LOW NOISE AMPLIFIER PERFORMANCE STUDY FOR WIRELESS MAN BASED ON IEEE 802.16A STANDARD

MAZHANIZA BINTI MAZUMIL

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Electrical – Electronics and Telecommunications)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MAY 2007

"To my beloved family and friends, thanks for being there, throughout this journey"

ACKNOWLEDGEMENT

In the name of Allah, Most Merciful, Most Compassionate. It is by God willing; I was able to complete this project within the time given. Here, I would like to take this opportunity to express my sincere gratitude to my project supervisor, Professor Dr. Tharek Abdul Rahman for his invaluable guidance, advice and support towards completing this thesis succesfully.

Besides, I also thank to laboratory technician, Mr. Mohamed Abu Bakar, postgraduates, undergraduates and the staffs of Wireless Communication Centre in Universiti Teknologi Malaysia who have directly or indirectly assisted me in this project. My deepest gratitude also goes out to my examiners, P.M. Dr. Jafri bin Din and Dr. Nor Hisham bin Hj. Khamis for their constructive comments and suggestions in evaluating my project

A special thank to research Master student, Mr. Waeil for his guidance and support in this project.

Finally, I would like to express my warmest gratitude to my parents for their support and encouragement.

ABSTRACT

In a rapid expanding worldwide wireless communications industry today, the demand for Wireless Metropolitan Area Network (WMAN) systems is growing very fast as well. New WMAN system based on IEEE 802.16a standard delivers high data rate with the optional bandwidth, better spectral efficiency, improved performance under multipath fading conditions and less interference in low-mobility wireless conditions than earlier systems. To support high data in the systems multicarrier modulation, Orthogonal Frequency Division Multiplex (OFDM) is used. In practice, component such as low noise amplifier (LNA) should be chosen based on low cost. On the other hand, the effect of non-linear distortion must be considered very carefully because the OFDM system is very sensitive to it. So, the WMAN system must be tested and verified by using measurements so as to see the the system meets the requirements of the IEEE standard. For RF receiver tests in particular, bit error rate (BER) and packet error rate (PER) are required. There are several possible approaches to test the complete WMAN system. However, in this project, a special method that combines test equipment and simulation software has been developed to verify a low noise amplifier (LNA) prototype by measuring the bit error rate (BER) and packet error rate (PER) performance. Comparison has been made between the simulated and tested performances of LNA. The results show that the LNA is within the specification and standard.

ABSTRAK

Saban hari, permintaan terhadap sistem Wireless Metropolitan Area Network (WMAN) meningkat dengan drastik selaras dengan industri komunikasi wayarles yang pesat membangun. Sistem WMAN yang berasaskan piawaian IEEE 802.16a mampu menghantar data pada kadar yang tinggi dengan pilihan berbagai kadar jalur baik, lebar, kecekapan spektra yang lebih persembahan yang lebih memberangsangkan dan kurang interferen berbanding dengan sistem sebelum ini. Untuk membekalkan kadar data yang tinggi, satu teknik dinamakan Orthogonal Frequency Division Multiplex (OFDM) digunakan. Secara praktik, komponen seperti low noise amplifier (LNA) perlu dipilih berdasarkan kos yang rendah. Pada masa yang sama, kesan seperti non-linear distortion harus diambilkira dengan teliti kerana sistem OFDM sangat sensitif terhadap kesan seperti ini. Oleh itu, sistem WMAN harus diuji dan ditentusahkan untuk memastikan sistem berada pada taraf piawaian IEEE yang diingini. Bagi penerima frekuensi radio, persembahan seperti bit error rate (BER) dan packet error rate (PER) perlu diperoleh. Terdapat pelbagai cara untuk menguji satu sistem WMAN. Walau bagaimanapun, dalam projek sarjana ini, satu kaedah unik yang menggabungkan peralatan dan perisian simulasi dibangunkan untuk menentusahkan LNA dengan mengukur persembahan BER dan PERnya. Perbandingan dibuat di antara keputusan persembahan yang diperoleh dari simulasi dan dari pengujian terhadap LNA ini. Keputusan menunjukkan LNA yang diuji berada pada taraf piawaian dan spesifikasi yang diperlukan.

TABLE OF CONTENT

CH/	APTER	
\mathbf{U}		

1

TITLE

PAGE

TITLE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENT	vii
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATION	xiv
LIST OF APPENDICES	xviii

INTRODUCTION	1
1.1 Introduction	1
1.2 Project Background	2
1.3 Problem Statement	4
1.4 Objective	4
1.5 Project Scope	5
1.6 Project Contribution	6

LITERATURE REVIEW	
2.1 Project Overview	7
2.2 RF Receiver Architecture	9
2.2.1 Superheterodyne Receiver	10
2.3 Amplifier	11
2.3.1 Low Noise Amplifier	13
2.3.2 IF Amplifier	14
2.4 Mixer	14
2.5 Oscillator	16
2.6 Filters	18
2.6.1 Band-Select (BS) Filter	19
2.6.2 Image-Reject (IR) Filter	19
2.6.3 Channel Select (CS) Filter	20

METHODOLOGY	21
3.1 Introduction	21
3.2 Instrument and Tools	22
3.2.1 ADS 2002C	22
3.2.2 89600S Vector Signal Analyzer	23
3.2.3 E4438C ESG Vector Signal Generator	24
3.3 Procedures	24
3.3.1 Concept Diagram	25

4	RF RECEIVER PERFORMANCE	30
	MEASUREMENTS	
	4.1 Introduction	30
	4.2 BER Definition	31
	$4.3 E_{\rm b}/N_{\rm o}$ Definition	32
	4.4 PER Definition	36

5	SIMULATION AND MEASUREMANT SETUP	38
	5.1 Introduction	38
	5.2 Setup on Hardware and Software	39
	5.2.1 Setup on E4438C Vector Signal Generator	39
	5.2.2 Setup on 89600S Vector Signal Analyzer	40
	5.2.3 Setup on Agilent 89600 VSA software	40
	5.2.4 Setup on ADS 2002C	42
	5.3 Simulation Setup	42
	5.3.1 Simulation 1	43
	5.3.2 Simulation 2	45
	5.3.3 Simulation 3	50
	5.3.4 Simulation 4	52
	5.3.5 Simulation 5	52
	5.4 Device Under Test (DUT) Setup	55

6	RESULT AND ANALYSIS	56
	6.1 Introduction	56
	6.2 Label of Graph	56
	6.3 Analysis of Result	58

7	CONCLUSION	65
	7.1 Future Work	67
REFERENCES		68
APPENDIX A		70
APPENDIX B		72
APPENDIX C		73
APPENDIX D		74
APPENDIX E		75

LIST OF TABLES

TABLE NO	TITLE	PAGE
6.1	Explanation on types of performance	57
6.2	Explanation on simulations	57
6.3	Labeling of traces according to the type of performance	57
	and simulation	

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
1.1	Superheterodyne Receiver	5
2.1	Verification of specification for the RF front-end	10
	subsystem	
2.2	Amplifier with power gain G	12
2.3	A Generalized mixer model	15
2.4	Example of a mixer downconverter system	15
2.5	Example of a mixer upconverter system	16
2.6	The spectrum (fundamental and harmonics) of a square	18
	wave with phase noise sidebands. The inset shows the	
	effect of the sidebands in the time domain: jitter	
3.1	89600 VSA	23
3.2	Agilent E4438C ESG Vector Signal Generator	24
3.3	Simulation on RF Receiver for BER and PER	25
	Performance	
3.4	Simulation on RF Receiver for BER and PER	25
	Performance using Captured Signal (sdf file format)	
3.5	Simulation on RF Receiver (except LNA is real) for	27
	BER and PER Performance	
3.6	Simulation on the LNA only for BER and PER	28
	performance	
3.7	BER and PER measurement for LNA	28
4.1	Typical RF Communication System Receiver Block	32
	Diagram	
5.1	Signal from 89600S VSA is captured back to	44

	simulation platform and saved as SDF file	
5.2	Signal from source is downloaded to E4438C ESG	48
5.3	Signal from 89600S VSA is captured back to	48
	simulation platform and saved as SDF file	
5.4	Signal from SDF file is brought back to ADS 2002C to	49
	perform the rest of simulation	
5.5	Signal enters an AWGN channel before passing	51
	through BS filter and downloading to ESG 4438C	
5.6	Signal from SDF file is brought back to simulation	51
	platform to perform the rest of the simulation with the	
	exclusion of band select filter and one of the LNAs	
	from RF receiver block	
5.7	Simulation of LNA only for overall BER and PER	53
	performance	
5.8	First part of simulation 5 where the signal passes	54
	through an AWGN channel before being downloaded	
5.9	Second part of simulation 5 where signal that captured	54
	as SDF file is measured for its BER and PER	
	performance	
6.1	Result on RF receiver for BER performance (20 MHz)	61
6.2	Result on RF receiver for BER performance (10 MHz)	61
6.3	Result on RF receiver for BER performance (5 MHz)	61
6.4	Result on RF receiver for PER performance (20 MHz)	62
6.5	Result on RF receiver for PER performance (10 MHz)	62
6.6	Result on RF receiver for PER performance (5 MHz)	62
6.7	Comparison of BER performance between simulation	63
	1, simulation 2 and simulation 3	
6.8	Comparison of PER performance between simulation	63
	1, simulation 2 and simulation 3	
6.9	Comparison of BER performance between simulation 4	64
	and simulation 5	
6.10	Comparison of PER performance between simulation 4	64
	and simulation 5	

LIST OF SYMBOLS

E _b	-	Energy-per-bit
F	-	Noise Figure
F _{center}	-	Center Frequency
F _{IF}	-	Frequency IF
\mathbf{f}_{LO}	-	Frequency Local Oscillator
F _{RF}	-	Frequency RF
G	-	Gain
K _{vco}	-	Tuning Constant
Ν	-	Noise
N_{BW}	-	Receiver Noise Bandwidth
No	-	Noise Density
Pin	-	Input Power
Pout	-	Output Power
R	-	Data Rate
S	-	Signal
Т	-	Temperature
T _b	-	Bit Time
V _{carrier}	-	Carrier Voltage
V _{out}	-	Output Voltage
V _{tune}	-	Tuning Voltage
Wosc	-	Angular Frequency

LIST OF ABBREVIATION

ADS	-	Advanced Design System
AP	-	Access Point
AWGN	-	Additive White Gaussian Noise
BER	-	Bit Error Rate
BS	-	Band Select
CDMA	-	Code Division Multiple Access
CRC	-	Cyclic Redundancy Check
CS	-	Channel Select
DC	-	Direct Current
DSL	-	Digital Subscriber Line
DSSS	-	Direct Sequence Spread Spectrum
DUT	-	Device Under Test
ESG	-	Electronic Signal Generator
EDA	-	Electronic Design Automation
FET	-	Field effect transistor
FER	-	Frame Error Rate
GPIB	-	General Purpose Interface Bus
3G	-	Third Generation
GP	-	Good Packet
IEEE	-	Institute of Electrical and Electronics Engineer
IF	-	Intermediate Frequency
IMD	-	Intermodulation Distortion

IPTV	-	Internet Protocol Television
IIP3	-	Input at Third Order Intercept Point
IR	-	Image Reject
LNA	-	Low Noise Amplifier
LO	-	Local Oscillator
LOS	-	Line of Sight
MAC	-	Medium Access Control
NF	-	Noise Figure
OFDM	-	Orthogonal Frequency Division Multiplexing
PE	-	Probability of Error
PER	-	Packet Error Rate
PSDU	-	Physical Sublayer Service Data Units
QPSK	-	Quadrature Phase Shift Keying
RF	-	Radio Frequency
SDF	-	Standard Data Format
SNR	-	Signal-to Noise Ratio
TD-	-	Time Division-Direct Sequence Code Division Multiple
SCDMA		Access
UNII	-	Unlicensed National Information Structure
USB	-	Universal Serial Bus
VOIP	-	Voice over Internet Protocol
VSA	-	Vector Signal Analyzer
WEP	-	Wired Equivalent Privacy
WiMAX	-	Worldwide Interoperability for Microwave Access
Wi-FI	-	Wireless Fidelity
WLAN	-	Wireless Local Area Network
WMAN	-	Wireless Metropolitan Area Network

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	LOW NOISE AMPLIFIER (LNA) Datasheet	70
В	Behavioural Model for RF Tranceiver Modeling	72
С	RF Transceiver Model	73
D	Instrument Setup	74
E	RF Tranceiver Prototype	75

CHAPTER 1

INTRODUCTION

1.1 Introduction

Due to the development of communication technology, the wireless communication system grows rapidly to compete in the world market. Nowadays, many systems in wireless communication have been introduced for a variety of application such as wireless internet, 3G, Bluetooth, EDGE and many more. There are many reasons why this technology becomes important today. For areas poorly served by wired infrastructure, wireless is a good alternative to overcome this limitation. Wireless MAN (IEEE 802.16a) is a standard for MANs (metropolitanarea network), as opposed to the LANs (local-area networks) served by the more well-known Wi-Fi (**Wi**reless **Fi**delity). Wireless MAN is introduced to improve wireless LAN (IEEE 802.11a) standard by providing increased bandwidth and stronger encryption.

With coverage of areas ranging up to 30 kilometers radius, wireless MAN enables delivery of broadband services to residential and small-to-medium-sized business customers, and large corporations in urban, suburban and rural areas without requiring direct line-of-sight. Wireless MAN is not introduced to replace the

wireless LAN. The purpose of designated is to extend the wireless LAN application that can connect IEEE 802.11a hotspots with each other and to other parts of internet.

Orthogonal Frequency Division Multiplexing (OFDM) is adopted in wireless MAN to support high data rate up to 70Mbps for internet access. Wireless MAN uses of OFDM and scheduled MAC allows wireless mesh network to be more robust and reliable.

1.2 Project Background

Wireless MAN is a standards-based wireless technology providing highspeed data and voice services in networks covering long distances and wide ranges without the need for direct line-of-sight with a base station. Therefore, a high complexity in the digital system part as well as very accurate signal processing in the analog RF subsystem is required. High transmission rates within band limited radio channels affect the growing complexity of the devices and require the following [4]:

i) very high transmission frequencies must be used

ii) sophisticated modulation and coding technologies are used to achieve a high spectral efficiency

iii) high requirements for the RF front-end (robustness against interferer, adjacent channels and high linearity

The additional requirements such as low power consumption and low costs must take into consideration for system designed. System level simulators like ADS (Advanced Design System) or MATLAB can be implemented to build an executable specification. Wireless MAN can cover a large geographical area without line of sight with higher data rate transmission by introducing OFDM technique. The high transmission data rate needs high requirements for RF front end. The performance of the RF subsystem will be tested by using ADS (Advanced Design System) simulation tool. The signal from ADS must be captured by ESG (Electronic Signal Generator). The system must be verified by Vector Signal Analyzer.

Recently, the performance test of RF subsystem has been done by undergraduate student from Wireless Communication Centre (WCC) of Universiti Teknologi Malaysia (UTM) for wireless LAN standard. IEEE 802.16a extends this coverage while offering the features consistent with the stringent demands of operators in a wide variety of deployment scenarios. The Wireless MAN technology fills a critical need in the end-to-end wireless network by bridging the gap between IEEE 802.11 wireless LANs and the wide area network.

Wireless MAN standard published [12] on 1 April 2003 for urban area coverage wireless access addresses frequencies from 2-11GHz including licensed and unlicensed bands. This project will be focused on unlicensed band with upper U-NII 5.725-5.825 GHz frequency. This band is allocated for the use of indoor The RF transceiver has been designed with a selected architecture of links. superheterodyne receiver and two-step transmitter. The modeled of RF transceiver has been analyzed in the Advanced Digital System (ADS) 2002C software for system characteristic and performance [4]. This project extends the limited benefits offered in Wireless LAN by doing some modification in the AWGN channel for wireless LAN. The same concept with WLAN is applied. Wireless MAN is a new wireless internet standard. ADS 2002C software does not support the Wireless MAN system itself. Therefore, the same wireless LAN source will be used instead of Wireless MAN source. The IEEE 802.16a standard specifies channel size ranging from 1.25 up to 20MHz [1] with many options in between. The unique method is implemented in this project by doing the simulation for the multiple channel bandwidths which the 5MHz, 10MHz and 20MHZ are chosen to see the performance

of overall RF receiver. The best performance of these three bandwidth range is used as a project based for the next steps of simulation.

1.3 Problem Statement

Major problem in RF System will certainly degrade the performance of RF system are nonlinearity and Noise. The nonlinearity phenomena are harmonic generation, intermodulation distortion (IMD), gain compression and spurious response. The noises are thermal noise, phase noise and image noise. These problems will affect the RF system. So, the early intention of this project is to judge how these nonlinearities and noises will affect the RF system by measuring the BER and PER performance.

Normally, after a RF transceiver has been designed, the system will be tested and verified. This is to ensure the standard of the system as well as its reliability. A powerful instrument as well as simulation software will be implemented. In this project a unique method need to be identified to complete the task of verification.

1.4 Objective

The objective of this project is to perform simulation and measurement on a RF receiver including the system and subsystem level analysis as well as verification of its subsystem in wireless MAN based on IEEE 802.16a standard

1.5 Project Scope

Generally in radio transmitter receiver, the system is divided into two sections, analog section and digital section. Analog section consists RF part and IF part. Second section is digital part. All the baseband processing such as demodulating, channel decoding and deinterleaving is done in this part. This project is focused on RF part consist of main components such as low noise amplifier, mixer, amplifier, filters (band-select filter, image-reject filter and channel select filter), and local oscillator.

A wireless MAN superheterodyne receiver might look likes a block diagram shown in figure 1.1. The performance for the subsystem to be studied is LNA. This project will cover some important features and specifications of Wireless MAN that will be focused on fixed broadband access and the concepts and techniques of LNA including the simulation by using ADS and testing to obtain the performance of the system. LNA will be verified for its specification and standard.

Figure 1.1: Superheterodyne Receiver

In IEEE 802.16a standard, three frequency bands are available for U-NII band. There are lower U-NII band (5.150-5.250 GHz), middle U-NII band (5.250-5.350 GHz) and upper U-NII band (5.725-5.825GHz) where the maximum allowable

output power are 40mW (16.02dBm), 200mW (23dBm) and 800mW (29dBm) respectively. In wireless MAN, the transceiver under study is using the upper band for its frequency operation.

1.6 Project Contribution

As mentioned earlier, this project is extended from undergraduate student by doing some modification of Wireless LAN source. So, the same concept as WLAN will be implemented in this project. This is continuative work of the previous researcher which is to design, simulate and measure a RF transceiver operating at 5.725-5.825 GHz. This is then lead to the important purpose purpose of the project which is to verify the real subsystem of the designed RF transceiver.

In short, at the end of the project, the overall system level performance of the RF receiver will be obtained by simulation. The performance of BER and PER with minimum noise must be achieved as a result of this WMAN system. After the simulation has been done, the real subsystem of the RF receiver –low noise amplifier will be verified for its specification and standard. So, the results in simulation will then become the reference for the verification process. Hence, a method of verification is identified and this will become a very useful way for the other similar design and development of such transceiver or other typical devices.