Universiti Teknologi Malaysia Institutional Repository

Prediction of 100-year responses of fixed offshore structures using the modified version of finite memory nonlinear system models

Mohd. Zaki, N. I. and Abu Husain, M. K. and Najafian, G. (2016) Prediction of 100-year responses of fixed offshore structures using the modified version of finite memory nonlinear system models. In: 12th ISOPE Pacific-Asia Offshore Mechanics Symposium, PACOMS 2016, 4-7 Oct 2016, Gold Coast, Australia.

Full text not available from this repository.

Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. Due to nonlinearity of the drag component of Morison's wave loading and also due to intermittency of wave loading on members in the splash zone, the response is often non-Gaussian; therefore, simple techniques for derivation of the probability distribution of extreme responses are not available. However, it has recently been shown that the short-term response of an offshore structure exposed to Morison wave loading can be approximated by the response of an equivalent finite-memory nonlinear system (FMNS). Previous investigation shows that the developed FMNS models reduce the computational effort but the predictions are not very good for low intensity sea states. Therefore, to overcome this deficiency, a modified version of FMNS models is referred to as MFMNS models is used to determine the extreme response values which improves the accuracy but is computationally less efficient than FMNS models. In this paper, the 100-year responses derived from the long-term probability distribution of the extreme responses from MFMNS and FMNS models are compared with corresponding distributions from the CTS method is investigated with the effect of current to establish their level of accuracy. The methodology for derivation of the long-term distribution of extreme responses (and the evaluation of 100-year responses) is discussed. The accuracy of the predictions of the 100-year responses from MFMNS and FMNS models will then be investigated.

Item Type:Conference or Workshop Item (Paper)
Uncontrolled Keywords:Finite-memory, Identification technique, Morison's equation, Offshore structures, Response extreme values
Subjects:T Technology > T Technology (General)
Divisions:Razak School of Engineering and Advanced Technology
ID Code:73651
Deposited By: Mohd Zulaihi Zainudin
Deposited On:28 Nov 2017 07:42
Last Modified:28 Nov 2017 07:42

Repository Staff Only: item control page