VIABILITY STUDY ON THE APPLICATION OF ADVANCE BLASTING METHOD IN MALAYSIAN SHIPBUILDING INDUSTRY

MOHD AZZERI BIN MD NAIEM

This dissertation is submitted as a partial fulfillment of the requirements for the award of the degree of Master of Engineering (Marine Technology)

Faculty of Mechanical
Universiti Teknologi Malaysia

NOVEMBER, 2004

For my family, that special 'one'.....

ACKNOWLEDGEMENT

First of all, thanks to Almighty Allah for graciously be stowing me the perseverance to undertake this study. A special thanks and a deepest appreciation to my supervisor, Mr. Hj Yahya bin Samian for his kindness, guidance and valuable comments in completion of this work. No price would ever pay for all your guidance. A warmest gratitude dedicated to my family for their understanding, patience and support.

ABSTRACT

The main objective of this study is to propose application of advance blasting method in Malaysian shipbuilding industry; therefore it is hypothesis by replacing the current method with advance method would be more technically and economically beneficial. From the preliminary survey to the Malaysian shipbuilding or ship repair industry, the abrasive blasting methods are still being implemented for surface preparation. This technology, although effective in coating removal and establishment of surface profile, is laden with inherent problems, American and European yards began realizing the human and environmental consequences of open air abrasive blasting. To overcome such problem, the advanced method of ultra high pressure water jetting is used. However, this advanced ultra high pressure water jetting method is still not been implemented in Malaysian shipbuilding industry. With this back ground, a viability study was carrying out on the application advance blasting method to the local shipbuilding. The study focused on technical and economical aspects and comparison here made among several advance methods and against the present abrasive blasting method.

The result of the study indicated that,

- a. Technically, automated ultra high pressure water jetting is the best blasting method with the cleaning capability of 90 m² per hour (12 times faster than abrasive blasting method) and equipped with external recovery system.
- b. On the economic aspect, the automated ultra high pressure water jetting method is only economically viable if the amount of cleaning job per year is larger (more than 34,750 m²), while for small cleaning job, the present method review the most cost effective.

ABSTRAK

Objektif utama kajian ini adalah memperkenalkan penggunaan kaedah termaju alat semburan untuk menangalkan lapisan cat bertekanan tinggi kepada industri pembinaan kapal di Malaysia. Oleh itu andaian dibuat dengan menggunakan kaedah termaju dapat memberi lebih kebaikan dari segi faktor teknikal dan ekonomi. Dari kajian tinjauan awal kepada industri pembinaan kapal di Malaysia, alat semburan tekanan tinggi menggunakan serpihan logam halus masih digunakan untuk melakukan kerja menangalkan lapisan cat pada permukaan badan kapal. Teknologi ini didapati efektif untuk melakukan kerja menanggalkan lapisan cat tetapi ia telah menimbulkan beberapa masalah percemaran. Syarikat pembaikan kapal di negara Amerika dan Eropah telah sedar pencemaran yang dihasilkan kepada pekerja dan kawasan sekitar tempat kerja dari penggunaan kaedah ini. Untuk mengatasi masalah ini alat termaju menggunakan semburan air bertekanan tinggi telah digunakan oleh mereka. Tetapi kaedah termaju ini masih belum diguna pakai oleh industri pembaikan kapal di Malaysia. Daripada masalah ini, kajian ini dibuat untuk membandingkan keupayaan penggunaan kaedah termaju ini kepada industri pembaikan kapal di Malaysia. Kajian ini ditumpukan kepada aspek teknikal dan ekonomi. Dan hasil kajian mendapati;

- a. Dari segi teknikal, alat semburan air bertekanan tinggi automatik adalah kaedah terbaik dengan keupayaan menanggalkan cat pada 90 meter persegi sejam (iaitu 12 kali lebih pantas daripada kaedah digunakan sekarang) dan mempunyai sistem kitar semula.
- b. Dari aspek ekonomi, alat semburan air bertekanan tinggi automatik mempunyai nilai ekonomi yang menguntungkan jika kerja-kerja menanggalkan cat setahun melebihi 34,750 meter persegi sementara jumlah kerja yang kurang dari yang dinyatakan penggunaan kaedah sekarang lebih kos efektif.

CONTENTS

CHAPTER	TITL	TITLE		
	ACKNOWLEDGEMENT			iv
	ABST	ABSTRACT		
	ABST	ABSTRAK		
	CON	CONTENTS		
	LIST	LIST OF TABLES		
	LIST	LIST OF FIGURES		
	LIST	LIST OF SYMBOLS		
	LIST	LIST OF APPENDIXES		
CHAPTER I	RESEARCH FRAMEWORK			
	1.1	Introd	luction	1
	1.2	Proble	em Statement	3
	1.3	Objec	tive	3
	1.4	Scope	;	4
	1.5	Thesi	s Organization	4
CHAPTER II	LITERATURE REVIEW			
	2.1	Introduction		6
	2.2	Literature Findings		6
	2.2.1	Water Jetting Stripping		7
	2.2.2	Prepre	oduction Initiative-NELP High	
		Pressu	ire Water Jet System Test Plan	8
	2.3	Blast Cleaning Process		9
		2.3.1	Surface Preparation Standard	10
		2.3.2	Blasting Cleaning Method	12
		2.3.3	Abrasive Blasting	13

		2.3.4	Vacuum Blasting	10
		2.3.5	Water Jet Blasting	17
		2.3.6	Evolution of Ultra High	
			Pressure Water Jetting	
			Equipment	17
		2.3.7	Handheld Tools	18
		2.3.8	Semi-Automated Systems	20
		2.3.9	Fully Automated Systems	21
	2.4	Close	d Loop Systems	22
	2.5	Summ	nary	24
CHAPTER III	RES	EARCH	METHODOLOGY	
	3.1	Surve	y Method	26
	3.2	Techn	nical Analysis Method	27
		3.2.1	Technical Capability	27
		3.2.2	Cleaning Coverage	27
		3.3.3	Surface Area	28
	3.3	Econom	ic Analysis Method	29
		3.3.1	Principles of Economic	
			Evaluation	30
		3.3.2	Cash Flow Diagram	30
		3.3.3	Net Present Value (NPV)	31
		3.3.4	Internal Rate of Return	
			(IRR)	31
		3.3.5	The Payback Period	32
		3.3.6	Break Even Analysis	33
	3.4	Econo	omic Analysis Input	
		Param	eter	33
	3.5	Summ	nary	34
CHAPTER IV	SUR	VEY FI	NDING	
	4.1	Prelin	ninary Survey Data	35
	4.2	Pilot S	Survey Data	36

	4.3	Summary	41
CHAPTER V	TECHNICAL ANALYSIS		
	5.1	Technical Capability	42
	5.2	Cleaning Coverage	46
	5.3	Surface Area	47
		5.3.1 Working Hours and	
		Production Rate Per Year	47
		5.3.2 Number of Ship Per Year	49
	5.4	Conclusion	51
CHAPTER VI	ECONOMIC ANALYSIS		
	6.1	Introduction	52
	6.2	Assumption for Economic Variable	53
	6.3	Annual Operating Cost and Initial	
		Cost	54
	6.4	Economic Evaluation Analysis	55
		6.4.1 Abrasive Blasting Method	55
		6.4.2 Hand-held Tools UHP Water	
		Jetting Method	58
		6.4.3 Automated UHP Water	
		Jetting Method	60
	6.5	Summary of Result	62
CHAPTER VII	DISCUSSION AND FUTURE WORK		
	7.1	Discussion	64
	7.2	Future Work	64
CHAPTER VIII	CONCLUSION		65
	REFERENCES		66
	APPENDIX		
	A PP	ENDIX AI	69-10

LIST OF TABLES

TABLES NO.	TITLE	PAGE
2.1	Preparation grades for steel surfaces using blast	
	cleaning	10
3.1	The input parameter for economic analysis	33
4.1	The survey data on technical and economic aspect	
	on the abrasive of blasting method	37
4.2	The survey data on technical and economic aspect	
	on the advance blasting method	39
5.1	Comparison on technical capability of the advance	
	and current method	43
5.2	The comparison of the capability of the type	
	blasting machine to cleaning surface area of the	
	ship	46
5.3	The comparison of amount the ship can be clean	
	per year	51
6.1	The initial cost and annual operating cost for the	
	current and advanced methods	55
6.2	The result of NPV, IRR, pay back period and the	
	break even point hand held tools UHP water jetting	60
6.3	The result of NPV, IRR, pay back period and the	
	break even point of automated UHP water jetting	61
6.4	Summary of the result using simplifying	
	assumption analysis	62

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Surface appearance variation	12
2.2	Abrasive blasting machine	14
2.3	Vacuum blasting machine	16
2.4	The handheld tools of Ultra high pressure water	19
	jetting	
2.5	Semi-automated systems enable one operator to put	21
	the full horsepower of one pump on the work	
	surface	
2.6	Fully automated robotic systems	22
4.1	Pie chart of result from nation wide survey data	36
6.1	The cash flow diagram for abrasive blasting	
	method	56
6.2	The cash flow diagram of NPV for abrasive	56
	blasting method	
6.3	The cash flow diagram for hand held tools UHP	59
	water jetting method	
6.4	The cash flow diagram of NPV for hand held tools	59
	UHP water jetting method	
6.5	The cash flow diagram for automated UHP water	60
	jetting method	
6.6	The cash flow diagram of NPV for automated UHP	61
	water jetting method	

LIST OF SYMBOLS

NPV	-	Net Present Value
N	•	project life
i	-	discount rate or interest rate per interest periods
C	-	initial capital expenditure
A_i	-	net cash flow during year t
E_t	-	revenue of year t resulting from the investment
		(cash flow that would not have occurred without the initial
		investment)
t	-	time
IRR	-	Internal Rate of Return
n	-	year
P	-	first project or present value
A	-	annual cost or annuity series value
F	-	future cost
G	-	gradient series value
MARR	- ·	minimum attractive rate of return
DI	-	import duty taxes
FR	-	freight charges
In	-	insurance
L	-	price of the machine

LIST OF APPENDIXES

APPENDIXES	TITLE	PAGE
A	Shipyards and ship repairer survey list	69
В	E-mail and address of UHP manufacture or vendor	71
C	Personal interview questionnaires	72
D	E-mail questionnaires	78
E	Shipyard and ship repair that had been selected of	
	preliminary survey research	81
F	The comparison of the result from the survey on	
	the application of abrasive blasting method on the	
	Malaysia Shipbuilding / Ship repair Industry	82
G	The results from e-mail questionnaire of ultra high	
	pressure water jetting blasting for marine	
	application	86
Н	Initial cost	92
Ι .	The calculation of operation cost	94
J	The calculation of cash flow, NPV, IRR, payback	
	period and break even point of abrasive blasting	
	method, hand held tool UHP water jetting method	
	and automated UHP water jetting method by using	
	excel program	103

CHAPTER 1

INTRODUCTION

1.1 Introduction

Most large ocean-going vessels, whether they be crude oil tankers, bulk cargo ships, military, chemical tankers, generally have hull plating that is made up of steel which is protected by layers of anti-corrosive (usually epoxy) and antifouling coatings. Over time, such coatings succumb to failure modes of differing varieties.

These coating systems must be renewed, either partially or totally. This activity is called surface preparation and one of the main service parts of ship maintenance. The term surface preparation denotes the cleaning and removal of all substances that have a deleterious effect on coating effectiveness, (Piero Caridis, 2001).

For two decades, ship repairers and ship builders have implemented with abrasive blasting method to remove the coatings for metal surfaces preparation. From the emission standards code rules 2003, the definition of abrasive blasting means the operation of cleaning or preparing a surface by forcibly propelling a stream of abrasive material against the surface. The material used in abrasive blasting operations include but not limited to sand, slag, copper, garnet or walnut shells.

This technology, although effective in coating removal and establishment of surface profile, is laden with inherent problems, many of which have been documented throughout the mid-1980s to the present. This method is very inefficient for environment and workers concern. This process generates particulate matter, spent slag and heavy metals such as lead, nickel, zinc, silica and copper, from the breakdown of the removed pigmented coatings and substrate. Particulate matter or fine dust causes respiratory and other human health problems if inhaled. The dust can also degrade air and water quality. The need for precaution and protection when dealing with any source of airborne particulates necessitates the implementation of a formal corporate respiratory protection program that comprehensively addresses respiratory hazard determinations, worker training, and medical evaluations. In the 90s', American and European yards began realizing the human and environmental consequences of open air abrasive blasting.

In early to mid 1990s, ultra high pressure water jetting (UHP) blasting the alternatives method for removing coating from steel surfaces was introduced, mostly on a demonstration basis, to many U.S shipyards. Application of this system considered mainly due to environmentally conduciveness and on workers safety. Ultra high pressure water jetting is described as a means of coating removal using solely water at over 25,000 psi (1,666 bar) or greater. Ultra high pressure (UHP) water jetting has generally been known for its ability to leave its surfaces ultra clean, without distorting or imparting additional profile to the substrate, (Joint Technical Standard SSPC-SP 12/NACE 5, 1997)

From the preliminary survey to the Malaysian shipbuilding industry, the abrasive blasting methods are still widely used for surface preparation. The advance method that was introduced in the market such as high pressure water jetting still not implemented to Malaysian shipbuilding industry. With this back ground, the main objective of this study is to propose application of advance blasting method in Malaysian shipbuilding industry, therefore it is hypothesis by replacing the current method with advance method would be more technically and economically beneficial.

The study began with survey work on the type of blasting method that are being used in Malaysian shipyard, this to review the effectiveness and the efficiency of the present status. Then the advance blasting method that has been used on other countries or that are produced in the market will to be studied in order to determine its potential replacement to the current method. The study will focus on technical aspects and economical benefits of the potential blasting method.

From the technical and engineering economic study, the potential of advance blasting method will be analyzed to determine the operating cost, have a profitability investment, have a short period of time to clean the surface and to fulfill concerning both workers and environment safety in completing blasting cleaning task. The out come of this study will be recommended as the potential of blasting method for Malaysian shipbuilding industry.

1.2 Problem Statement

Alternatively several advance methods could be used to solve such problem. However in selecting which methods is the most suitable to the local shipbuilding industry, the following aspects need to be examine;

- a. Which of the method has the most technical capability and suitable for local used.
- b. What will be the economic return for this advance method taking into account various surface cleaning job scenario.

1.3 Objective

The objectives of this study are as follows:

1. To study the potential application of various advance blasting cleaning method for shipbuilding industry in Malaysia.

2. To identify the advance blasting cleaning method that is technically and economically viable for Malaysian shipbuilding industry.

1.4 Scope

The scopes of this study are as follows:

- 1. Literature and background study on present and advance blasting cleaning methods.
- 2. National wide survey on the type of blasting cleaning method being used in the Malaysian shipyards.
- Identify the potential advance blasting cleaning methods for Malaysian shipyard application.
- 4. Using technical capability analysis and engineering economic study to analysis of the potential blasting cleaning method.
- 5. To propose recommendation of the potential blasting cleaning method for Malaysian shipbuilding industry.

1.5 Thesis Organization

Chapter 1 gives an overview of the introduction and the problem of the statement. It reviews the background study of the current blasting cleaning process for surfaces preparation in ship maintenance and ship builders. It is also include objectives, scope and limitations and overall organization of the thesis.

Chapter 2 gives an overview to literature study on present and advance blasting cleaning methods, the several research of comparisons of using water jetting method with the abrasive blasting method that are done and the result of the research using ultra high pressure water jetting blasting method.

In chapter 3 gives the descriptions on how to carry out this study. This will describe the survey methods being used to get the data national wide. Also describe

the methods to analyze the technical capability of the method to cleaning the surface area such as the production rate, the versatility be required for detail work and areas that large machines cannot be reach and also the economic viability of the potential of blasting method that offer in the market to prepare that will replacing current blasting process for Malaysian shipbuilding industry.

Chapter 4 deals with the data that are collected from the survey study. This will describe a statically method to analyze the technical and economical data. The data is analyzed and to get the results in averages. Then this data and results will be used to the technical and economic analysis.

Chapter 5 deals with the technical analysis. The potential of advance blasting method will analyze, to determine production rate to clean the surface area, the versatility or the capability of the machine to clean all part of surface area of the ship and to fulfill concerning both workers and environment safety in completing blasting task.

Chapter 6 deals with the economic analysis. The potential of advance blasting method will be analyzed, in order to determine the economic return based on the initial cost, operating cost and the revenue.

And chapter 7 summarized the result and gives the recommendation and conclusion. This is followed by references and appendices.