DEMODULATION AND MODULATION OF HIGH BIT DATA TRANSMISSION IN LOW VOLTAGE SUPPLY SYSTEM

ROSMADI BIN ABDULLAH

UNIVERSITI TEKNOLOGI MALAYSIA

To my beloved mother and father

ACKNOWLEDGEMET

In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed towards my understanding and thought. In particular, I wish to express my sincere appreciation to my supervisor, Professor Dr. Hussein Bin Ahmad for encouragement, guidance, and friendship. Without his support and advice this project will not be in the current state.

I also would like to express my appreciation to Mohd Helmy Bin Dolah @ Abdullah for helping me in all the technical process. His invaluable knowledge and advice are very helpful for completing this project.

My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their view and tips are useful indeed.

Finally, I'm very grateful to my wife Masitah Binti Masiat, who in many ways has contributed to this work: helping me in the process of getting parts for my project and taking care of me when I have not had the time myself. I love u.

ABSTRACT

Nowadays, we can found many technologies that have been developed for control applications. Power line communication (PLC) is one of the technologies that has been proved useful for control applications. It is widely use in home automation, automotive, and internet access applications. Up to date, there is no product found in the market use it for agricultural applications. Its potential for agricultural application is very promising. This study focuses on the development of a prototype using PLC system for control application in agricultural sector. On the sane token, X-10 is a well known technology used in home automation. This prototype uses the same technique in X-10 technology, but with a few improvement and modification to suit the control application in the agricultural sector. Graphical user interface (GUI) using Microsoft Visual Basic 6.0 software has been developed and functions as a switch to control electrical devices used in agricultural application remotely. Power line modem and controller for this system has been successfully fabricated at cheaper cost as compared to other systems sold in market. Today, farmers can have full control of their electrical machines by only pressing a single button on the graphical user interface.

ABSTRAK

Kini terdapat banyak teknologi telah dibangunkan dalam aplikasi kawalan. Komunikasi melalui talian kuasa adalah salah satu teknologi yang boleh digunakan untuk aplikasi kawalan. Teknologi ini telah banyak digunakan di dalam aplikasi automasi rumah, automotif, dan capaian internet. Penggunaan teknologi ini dalam sektor pertanian masih belum diaplikasikan dan terdapat potensi yang besar utuk diaplikasikan dalam sector ini. Kajian ini bertujuan membina prototaip bagi bagi satu sistem yang menggunakan teknologi komunikasi melaui talian kuasa untuk aplikasi pertanian. Teknologi X-10 banyak digunakan untuk tujuan automasi rumah. Prototaip ini menggunakan teknologi X-10 yang telah dikembangkan untuk tujuan aplikasi pertanian. Perantara muka menggunakan perisian Microsoft Visual Basic 6 dibangunkan berfungsi sebagai suis untuk pengguna mengawal mesin atau peralatan elektrik dari jauh. Fabrikasi modem dan pengawal untuk sistem ini berjaya dibangunkan dengan menggunakan kos yang jauh lebih rendah berbanding sistemsistem yang dijual di pasaran. Sekarang, petani boleh mempunyai kawalan penuh ke atas mesin dan peralatan elektrik yang digunakan untuk pertanian. Hanya dengan menekan satu butang di paparan skrin computer, mesin boleh dikawal mengikut kehendak mereka.

TABLE OF CONTENTS

CHAPTER

1

2

TITLE

PAGE

DEC	LARATION	ii
DED	ICATION	iii
ACK	NOWLEDGEMENTS	iv
ABS	TRACT	v
ABS	TRAK	vi
TAB	LE OF CONTENTS	vii
LIST	Γ OF TABLES	X
LIST	FOF FIGURES	xi
LIST	FOF APPENDICES	xiv
PRO	BLEM STATEMENT	1
1.1	Introduction	1
1.2	Objective	2
1.3	Scope of Project	2
1.4	Thesis Outline	3
LITI	ERATURE REVIEW	5
2.1	Power Line Communication	5
2.2	Power Line Limitation	7
2.3	Existing Technologies	9

	2.3.1	X-10	9
		2.3.1.1 X-10 Transmission Theory	11
	2.3.2	LonWorks	13
	2.3.3	CEBus	14
	2.3.4	Homeplug	16
2.4	Signal	Modulation Technique	17
	2.4.1	Digital Transmission of Information	18
	2.4.2	Amplitude Shift Keying	18
SYS	ГЕМ О	VERVIEW	20
3.1	Introd	uction	20
3.2	Power	Line Communication Modem	21
3.3	Contro	oller	27
	3.3.1	Microchip PIC16F876 Microcontroller	28
		3.3.1.1 Packaging Information	28
		3.3.1.2 I/O Ports	29
		3.3.1.3 Universal Synchronous Asynchron	ious
		Receiver Transmitter (USART)	30
		3.3.1.4 Baud Rate Selection	31
МЕТ	THODO	LOGY	
4.1	Syster	n Operation	34
4.2	Softw	are Implementation	36
	4.2.1	PIC16F876 programming	36
	4.2.2	PIC16F876 Program Flow Chart	38
4.3	Hardv	vare Design	39
	4.3.1	PIC16F876 Microcontroller	39

3

4

- 4.3.2Serial Communication414.3.3PIC16F876 Programmer44
- 4.3.4Philips TDA5051A Power Line Modem454.3.5Coupling Network46

viii

		4.3.6 Power Supply Unit	48
		4.3.7 PCB Design	48
5	RESU	ULTS	53
	5.1	Network Protocol	53
		5.1.1 Frame Format	53
	5.2	Graphical User Interface	54
	5.3	Power Line Receiver	56
6	DISC	USSION	59
	6.1	Advancement	59
	6.2	Project cost	60
7	EUTT	IDE DECOMMENDATIONS AND	
/	FUIU	RE RECOMMENDATIONS AND	
	CONCLUSION		63
	7.1	Future Recommendations	63
	7.2	Conclusions	65
REFERENC	ES		66

APPENDICES

APPENDIXES A-D

68-101

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Pin description of TDA5051A	23
3.2	Summary of registers associated with PORTA	29
3.3	Summary of registers associated with PORTB	30
3.4	Baud rate formula	32
3.5	Baud rate for asynchronous mode (BRGH = 1)	33
6.1	Comparison between X-10 and designed network protocol	60
6.2	Cost of development a power line receiver	61

LIST OF FIGURE

FIGURE NO	. TITLE	PAGE
2.1	Use of in-home PLC	6
2.2	A digital communication system for the power line channel	7
2.3	Timing relationship of X-10 signals	12
2.4	Power line cycles for X-10 transmission	13
2.5	Centralized control architecture model	14
2.6	CEBus protocol stack	15
2.7	CEBus packet structure	16
2.8	Digital modulation: ASK	19
3.1	TDA5051A I SO16 package	23
3.2	Block diagram of Philips TDA5051A	24
3.3	Relationship between $DATA_{IN}$ and TX_{OUT}	26

3.4	Shaped signal spectrum	26
3.5	28-pin PDIP package of PIC16F876	28
4.1	Power line carrier system overview	35
4.2	System diagram in star topology	36
4.3	Flow chart of PIC16F876 microcontroller at the receiver	38
4.4	Circuit diagram for the controller unit	40
4.5	DB9 female connector pins diagram	42
4.6	Logic state assigned to the voltage level forEIA232	42
4.7	Circuit diagram for serial communication	43
4.8	Circuit of JDM programmer	44
4.9	Philips TDA5051A power line modem	45
4.10	General form of coupling circuit	46
4.11	Gain (1) and input impedance (2) of the coupling network	46
4.12	LC coupling circuit diagram	47
4.13	Coupling circuit with power line insulation	47
4.14	Power supply schematic	48

4.15	Coupling network and power supply circuit	49
4.16	Coupling network printed circuit board	49
4.17	Philips TDA5051A power line modem	50
4.18	Power line modem printed circuit board	50
4.19	Controller circuit	51
4.20	Controller printed circuit board (Top Layer)	52
4.21	Controller printed circuit board (Bottom Layer)	52
5.1	Serial data o turn on a device that connected to PORT B0 of the receiver 1	54
5.2	Serial data to turn off a device tat connected to PORT B0 of receiver 1	54
5.3	Graphical user interface (GUI) for prawn pond control	55
5.4	Prototype of the power line carrier system	56
5.5	Serial communication circuit board	57
5.6	Input and output of TDA5051A modem	57
7.1	Proposed control circuit for prawn farming control in Projek Ternakan Udang LKIM, Melaka	64

LIST OF SYMBOLS

Zt	-	output impedence
Zl	-	input impedence
Ω	-	ohm
Ø	-	angle
t	-	time

LIST OF ABBREVIATIONS

AC	-	alternating current
AM	-	amplitude modulation
BPL	-	broadband over power line
CENELEC	-	European Committee for Electrotechnical Standardization
DC	-	direct current
DSL	-	Digital Subscriber Line
FCC	-	Federal Communications Commission
FSK	-	Frequency Shift Keying
GUI	-	Graphical User Interface
IC	-	Integrated Circuit
I/O	-	Input/Output
MAC	-	Media Access Control
PAN	-	power area networking
PLC	-	power line communications
PLN	-	power line networking
PLT	-	power line technology
TPC	-	turbo product coding
TTL	-	transistor-transistor logic
UK	-	United Kingdom
US	-	United States
ROM	-	Random Access Memory
SMT	-	Surface Mounted Technology

LIST OF APPEDICES

APPEDIX	TITLE	PAGE
А	Proposed installation site	68
В	Microchip PIC16F87X datasheet	72
C	Philips TDA5051A datasheet	87
D	Microsoft Visual Basic 6.0 Source Code for Graphical User Interface	101

CHAPTER 1

PROBLEM STATEMENT

1.1 Introduction

Nowadays, people would like to optimize the use of electrical devices that become part of their daily life. Even in agricultural sectors, farmers tend to use modern technologies in order to maximize production and minimize operation cost. Most of them like to have a system that can help them to control and monitor their remote area farming machines. Te popular technologies currently being used for this kind of control application are wireless system, fibre optic and telephone cable. However each type has its own limitation in term cost and durability when installed in different environment condition.

The advantage of using electric power line as the data transmission medium is because every electrical device that needs to be control is already connected to the power line and subsequently connected to power grid. The (PLC) system uses the existing alternating current (AC) electrical wiring as the network medium high speed network access almost every where there is an AC outlet.

1.2 Objectives

The main objective of his project is to design and fabricate a system-cumprototype that is suitable for agricultural applications by using amplitude shift keying (ASK) data transmission. Target electrical machines that used for this application can be control remotely using personal computer.

1.3 Scope of Project

There are few aspects need to be covered when undertaking this project. All processes connected to this project are listed below:

- The system-cum-product shall comply with the European Standard EN50065 which limits the communication frequencies using power line between 3 kHz to 148.5 kHz.
- 2. Graphical user interface (GUI) shall be designed using Visual Basic 6 software to control the system.
- 3. Establishment of connection between computer (GUI) and microcontroller via serial communication using in-house design protocol.
- 4. To establish connection between a power line modem to another power line modem.
- 5. Controlling devices using microcontroller.

1.4 Thesis Outline

The remaining six chapters are concern with different aspects involving the processes of designing and fabricating the system-cum-product.

Chapter 2 Literature Review

This chapter describes the basic idea of PLC. By studying the power line technology (PLT) such as LonWorks, CEBus, Homeplug, and X-10 technology, designing a new system by using one of these technologies is easier. This chapter also discusses on the signal modulation technique and PLC applications. One of the modulation techniques discussed here shall be used for developing the power line communications system.

Chapter 3 System Overview

In this chapter parts and modules used in the system development is discussed in details. By understanding the power line works in the system, design process will be easier. Controller module and parts used in this module will be explained briefly in this chapter.

Chapter 4 Methodology

Chapter 4 presents the most important parts of this thesis. Explanations on implementation system operation are discussed in this chapter. The detail descriptions of software and hardware implementation approach to accomplish this project are also described here.

Chapter 5 Result

The designed network protocol and the whole system are discussed in this chapter. Graphical user interface (GUI) designed using Microsoft Visual Basic is also explained briefly here.

Chapter 6 Discussion

This chapter provides the information on the cost to develop the system. The cost to develop this system is cheaper compare to other system sold in market. The advantage of this project compared to X-10 technology also being discussed here.

Chapter 7 Future Recommendations and Conclusion

Here future recommendation for this project and conclusion are present. The system should be tested on the real application in agricultural sector to measure its reliability.