in 
acquiring the appropriate membership functions plus 
inference mechanism (for fuzzy logic control) and 



 

training parameters plus optimum network structure 
(for neural network control).  
 On the other hand, active force control (AFC) 
has been recognized to be simple, robust and 
effective compared with conventional methods in 
controlling dynamical systems, both in theory as 
well as practice [10,11]. The concept of AFC is to 
use some measured and estimated values of the 
identified system parameters namely the actuated 
force, acceleration of the body and estimated mass of 
the body. In practice, the estimated mass of the 
system (with the presence of disturbances that 
contributes to the acceleration) should be 
appropriately estimated using suitable methods such 
as the ones identified in [11]. In the proposed study, 
an intelligent mechanism using neural network is 
incorporated into the AFC loop serving not as the 
direct controller but merely as a means to 
approximate the essential parameters necessary to 
trigger the control action. 
 The objective of this paper is to design a 
practical hardware-in-the-loop control technique to 
reduce the sprung mass motion of a quarter car 
vehicle active suspension system with the proposed 
control and intelligent methods. The overall control 
system comprises four loops: the innermost force 
tracking control loop employing a classic PI 
controller for force tracking control of the pneumatic 
actuator; two intermediate control loops with 
skyhook and AFC to compensate for the 
disturbances containing the adaptive neural networks 
to compute on-line the estimated mass needed and 
the inverse dynamics of the actuator; and the outer 
positional control loop utilizing a PID controller to 
generate the target or commanded force. 
Performance of the vehicle suspension system is 
evaluated in terms of its ability to significantly 
reduce the sprung mass acceleration, sprung mass 
displacement, suspension deflection and tyre 
deflection in the presence of road disturbances and 
given operating conditions. 
 This paper is organized as follows. The design 
and underlying principles of the proposed control 
system is described in section 2. The experimental 
system is presented in section 3 while the results are 
analysed and discussed in section 4. Finally, the 
paper is concluded in section 5. 
 
 
2. Design of the Control System  
 
 In this section, all the major elements 
constituting the design and underlying principles of 
the overall control system are described and 
presented. 

 
2.1 Force Tracking Control Loop 
  
 The force tracking control of the actuator was 
first designed. The majority of the existing literatures 
assume that the command force can be achieved 
accurately and frequently done without considering 
the actuator dynamics which are highly nonlinear. 
When a less ability actuator is used, the design of the 
sub-loop needs to be carried out first in order to 
ensure force tracking ability of the actuator using a 
conventional PI controller [12]. The validation of the 
force tracking capability was done by considering 
sinusoidal, square wave, chirp signal and saw tooth 
as the input forcing functions.  
 In order to get appropriate values of P and I 
constants, Ziegler-Nichols formulation was used. 
The typical transfer function of a PID controller is 
given as follows: 
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where Ti = Kp/Ki, Td = Kd/Kp, and Kp, Ki, Kd are 
proportional, integral, derivative gains, respectively.  
 
2.2 Active Force Control 
 
 AFC is first proposed by Hewit and Burdess 
(1981) and has been applied effectively to a number 
of dynamical systems [10,11,14] as a two-degree-of 
freedom (DOF) robust acceleration feedback 
controller. The compensation action of AFC involves 
direct measurement or estimation of a number of 
identified parameters. Hence, a large portion of 
mathematical and computational burden can be 
reduced significantly. AFC can be shown to 
complement the basic Newton’s second law of 
motion, i.e. for a translational and rotational system. 
For an active vehicle suspension the equation of 
motion can be written as follows [14]: 
            amQF s=+             (2) 
where F is the applied force, Q is disturbance force, 
ms is sprung mass and a is acceleration of the sprung 
mass, respectively. The estimated value of the 
disturbance force, Q′, can be formulated as: 
            Q′ = F′ - (ms′a′)            (3) 
where the superscript (′) denotes the measured or 
estimated values of the parameters. Specifically, F’ is 
the measured force through the use of a force sensor 
(load cell), a’ is the measured acceleration using 
accelerometer and ms′ the estimated mass that can be 
approximated by a number of methods described as 
in [11]. If the measured and estimated quantities are 
appropriately acquired, then a robust and stable 
response should be achieved. 



 

  
2.3 Skyhook Control  
 
 The skyhook control introduced by Karnopp in 
1995 is known as most effective in terms of the 
simplicity of the control algorithm. The original work 
uses only one inertia damper between the sprung 
mass and an inertial frame. The damper is connected 
to an inertial reference in the sky. This arrangement 
is fictitious, since to implement this configuration, 
the damper would have to be connected to a reference 
point which is fixed with respect to the vehicle. The 
fictitious force computed from the added skyhook 
damper is called as the actuator force (Fsky). The force 
Fsky of this element according to the skyhook control 
law is [15]: 
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where Bsky is a constant value determined to be 
approximately 3000 N/m/s in the experimental 
system.  
 
2.4 Outermost PID Control Loop 
 
 The description of the PID controller is similar 
to that described in section 2.1, and the resulting 
controller gains were computed as Kp = 35, Ki = 1.9 
and Kd = 360. 
  
2.5  Incorporation of Neural Network 
  
NN has been potentially used in intelligent control 
system because it can learn, adapt, and approximate 
nonlinear functions very well. The feed-forward NN 
structure in this study employed a single hidden layer 
network with three hidden neurons that resemble the 
one described in [16]. Sigmoid bipolar function is 
chosen for the hidden layer and linear function for 
the output layer. All parameters of the model were 
normalized in the range (-1,1) representing the 
minimum and maximum range of the parameter 
values. Error between the outputs of the plant and 
network is used as the learning signal for NN to 
obtain the appropriate weights and biases. The 
learning algorithm which is based on minimizing the 
error (mean square error) can be given as follows: 
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where e is current error, yd is desired output, ya is 
current output at iteration-k. 
 To minimize the error with respect to the 
weights, the equations governing the updating of the 
weights of each layer using LM method can be 
represented as follows [17]: 
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where wi,j is weight, J is Jacobian matrix, μ is 
learning rate and I is identity matrix. 
 There are two identical neural networks (in terms 
of structure and topology) with LM algorithms used 
in the AFC loop. Each neural network has one hidden 
layer with three associative neurons and each neuron 
uses sigmoid bipolar function.  The first network, 
NN1 computes the estimated mass, while the second 
one, NN2 calculates the inverse dynamics of the 
pneumatic actuator. Both the estimated mass and 
inverse dynamics of the actuator have to be 
ascertained to effect the compensation of 
disturbances in the AFC loop. The input of NN1 is 
the sprung mass acceleration while the output of the 
network is the estimated mass. For NN2, its input is 
the force signal from the pneumatic actuator while its 
corresponding the output is the command signal prior 
to the summing junction of the AFC loop. 
Minimizing both NN1 and NN2 errors is applied for 
updating the weights and biases using the adaptive 
LM learning algorithms.   
 
2.6  Proposed SANAFC scheme 
  
 Having shown all the individual elements of the 
control and intelligent techniques, the complete 
SANAFC scheme can be seen in Figure 1. Although 
the system looks complex, the actual implementation 
can be easily realized through simulation and 
experimental study with the aid of MATLAB and its 
related components through Simulink, Control 
System Toolbox, Neural Network Toolbox and Real-
Time Workshop (RTW). 
 
 
3. Experimental System 
 
 This section presents the practical aspect of the 
suspension system that employs the proposed control 
technique. A schematic of the experimental set-up 
and a photograph of the actual rig are given in Figure 
2. The relevant parameters of the vehicle active 
suspension system are presented in Table 1.  
  
 
4. Results and Discussion 
 
4.1  Force tracking control 
        



 

 The experimental results of the force tracking 
control are shown in Figure 3 which clearly shows 
that the actual trajectories are capable in tracking the 
desired ones. This signifies that the appropriate 
controller setting enables the pneumatic actuator to 
operate satisfactorily.  

      
4.2 Experimental results 
  
 In this section, the benefits of active suspension 
using skyhook adaptive neuro AFC (SANAFC) over 
passive suspension and active suspension using PID 
controller for a sinusoidal road input frequency 1.5 
Hz, amplitude 3.5 cm are investigated both through 
simulation as well as experimental studies. The 
results can be seen in Figure 4.  
 From Figure 4, the amplitudes of sprung mass 
acceleration, sprung mass displacement and 
suspension deflection for active suspension based on 
SANAFC scheme show much better results 
compared with the PID controller and passive 
suspension counterparts.  
 
 
5. Conclusion 
  
 A novel controller employing the skyhook 
adaptive neuro active force control (SANAFC) has 
been designed and practically implemented for the 
control of a vehicle quarter car active suspension. 
From the experimental results, it can be deduced that 
the active suspension based on SANAFC controller 
outperforms the PID controller and passive 
suspension in all selected performance criteria. 
Future works may include more effort in improving 
the tyre deflection performance and considering other 
operating and loading conditions.  
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Figure 1. Proposed SANAFC control scheme 
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Figure 2. (a) A schematic of the experimental set-up and (b) A photograph of the actual suspension system 
 

Table 1. Vehicle suspension and pneumatic parameters 

Description Passive 
Suspension Description Pneumatic 

parameter 
Sprung mass 
Unsprung mass 
Suspension damping 
Suspension spring stiffness 
Tyre stiffness 

180 kg 
25 kg 

1,000 N/msec-1 
16,000 N/m 
190,000 N/m 

 

Supply pressure 
Atmosphere pressure 
Stroke length 
Diameter bore 
Ram area 
Gas constant 
Discharge coefficient 
Specific heat constant 

6x105 N/m2 
1x105 N/m2 

116 mm 
40 mm 

0.0076 mm2 
287 J/KgK 

0.8 
1.4 



 

Supply temperature 293oK 

  

Figure 3.  Force tracking control of the actuator Figure 4. Active suspensions with sinusoidal 
excitation, 3.5 cm height, frequency = 1.5 Hz 

 


