
Journal of Theoretical and Applied Information Technology
 20th February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

203

A META-MODEL FOR AUTOMATIC MODELING DYNAMIC

WEB APPLICATIONS

TANYA SATTAYA-APHITAN
1
, HORST LICHTER

2
, TONI ANWAR

3
,

SANSIRI TANACHUTIWAT

4

1
Software System Engineering (SSE), The Sirindhorn International Thai-German Graduate School

(TGGS), KMUTNB, Bangkok, Thailand

2
Research Group Software Construction, RWTH Aachen University, Ahornstr. 55, Aachen, Germany

3
Faculty of Computing (FC), Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia

4
Software System Engineering (SSE), The Sirindhorn International Thai-German Graduate School

(TGGS), KMUTNB, Bangkok, Thailand

E-mail:
1
tanya.s-sse2014@tggs-bangkok.org,

 2
lichter@swc.rwth-aachen.de,

 3
tonianwar@utm.my,

4
sansiri.t.sse@tggs-bangkok.org

ABSTRACT

This paper proposes an approach to automatically transform source code of a web application into an

abstraction model. A Web Application Program Dependency (WAPD) meta-model is being proposed to

store dependency information based on a multi-tiered architecture, corresponding to web application’s

behavior. A WebParseTree is used as an intermediate model for the transformation from the source code to

the WAPD model. The WebParseTree is a DOM-like tree that consists of statements and dependencies

stored information and behavior in the tree. To ensure that the resulting model is valid, it must conform to

the defined web application rules. This validation step can be done automatically by a constraint validator

using Object Constraint Language (OCL). The WAPD model will be represented as a generic model for

web applications which can be used for many purposes such as automatic test case generation and

automatic code transformation.

Keywords: Web Parse Tree, Web Application Modeling, Web Application Meta-model, Data Object

Modeling (DOM), Web Application Automatic Transformation.

1. INTRODUCTION

Nowadays many organizations are

increasingly using web applications for e-

business/e-commerce. Hence, it is important to

ensure the required quality of web applications

before deploying them because one failure could

result in significant losses. One of the essential

methods to assure the quality is to systematically

test an application. Two fundamental techniques to

determine a set of test cases are functional and

structural testing, also known as black-box and

white-box testing. These testing techniques concern

two different perspectives. Black-box tests software

are based only on the specification while white-box

tests are based on the internal structure and the

specification of the application under test.

Structural and functional testing are

complementary. Web application testing tools (e.g.

Selenium, HTMLunit, JWebUnit) while supporting

functional testing, do not offer structural testing[1],

and are therefore incomplete.

This paper presents an approach to

automatically transform the source code of a web

application into an abstraction model that can be

used to systematically derive test cases. However,

creating an abstraction model of a browser based

web application is much more complicated

compared to desktop applications due to its multi-

tiered or client-server architecture.

Normally, a web application is composed

of three tiers as shown in Figure 1. Tier 1 (client

tier) is interacting with end users while tier 2

(server tier) is processing the business logic. Tier 3

(data tier) is performing database transactions or

communicates to other web applications via web

service requests.

Journal of Theoretical and Applied Information Technology
 20th February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

204

For the client tier, input data validations or

calculations should be done by means of client-side

scripts (e.g. JavaScript, VBScript). A web browser

is used as a client to host the web application and

renders its client-side components, such as HTML,

client-side scripts, applets, that interact with the

users.

On the server tier, the business logic is

often realized by means of server-side components

implemented in various programming languages

such as PHP, ASP, JSP, Java and VB. After

receiving and processing HTTP request the server

sends HTTP responses back to the client which

displays the result. Thus, structural testing of web

applications has to deal with analyzing the program

execution paths on both client and server tier

implemented in different programming languages.

Moreover, both tiers are spatially separated and

communicate with each other using the HTTP

protocol, a stateless protocol, meaning that one

must take special care of handling the transmission

of parameters among them. The above mentioned

limitations pose great challenge to transform web

applications to a model.

Tier 1 Tier 2 Tier 3

Client Server Data

Web Service

Request

Response

Database

Figure 1: Structure of multi-tiered web applications.

The remainder of this paper is organized as

follows: section 2 reviews existing work in web

application testing. Section 3 proposes an approach

to model web applications. A meta-model is

presented to represent intermediate information.

The implementation details are introduced in

section 4. The preliminary result and conclusions

are summarized in section 5.

2. RELATED WORK

This section briefly surveys related works

on model-based test of web applications. The

related work can be classified as follows:

2.1 Static Webpage Modeling

Ricca and Tonella [2] model web

applications using UML. They proposed the tools

called ReWeb and TestWeb. ReWeb collects static

web pages from the website and represents them as

a UML model. Then test cases are generated by

TestWeb. However, they consider only static web

pages without considering dynamic ones. Reza et

al. [3] applied state charts to model web

applications comparing three different kinds: FSMs

, Petri nets and state charts. However, they

mentioned that "we have not yet found solutions to

the problems of modeling concurrency and

modeling the back-ends of web applications". This

work also considers only static web pages. Rafique

et al. [4] model web applications using FSM. The

model is represented as a graph where nodes

represent the pages and edges represent the page

navigations. The FSM transformation is done

manually and only on page level. Likewise, Machra

and Khatri [5] use directed graph to model web

applications. Nodes represent pages while edges

represent hyperlinks. Both graph models in [4] and

[5] were done on page level and did not consider

client and client/server-side scripting.

2.2 Server-Side Script Modeling

Youxin et al. [6] proposed a test

generation framework based on Z specification.

PDG is used to model web applications. But, they

only introduced the basic idea and has not provided

an implemented. Moreover, their approach

considers only server-side scripts. Wassermann et

al. [7] proposed algorithms for analyzing server-

side scripts and for discovering the input data based

on the concolic testing approach. This work focuses

only on server-side scripts.

2.3 Client-Side Script Modeling

Artzi et al. [8] proposed a technique for

generating concrete input data based on feedback-

direct random testing. The technique focuses on

testing java script, yielding an average coverage of

69%. Mesbah et al. [9] introduced a methodology

for testing AJAX applications by crawling in a state

flow graph on the client-side. This approach can

automatically detect faults by comparing the state

change with the DOM-tree serving as an oracle.

2.4 Multi-Tier Modeling

In regard to the actual architecture of web

applications, it is not enough to model only one of

the tiers. There are many research studies on

modeling multi-tier web applications. Dia et al. [10]

proposed a methodology for modeling multi-tier

web applications. The client tier is modeled by

means of WGUI trees. The server tier is modeled as

a system dependency graph, and the data tier is

modeled as a data object tree. They proposed

INSDG as a model to integrate the tier. The

concrete input data is generated by using a

symbolic execution technique together with a

Journal of Theoretical and Applied Information Technology
 20th February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

205

boundary value analysis. However, they did not

consider client-side scripts in their approach.

Moreover, their approach requires a use case based

specification. Ricca and Tonella [11] proposed an

approach to model web applications with two

layers: the navigation model and the control flow

model whose coverage metric is calculated in each

layer separately based on code instrumentation.

Test cases can be generated from the model.

However, this approach somehow required a

human-assistant to create the model. Gu et al. [12]

introduced the approach to model three web

application components which consist of web

server, application server and database server. The

control dependencies on each component are built

and connected together with message dependencies.

However, this approach lacks a methodology for

test case generation. Tung et al. [13] proposed a

novel approach to model web applications. It

consists of two phases which are the test path

analysis phase and test case generation phase. In

phase 1, a path navigation diagram is created based

on data and control dependencies. The proposed

algorithm eliminates cycles from a path navigation

diagram to yield a primitive path and simple cycle

which is used as test path. In phase 2, a test case

generation algorithm is applied to the primitive path

by considering input values and the dependencies.

The input values have to be defined manually.

However, this approach lacks input data generation.

It is done on the page level and does not provide

coverage metrics and expected results. Sabharwal et

al. [14] proposed a Page Navigation Graph (PNG)

to model web applications. The PNG is created

from information on low level design (DTD)

containing page and window scenarios. This work

focuses only on page/windows level. Bansal and

Sabharwal [15] proposed a method to convert a

PNG [14] to a Control Flow Graph (CFG). The

CFG is then traversed to generate test case

sequences. Achkar [16] proposed a FSM to model

the navigation behavior of web applications by

means of its states and the action change related to

its state. He applied a FSM model with TestOptimal

framework to generate test cases. Carcia and

Duenas [17] proposed an automated page

navigation modeling technique by means of UML

diagrams, Record and PlayBack (R&P) XML.

These were treated as inputs to a tool, called

Automated Testing Platform (ATP), to create multi-

digraph. The Chinese Postman Problem (CPP) was

used to generate test sequence from the multi-

digraph. This method provides support to generate

test data and test oracle.

Most of the related works propose to

model web applications on the page level. This

paper considers to automatically modeling web

applications on the source code level. The approach

analyzes both the client and the server pages. In

addition, the resulting model integrates the client

and the server part in one single model. This model

can be applied to generate test cases or to transform

the source code. As the proposed model is a white-

box model its internal structure can be analyzed e.g.

to measure the code coverage.

3. PROPOSED APPROACH

The following section introduces the proposed

approach to automatically transform source code to

an abstraction model. The Web Application

Program Dependency (WAPD) meta-model

represents the source code, its structure and

dependencies. A Code-to-Model Transformation

(C2M) is introduced to transform the web

application’s source code to a WAPD model

conforming to the WAPD meta-model as shown in

Figure 2.

WAPD
Model

Web Application
Source Code

WAPD
Meta-Model

Conforms to

Meta-ModelModel

 C2M

Figure 2: Proposed Web Application Modeling

Approach.

3.1 Code to Model Transformation (C2M)

 The C2M-transformation, as shown in

Figure 3 can be divided in two steps. First, a Web

Application (WA) Parser parses the source code

and creates its corresponding WebParseTree (the

DOM tree). Second, the WA generator, based on

the resulting DOM tree, generates accordingly a

WAPD model. This model conforms to the WAPD

meta-model which defines all necessary

information for generating test cases. In addition, a

constraint validator, which is a part of WAPD

meta-model, is used while generating the model.

The constraints define connection’s rules between

nodes and dependencies within the proposed graph

to produce a proper WAPD model.

Code-to-Model (C2M) Transformation

WA
Parser

WA

Generater

WAPD
Model

Web Application
Source Code

A A A
Constraint
Validator

A

Figure 3: Transformation Of Source Code To WAPD

Model.

Journal of Theoretical and Applied Information Technology
 20th February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

206

3.2 Web Application Program Dependency Meta-

Model (WAPD)
The WAPD meta-model defines a

language to represent the source code and its

dependencies of a web application. It is adapted

from PDG [18] to accommodate the diversity of

web programming languages such as HTML,

client-side scripting, server-side scripting.

Normally, a PDG contains only two kinds of

dependency: control and data dependency. The

meta-model will be enhanced by event

dependencies to represent the web application’s

behavior.

WAPD

WebPageProgramDependency

Node

Expression

Dependency

In
te

rv
e
n
e
N

o
d

e

C
o
n

tr
o

lD
e
p

e
n
d

e
n
c
y

D
a
ta

D
e
p

en
d

en
c
y

E
v
e
n

tD
e
p

en
d
e
n

c
y

Label

H
T
M

L
E

x
p
re

s
s
io

n

C
li

e
n

tS
c

ri
p

tE
x
p

re
s
io

n

S
e
rv

e
rS

c
ri

p
tE

x
p

re
s

io
n

2..*

0
..

1

1
1..*

1..*
1

n
e
g

a
te

P
a
ir

startNode

endNode

e
n

te
ri

n
g

N
o

d
e

1

*

*

*0..1

Figure 4: The WAPD Meta-Model.

Based on the WAPD meta-model, shown

in Figure 4, a WAPD model can consist of many

web pages. A web page is represented as a graph

structure called

�������������	
����
����	(WPPD). It

consists of Nodes and Dependencies. A ��
�	can

be either an ����������	or an

�����������
����� depending on the information

contained in the node.

An ����������	can be differentiated into

three types:

• ���������������� �,

• !"����#�����������������$�, and

• #�����#�����������������%�.
These three node types are used to represent

HTML, client-side scripting and server-side

scripting respectively. Likewise, a �� node usually

stores irrelevant information. This node is used to

represent source code in the case of CSS, applets or

embedded objects of web pages.

Furthermore �� 	nodes are used for

grouping sets of expressions, i.e., � , �$, �%. This is

useful if one wants to model a large web page by

separating it into several parts. Moreover, a �� node

is defined as a root node of every web page.

 A relationship between Nodes is called

Dependency. There are three different dependency

types:	

• !�����"
����
����	�
$�,	
•
���
����
����	�
'�	,	and		
• �����
����
����	�
(�.		

A
$ 	is used to model the program’s execution

flow, also called control flow [19]. While a
'

serves to identify a data flow [20] a
(is

introduced to represent event behavior resulting

from user interactions.

A ����"��� stores a Boolean expression

and is used as a guard associated to
$ and	
(

dependencies. The value ��*� means that the

program’s execution can flow from a source node

to a destination node. If the label is evaluated to

+�"��, no control flow is allowed from the source

to the destination node. Normally, every
$ must

have a �. If � is not initialize on a
$, this implies

that the value of �, is ��*�	 by default.

Additionally, every
(has to be labeled by an

intended event for specifying the flow control if the

event is handled. A label is not associate with a
'

because data can always be referred at any point of

the program.

3.3 Constraint validator

In order to store information in the model,

it is necessary to follow the model’s constraints,

called invariants. The invariants are derived from

the actual behavior of web application to prevent an

invalid link (or dependency) between each node.

The WAPD consists of three invariants depending

on each dependency type:	
(,
' 	and	
$.

Moreover, each invariant has two types:

(1) intra-invariant: the invariant ensures the

correctness of constructing a WPPD model within a

web page and (2) inter-invariant: the invariant

ensures the correctness of a relationship between

WPPD stored in a WAPD. This consists of many

web pages communicating to each other via

request methods.

Figure 5 summarizes the constraint

validation rules defined on each dependency type

regarding each expression type. There are three

dependency constraints:

(1) Constraints on event dependency: A

(dependency is only allowed to link from � to

Journal of Theoretical and Applied Information Technology
 20th February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

207

either �$ inside a single page or to ��	between

pages.

(2) Constraints on data dependency: A

	
' , is only allowed from � 	to �$ 	and vice versa

on a single web page while a
' 	is allowed to link

from either � 	or �$ 	to �%	 between different web

pages.

 (3) Constraints on control dependency:

Inside a single web page a
$ 	is allowed between

all types of expressions. For the dependency

between web pages, all types of expressions (i.e.,

� 	, �$ 	or �%) are allowed to connect to ��. This

process is called a request-response process.

We uses the Object Constraint Language

(OCL) [21] to express these invariants and

integrated the implemented constraints to the

WAPD meta-model. Hence, the constraints are

automatically validated on WAPD model. In case

constraints are violated, errors will be raised.

 Target

Source

-./01 2 3.4. -./50 2 3.4.

67 68 69 :- 67 68 69 :-

(
67  �      �
68        
69        

'

67  �     � 
68 �      � 
69   �     

$

67 � � � �    �
68 � � � �    �
69 � � � �    �

� = Allow  = Not allow

Figure 5. Dependencies’ Constraints On Expressions.

startNode

endNode

WAPD

HE:1

HE:2

CD

CD CD CD

HE:3 HE:4
IN:6,5

startNo
de

endNode endNode

1

2

Source Code

WebParseTree

3 4 5,6

Step 1:

WA Parser

Step 2:

WA Generator

Figure 6. Schematic Transformation Process And Its

Artifacts.

4. IMPLEMENTATION DETAIL

 In the next section, details of the

transformation approach introduced in the previous

section are presented which provide some insight

into its implementation. A simplified login

application shown in Figure 7 has been chosen as

an example to demonstrate the transformation

process and the intermediate and final results.

As shown in Figure 6, the modeling

process involves two steps:

(1) The WA Parser parses the source code

and creates the corresponding web application

parse tree (WebParseTree), and

(2) the WA Generator transforms the

WebParseTree to a respective WAPD model.

4.1 Web Application Parser

At first, the Web Application Parser parses

the web application’s source code and creates a

corresponding web application parse tree based on

the following RegExp rules [22]:

WA : [WP]+

WP : [PP]+

PP : [HTML]* [CS]* [SS]* [PT]*

Here, WA represents a web application that

consists of one or more web pages (WP). A WP

may contain one or more Web Portion (PP). A PP

may include Plain Text (PT) and three major

programming parts, i.e., HTML, client-side

scripting (CS) and server-side scripting (SS). If a

web page consists only of web portions

implemented in HTML, it is called a static web

page. Otherwise it is a dynamic web page.

In our example page "����. ;�	" shown in

Figure 7 (a), the section starting from line number 1

to 4 is plain HTML and CS (i.e. JavaScript opening

tag). It is identified as a PP and labelled P1. The CS

section from line number 5 to 13 is the second PP

labelled P2. P4 consists of the HTML form starting

at line number 17 to 21. The remaining lines are

grouped into two more PPs, P3 and P5, covering

HTML code from line 14 to 16 and from line 22 to

23 respectively.

P1

P4

P5

P2

P3

(a) Login.html

Journal of Theoretical and Applied Information Technology
 20th February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

208

P1

P4

P2

P3

(b) LoginAction.php

Figure 7 Code of a simplified login application.

The script contained in P2 has a simple

control flow, a sequence of statements (lines 6, 7)

and a conditional branch in line 8. A parse tree may

be linked with another WebParseTree, e.g. in line

17the control flow requests to proceed at page

�����<�����. �;�. The resulting parse tree of our

simplified login application is shown in Figure 8.

Nodes represent either PPs or line numbers of the

source code. Edges model the control flow of the

program. If we traverse the tree starting at its root

node and applying a depth first search, we get the

original source code.

LoginAction.php

Login.html

P1 P3 P5P4

5

6 7 9,10 11

8

P2

18 19 2017

Figure 8: A Webparsetree Of A Login Application Shown

In Figure 7.

Generally, a PP may consist of cascaded style

sheets (CSS) or embedded web objects. These

sections will be modelled as a plain text (PT). The

CSS is not considered because it serves the purpose

of decorating the web application only. In addition,

embedded web objects (e.g., java applet, adobe

flash) are also not considered as they sometimes

come under third-party libraries.

4.2 Web Application Generator

In this step a WAPD model, as introduced

in section 3.2, is created based on the resulting

parse tree. A WAPD is a model that keeps all

necessary information of a web application to

generate white-box test cases. The expression nodes

(HTML-, ClientScript-, and ServerScript-

Expression – abbreviated to � , �$, �% respectively)

and their dependencies can be constructed based on

information contained in the parse tree. According

to the presented WAPD meta-model three types of

dependency (Control-, Event-, and Data-

Dependency – abbreviated to
$,
(,
'

respectively) are offered to connect expression

nodes together based on their behaviors. The

following steps describe the process to build the

WAPD model.

4.2.1 Create control dependencies

As mentioned before, the created parse

tree itself represents the control flow of a program.

If we traverse the tree applying pre-order depth-first

search (DFS), we obtain a traditional Control Flow

Graph (CFG) [23]. Hence, we can create the control

dependencies by a direct mapping from the parse

tree to the WAPD model. There are two cases of

modeling a control dependency:

(1) Control Dependency without Label

Basically, every control dependency �
$� is

labelled with	′��*�>���, which means that the

control flows immediately from the source to the

destination node of the dependency. This � label

can be omitted by default as it is a traditional

control flow.

6

T

5

Represented in

Build

Control Dependency

CE:5

CD

CE:6

startNode

endNode

6

5
(a) WebParseTree

(b) WAPD with

Control Dependency

(c) Object Diagram

of WAPD

Figure 9. Example Of Building Control Dependency

Without Label.

Figure 9(a) shows the simple control flow from

node (5) to node (6). This control flow is converted

to s
$ dependency and is labelled with		�. The

transformed WAPD is shown in Figure 9(b). A

corresponding object diagram of the WADP model

as shown in Figure 9(c) does not include a label

Journal of Theoretical and Applied Information Technology
 20th February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

209

object associated with	�;�		
$ object as the label

value 	� is defined by default. This case is called

“Control Dependency without Label”. Please note

that �: �$ means !"����#��������������� of node

� and 5: �$ means !"����#��������������� of

node 5.

(2) Control Dependency with Label

 If we model a conditional flow the associated

label holds the respective Boolean condition, which

must be evaluated. In case its value is	��*�, the

control flows from the source node to the

destination node of the dependency. In contrast, if

its value is false, there is no control flow from

source node to destination node.

A simple example taking from node (8) to (11)

in Figure 8 (if-then-else control flow) is given in

Figure 10(a). Figure 10(b) shows the control

dependencies of the WAPD model. The condition

A	 E 	 �user. length EE 0	||	pass. length EE 0�	is

associated with the control dependency from node

(8) to node (9,10), while its negation ! A	is

associated with the control dependency from node

(8) to node (11).

A control dependency �
$� links a client-side

script on node 8 (8: �$) to a client-side script on

node 9,10 (9,10: �$). This is labelled with < (�T).

On the other hand, node 8 (8: �$) is linked to node

11 (11: �$) by a control dependency that is labelled

with <! ��T!�. Figure 10(c) shows a corresponding

object diagram of the WADP model.

9,10 11

[A] [!A]

8

A = [user.length== 0||pass.length==0]

(a) WebParseTree

(b) WAPD with

Control Dependency

(c) Object Diagram

of WAPD

Represented in

Build

Control Dependency

CE:8

CD CD

CE:10,9

startNod
e

endNode endNode

CE:11

startNod
e

AL !AL

9,10 11

8

Figure 10: Example of building Control Dependency with

Label.

Figure 11 presents the recursive algorithm

to create the control dependencies. As initial input

the root node (�) of the parse tree is passed to the

algorithm, the parameter wapd is null. At first, � is

marked as a visited node. Then, a WAPD is created

and � is defined to be the entering node of the

WAPD (lines 8 and 9). After that, the algorithm is

called recursively on every child node (U) of �

(line 13). If U is not marked as visited, the WAPD

is modified by adding a control dependency from �

to U (line 15), followed by a recursive call on U

(line 16). Finally the created WAPD containing all

control dependencies is returned (line 19).

Figure 11. Create Control Dependencies on WAPD from

WebParseTree.

The resulting WAPD is further processed

and enhanced by data and event dependencies. This

will be explained in the next sections.

4.2.2 Create event dependencies

An event dependency can be created by

linking a dependency on an event source to an

event sink. An event source fires an event

according to its event handlers. On the other hand,

an event sink is the target point called by an event

source.

Node (20) of ������������	 in Figure 8

is an event source with a HTML input submission

type	V ���*�	���� E "�*�	��"	��"*� E
""����"		��	� E "+�*�	��" X. If the event

O��"��Y is trigged on this event source, the event

sink on node 5 is executed. This behavior is

modelled in the WAPD shown in Figure 12 (a).

The event dependency modeled by means

of an object diagram is illustrated in Figure 12 (b).

An event source � on node (20) is associated with

event sink �$ 	on node (5) via	
(. Every event

dependency has to have a Label with a trigger event

1. Algorithm createControlDependency

2. Input: wapd : A WAPD

 v : the start node of a WebParseTree

3. Output: wapd : A WAPD with Control

Dependencies

4. Begin

5. v.isVisited() := true;

6. // First time creating wapd

7. if (wapd == null) {

8. wapd := createWAPD ();

9. wapd.setEnteringNode (v);

10. }

11.

12. //Recursively create Control Dependencies

13. foreach(w ∈ v.getAllChilds()) {

14. If (w.isNotVisited()){

15. wapd.buildControlDependency (v,w);

16. wapd := createControlDependency(wapd,w);

17. }

18. }

19. return wapd;

Journal of Theoretical and Applied Information Technology
 20th February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

210

associated with it. As a result, the
(dependency is

labelled by an event ��!"��Y (�Z[$\]^_).

20

5

onClick

Event Source

Event Sink

(a) WAPD with Event Dependency

(b) Object Diagram of WAPD

Represented in

HE:20

ED

CE:5

startNode

endNode

onClickL

event dependency

Figure 12: Example of building Event Dependency with

Label

Figure 13 shows the algorithm to create

event dependencies. It takes a WAPD with control

dependencies as input (the result of the previous

step). At first, every node in wapd is scanned and

looked for an event source (line 5). If an event

source is found (line 6), the EventDependency is

added to the wapd by mapping the source node as

event source (line 8) and the destination node as

event sink (line 9). An event handler is assigned to

a Label (line 10) associated to an event dependency

(line 11). Finally, an event dependency is created

and added to the wapd (line 12). The algorithm

returns a wapd with control- and event

dependencies.

Figure 13. Create Event Dependencies on WAPD.

(a) WAPD with Control Dependency

CE:8

CD CD

CE:10,9

startNode

endNode endNode

CE:11

startNode

AL !AL

CE:5

CD
startNode

endNode

(b) WAPD with Control- and event

Dependency

CE:8

CD CD

CE:10,9

startNode

endNode endNode

CE:11

AL !AL

CE:5

CD
startNode

endNode

HE:20

ED

startNode

endNode

onClickL

Event
Dependency

CE:6 CD

CE:6 CD

Build

Event

Dependencies

Figure 14. Create Event Dependencies by using an

algorithm.

The example of creating event

dependencies is shown in Figure 14. The WAPD

model (see Figure 9 and Figure 10) containing

control dependencies from node (5) to (6) and (8) is

used as input for the createEventDepedency

algorithm. As node 20 is an event source and node

5 is an event sink, an event dependency (
() from

node 20 �20: � � to node 5 �	5: �$� is added to the

wapd associated with an onClick label (i.e.,

�Z[$\]^_�. The algorithm returns the enhanced wapd

now containing control- and event dependencies as

shown in Figure 14(b).

4.2.3 Create data dependencies

Data dependencies are used to express

how data flows inside a program [24]. A data

dependency as introduced in [25] is created by

associating a start node defining a variable (def)

and end node defining its usage (use).

An example of creating a data dependency

on the WebParseTree in Figure 8 is shown in

Figure 15 (a). A
�+ is identified in node (18)

specifying an HTML input form (V ���*�	���� E
”����”	��	� E ”*���” X�. The respective *�� is

1 Algorithm createEventDependency

2 Input: wapd : A WAPD with Control Dependencies

3 Output: wapd : A WAPD with Control & Event

Dependencies

4 begin

5 foreach (node ∈ wapd) {

6 if (node.containsEventSource())

7 EventDependency evtDep := createEventDep();

8 Node evtSrc:= node.getEventSource(wppd);

9 Node evtSink:= node.getEventSink(wppd);

10 Label lb := evtSrc.getEventTrigger();

11 evtDep.addLabel(lb);

12 wapd.addDependency(evtDep , evtSrc, evtSink);

13 }

14 }

15 return wapd;

16 end;

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

211

identified in node 6 as a user variable to store the

entered value. The corresponding object diagram

containing the data dependency is shown in Figure

15 (b). There is no Label associated with
' 	as data

can be used directly from
�+ to *�� without any

guard condition.

18

6

Def

Use

(a) WAPD with Data Dependency

(b) Object Diagram of WAPD

Represented in

HE:18

DD

CE:6

startNode

endNode

data dependency

Figure 15: Example Of Building Data Dependency.

Our algorithm to create data dependencies

is presented in Figure 16. It takes a WADP with

control- and event dependencies from the prior step

as input. The algorithm scans every node of the

wapd (line 5) and searches for variable definitions,

called def node (line 6). This might be variable

initializations in a server/client side script or a

HTML form. If a def node is found, the algorithm

scans for every use node (line 9) and assign each

use node as a destination node. Normally, a use

node may have more than one associated def node.

Each data dependency is added to the wapd (line

11).

To illustrate the creation of data

dependencies our example WAPD model in Figure

14(b) is taken as input. A variable (i.e., HTML

input object) is defined in node (18), and it is

referred by a client-side script in node (6). Hence, a

data dependency (
') is created which links from

node 18 (18: � � to node 6 (6: �$) as shown in

Figure 17.

Figure 16: Create Data Dependencies on WAPD.

CE:8

CD CD

CE:10,9

startNode

endNode endNode

CE:11

AL !AL

CE:5

CD
startNode

endNode

HE:20

ED

startNode

endNode

onClickL

CE:6 CD

HE:18

DD

startNode

endNode

Data

Dependency

Figure 17. An Example Of Creating Data Dependencies

Using A Createdatadependency Algorithm.

4.2.4 Putting the steps together

 In the last sections we have step by step

presented how to transform the source code of a

web application to our WAPD model. This models

abstracts from the implementation details and stores

all information regarding the control flow, the data

flow and the events by means of dedicated

dependency types. Figure 18 and Figure 20 depicts

the resulting WAPDs of the pages Login.html and

LoginAction.php as UML object diagrams. It can

be seen that data and event dependencies can link

respective nodes across webpages. For example, the

data from node (18: �) and node (19: �) of page

Login.html flows to node (2: �%) and node (3: �%) of

page LoginAction.php respectively.

1 Algorithm createDataDependency

2 Input: wapd : A WAPD with Control & Event

3 Output: wapd : A complete WAPD with Control,

Event & Data Dependency

4 begin

5 foreach (node ∈ wapd) {

6 if (node.containsDefVariable()){

7 Node defNode= node.getDefVariable(wapd);

8 Node [] useNode= node.getUseVariable(wapd);

9 foreach(node ∈ useNode){

10 DataDependency dataDep:= createDataDep();

11 wapd.addDependency(dataDep , def, node);

12 }

13 }

14 }

15 return wapd;

16 end;

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

212

CE:8

CD CD

CE:10,9
C

E:11

!AL

CE:5

CD

CE:6

INP :2

CD

CD

INP :1 INP :3
INP :4 INP :5

HE:18 HE:19
HE:20

CD CD CD

DD

CE:7

CDCD

C
D

C
D

C
D

C
D

DD
ED onClick

L

DD
DDC

D

INhtmlLogin :.

LoginAction .php
data dependency

event dependency

control dependency

HE:17

CD

!AL
CD !A

L
CDAL

AL

Figure 18: WAPD of Login.Html Represented By An

Object Diagram.

5. COMPARISON WITH EXISTING

APPROACHES

A lot of criteria have to be concerned when we

model web applications. Unfortunately, there are no

standard that we can use as referential criteria. Base

on literatures that we have reviewed, and to the best

of our knowledge, these following criteria should

be considered when modeling web applications:

• Structural Analysis: this is a basic requirement

on modeling web applications. There are two

levels on structural analysis of web

applications: (1) page level analysis and (2)

code level analysis. Page level analysis focuses

only on link relationship between webpages

while code level analysis analyzes source

codes. An ideal web application model

definitely consists of both page and code level

analysis.

• Page Level Analysis: HTML tags that can

product a request to another webpage such as

hyperlink (V a X) and submission form

(V Form X) are analyzed. These relationships

are used to model links between webpages.

• Code Level Analysis: this analyses source

codes which contains three programming parts,

i.e., HTML, Server-Side Scripts and Client-

Side Scripts. A completed model must store all

of these three programming information as

proposed in [11] including our proposed

WAPD model. However, some web application

models focus on analyzing only HTML and

server-side scripts. These models are proposed

in [6], [7], [10]–[15]. Likewise, some models

focus on analyzing HTML and client-side

scripts proposed in [8], [9].

• Automatic Approach: models can be built

automatically by providing methodologies such

as models proposed in [2], [7]–[9], [17].

However, some models are built manually

which require well-educated people to create

models. In spite of using manual approach, an

automatic approach is more practical when

modeling web applications.

• Extended to generate test cases: a model can

be extended to produce test cases, and can be

used in other purposes such as code

transformation.
Functional

Model

S
tr

u
ct

u
ra

l

A
n

al
y

si
s

P
ag

e
L

ev
el

A
n

al
y

si
s

S
er

v
er

-S
id

e

S
cr

ip
ts

C
li

en
t-

si
d

e

S
cr

ip
ts

A
u

to
m

at
io

n

A
p

p
ro

ac
h

G
en

er
at

e

T
es

t
C

as
e

WAPD � � � � � �
Ricca [2] � � � � � �
Reza [3] � � � � � �

Rafique [4] � � � � � �
Machra [5] � � � � � �
Youxin [6] � � � � � �

Wassermann [7] � � � � � �
Artzi [8] � � � � � �

Mesbah [9] � � � � � �
Dia [10] � � � � � �

Ricca [11] � � � � � �
GU [12] � � � � � �

Tung [13] � � � � � �
Sabharwal [14] � � � � � �

Bansal [15] � � � � � �
Achkar [16] � � � � � �
Garcia [17] � � � � � �

�= Supported �= Not Supported

Figure 19. A Comparison of web applications modeling.

Figure 19 lists the web application models proposed

by authors mentioned in section 2. The Figure

compares models with the criteria described above.

To the best of the author's knowledge, this WAPD

model supports all the criteria that is necessary for

modeling web applications.

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

213

INP :2

CD

INP :1

INP :3CD

CD

INphpnLoginActio :.

SE:1 SE:2
SE:3

SE:4

CD CD CD
CD

CD

CD
CD

CD

CD

CD

SE:17

CD CD

CL
!CL

CL !CL

INP :1.2

CD CD CD
CD

INP :2.2

CD CD CD
CD

DD DD

DD
DD

DD

 Label

C = ($user == “user”)

SE:5

SE:9
SE:8SE:7SE:6

SE:11 SE:12
SE:13

SE:14

SE:10

SE:15

SE:20SE:19

SE:18

INP :4

CD

CD

CD CD
INP :5

Function call

INquest :Re

Figure 20: WAPD of LoginAction.php represented by an object diagram.

6. CONCLUSION AND FUTURE WORK

We have introduced an approach to

automatically transform the source code to WAPD

model. A WebParseTree is transformed from

source codes by WA parser. Dependencies and

expressions on WebParseTree are analyzed by WA

generator, and transformed to WAPD. The WAPD

stores structure and behaviors of web applications.

This generic abstraction model can be extended to

be used for many purposes such as (1) code

generation for generating source code into a certain

language. This code generation concept will

analyze information from the model and generate

new source code which is known as code

transformation and (2) test generation for

generating test cases analyzed from the model. For

our future work, we are going to analyze the model

in order to generate test cases in terms of white-box

testing.

REFERENCES

[1] P. Jorgensen, Software testing: a craftsman’s

approach. CRC Pr I Llc, 2002.

[2] F. Ricca and P. Tonella, “Analysis and testing

of Web applications,” pp. 25–34, Jul. 2001.

[3] H. Reza, K. Ogaard, and A. Malge, “A Model

Based Testing Technique to Test Web

Applications Using Statecharts,” Fifth Int.

Conf. Inf. Technol. New Gener. (ITNG 2008),

pp. 183–188, Apr. 2008.

[4] N. Rafique, N. Rashid, S. Awan, and Z.

Nayyar, “Model Based Testing in Web

Applications,” Int. J. Sci. Eng. Res., vol. 2,

no. 1, pp. 56–60, 2014.

[5] S. Machra and N. Khatri, “Model Based

Testing of Website,” Int. J. Comput. Sci.

Appl., vol. 4, no. 1, pp. 143–152, 2014.

[6] M. Youxin, W. Dafa, and D. Junwei,

“Research on Framework of Test Case

Generation of Web Applications Based on Z

Specification,” 2009 Int. Forum Inf. Technol.

Appl., pp. 555–558, May 2009.

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

214

[7] G. Wassermann, D. Yu, A. Chander, D.

Dhurjati, H. Inamura, and Z. Su, “Dynamic

test input generation for web applications,” in

Proceedings of the 2008 international

symposium on Software testing and analysis -

ISSTA ’08, 2008, p. 249.

[8] S. Artzi, J. Dolby, S. H. Jensen, A. Møller,

and F. Tip, “A framework for automated

testing of javascript web applications,” in

Proceeding of the 33rd international

conference on Software engineering - ICSE

’11, 2011, p. 571.

[9] A. Mesbah and I. C. Society, “Invariant-

Based Automatic Testing of Modern Web

Applications,” Computer (Long. Beach.

Calif)., vol. 38, no. 1, pp. 35–53, 2012.

[10] Z. Dai and M.-H. Chen, “Automatic Test

Case Generation for Multi-tier Web

Applications,” 2007 9th IEEE Int. Work. Web

Site Evol., pp. 39–43, Oct. 2007.

[11] P. Tonella, F. Ricca, and P. Trento, “A 2-layer

model for the white-box testing of Web

applications,” in Web Site Evolution, Sixth

IEEE International Workshop on (WSE’04),

pp. 11–19.

[12] J. Gu, L. Xu, B. Xu, and H. Yang, “An

Extended MM-Path Approach to Component-

Based Web Application Testing,” in 2008

12th IEEE International Workshop on Future

Trends of Distributed Computing Systems,

2008, vol. 2, pp. 144–150.

[13] Y.-H. Tung, S.-S. Tseng, T.-J. Lee, and J.-F.

Weng, “A Novel Approach to Automatic Test

Case Generation for Web Applications,” 2010

10th Int. Conf. Qual. Softw., pp. 399–404, Jul.

2010.

[14] S. Sabharwal, “Modeling the Navigation

Behavior of Dynamic Web Applications,” Int.

J. Comput. Appl., vol. 65, no. 13, pp. 20–27,

2013.

[15] P. Bansal and S. Sabharwal, “A model based

approach to test case generation for testing the

navigation behavior of dynamic web

applications,” in 2013 Sixth International

Conference on Contemporary Computing

(IC3), 2013, pp. 213–218.

[16] H. Achkar, “Model Based Testing of Web

Applications,” Proc. 9th Annu. STANZ, Aust.,

pp. 1–28, 2010.

[17] B. García and J. C. Dueñas, “Automated

Functional Testing based on the Navigation of

Web Applications,” Electron. Proc. Theor.

Comput. Sci., vol. 61, pp. 49–65, 2011.

[18] M. Weiser, “Program slicing,” pp. 439–449,

Mar. 1981.

[19] B. Korel and C. Science, “The program

dependence graph in static program testing,”

Inf. Process. Lett., vol. 24, no. 2, pp. 103–108,

Jan. 1987.

[20] L. D. Fosdick and L. J. Osterweil, “Data Flow

Analysis in Software Reliability,” ACM

Comput. Surv., vol. 8, no. 3, pp. 305–330,

Sep. 1976.

[21] J. Warmer and A. Kleppe, The Object

Constraint Language: Precise Modeling with

UML, 2nd ed. Addison-Wesley, 2003.

[22] A. V. Aho, “Algorithms for finding patterns

in strings,” Handbook of Theoretical

Computer Science, volume A: Algorithms and

Complexity. The MIT Press, pp. 255–300,

1990.

[23] F. E. Allen, “Control Flow Analysis,” Proc.

ACM Symp. Compil. Optim., pp. 1–19, 1970.

[24] M. S. Hecht, Flow Analysis of Computer

Programs. North-Holland, 1977.

[25] S. Rapps and E. J. Weyuker, “Selecting

Software Test Data Using Data Flow

Information,” IEEE Trans. Softw. Eng., vol.

SE-11, no. 4, pp. 367–375, 1985.

