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Abstract-- Development of an efficiency optimization control
for variable speed drive system is important not only from the
viewpoints of energy saving but also from the broad perspective
of greenhouse emission. In this paper the designs of a back
propagation based efficiency optimization control (BPEOC) for
variable speed compressor induction motor drive is described.
The controller is designed to generate signal voltage and
frequency references simultaneously. This technique allows for
control of both the speed and efficiency. In order to achieve a

robust BPEOC from variation of motor parameters, an online
learning algorithm is employed. Simulation of the BPEOC and
laboratory experimental set up has been developed using
TMS32OC60 digital signal processor. The result demonstrated a

significant increase in efficiency and an improvement in speed
performance.

Index Terms-Variable speed induction motor drive,
efficiency optimization control, neural network control

I. INTRODUCTION

Jnduction motors are extensively used in industrial and
lhousehold appliances consume about 5400 of the total
consumed electrical energy [1]. In air conditioning system, the
induction motors are oftenly used to drive a compressor at
constant speed operation. However, because the typical load
profile of this load is that the load torque varies with speed,
therefore implementation of a variable speed drive for it is
potential to increase energy saving [2].

The efficiency of induction motor when operate at rated
speed and load torque is high. Unfortunately for variable load
operation the application of the motor at rated flux will cause

the iron losses to increase excessively, hence its efficiency
will reduce dramatically [3,4]. In order to reduce the iron
losses the flux level should be set lower than rated flux, but
this will increase the copper loss. Therefore, to optimize the
efficiency of the induction motor drive system at partial load,
it is essential to obtain the flux level that minimizes the total
motor losses [3,5,6].
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A number of methods for optimizing the efficiency
commonly known as energy or efficiency optimization control
have been proposed in literature. In general there are two
different approaches of efficiency optimization in induction
motor drive [5]. The first approach, named losses model
controller uses analytical computation of the motor losses to
optimize the efficiency. The optimum flux is determined by
deriving the motor power losses against flux. From this
derivation, the unique value of flux achieved. The main
advantage of this method is that it does not require extra
hardware but it needs an accurate knowledge of motor
parameters. Because the motor parameters vary against
temperature and magnetic saturation and also some of the
motor losses such as stray losses and iron losses are very

complex to be determined, hence this method is difficult to
be implemented [7,8].

The second approach is named as online or search
efficiency optimization control method. This is based on an

input power measurement. The online control method will
search the flux level gradually to obtain the maximal
efficiency of the motor drive. Therefore, it does not depend on

the knowledge of motor parameters. This technique is also
known as online energy optimization control method. The
main advantage of this method is that it is completely
insensitive to motor parameters variation. Some
implementations of the intelligent control method such as

fuzzy logic and neural network control in this method have
many advantages over classical search control methods
proposed in literature [8,9,10,11,12].

The development of neural network for searching efficiency
optimization control method has been considered due to their
various advantages over conventional ones. Based on a scalar
control model, a simulation of the neural network control for
efficiency optimization of induction motor drive was

introduced in [9,10], while the simulation of neural efficiency
optimization control in vector control method was proposed
[11]. To compensate the variation of resistance iron core loss
against to the change of flux and frequency, in vector control
model the variation of iron core loss resistance is taken into
consideration [12]. All of these methods implement an offline
learning algorithm.

Even though simulation results of the neural network
efficiency optimization control showed an increase in
efficiency of the induction motor drive [9,10,11,12], the
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implementation of the offline learning algorithm could reduce
the superiority of the online efficiency optimization control
method. This is due to the training data employ fixed motor
parameters. Consequently, for a real time application the
performance of the controller will decrease, because the motor
parameters vary against the temperature and magnetic
saturation.

This paper proposes an improvement of the neural network
control design for efficiency optimization of the variable
speed induction motor drive. The neural network controller
model is developed based on online learning algorithm using
Back propagation scheme. The controller is designed to
generate signal voltage and frequency reference
simultaneously. The design of the controller is verified by
simulation and laboratory experiment.

In the following section the control system of the proposed
neural network efficiency optimization based on scalar control
method is described. Development of the neural network
control online learning algorithm will be explained in section
III. Simulation and experimental results is given in section IV.
The last section will be a discussion and conclusion.

II. SYSTEM CONTROL DESCRIPTION

A. Scalar Control Model
According to the principle of a scalar control method, the

speed and electromagnetic torque of the induction motor can
be controlled by adjusting voltage and frequency. It can be
achieved with different combination of voltage and frequency.
In scalar control model usually the motor flux level is
assumed by volt per hertz (V/f).

Operation of the induction motor at rated flux results in
good utilization of the motor iron hence a high torque per
stator ampere can be achieved. At rated flux the nominal
electromagnetic torque can be developed at all frequencies.
For these reasons the constant V/f control has been often
regarded as an optimal control scheme. However, at light load
the flux may be greater than necessary for development of
required load torque, hence the total losses become high and
decrease the efficiency.

B. Search Efficiency Optimization Control Model
The principle of search efficiency optimization control

with scalar control at steady state is described in Fig. 1. By
reducing the voltage stator, the flux and the iron loss will
decrease. Although the copper losses increase, the total power
loss will decrease hence the dc link power reduces. The search
decreases gradually until the system settles down at the
minimum input power point P, as indicated. At any operating
point the controller will generate an optimum flux level for
achieving a minimum input power.

Based on the aforementioned principle, direct inverse
neural control is developed. In this model the controller is
trained to capture the inverse dynamics of the system. The
block diagram of the proposed BPEOC of induction motor
drive for variable speed compressor is shown in Fig. 2. From
this figure the development of the controller in the digital
signal processor is indicated by dashed outline.
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Fig. 2. Scalar controlled induction motor drive for efficiency optimization
model

In this scheme the controller recieves command from the
speed reference signal ()ref). While the speed error signal
(W,ref - Win) and input power error signal (Pref - Pd) are used to
supervise the neural network training of the controller. Output
of the BPEOC generate two signal controls, voltage reference
(mi) and frequency references (mf).

III. NEURAL NETWORK EFFICIENCY OPTIMAL CONTROL
DESIGN

Inspired by the successful function of the human brains, the
artificial neural network (ANN) was developed for solving
many large scale and complex problems. Based on ability to
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process some information and also to analyze the input and
output simultaneously, it makes ANN suitable for dynamic
and nonlinear system. Referring to the classical search EOC
system, the development of the structure and learning
algorithm of the BPEOC is explained as follows.

A. Structure ofBPEOC
To design the neural network control some information

about the plant is required. Basically, the numbers of input
and output neuron at each layer are equal to the number of
input and output signals of the system respectively. Further
the number of hidden layers and the total neurons is depended
on the complexity of the system and the required training
accuracy [9]. To implement search efficiency optimal control
of an induction motor drive, a multilayer perceptrons neural
network control is developed. Based on the type of the task to
be performed, the structure of the proposed BPEOC is as
shown in Fig.3.

Fig. 2. Diagram block of neural network efficiency optimization control for
induction motor drive

The controller consists of input layer, hidden layer and
output layer. Based on number of the neuron in the layers, the
BPEOC is defined as a 2-3-2 network structure. In this design
one of the output signals a21 is fed back to the first layer as an
input signal. The first neuron of the output layer is used as a
reference signal frequency (a2 =mj) and the second neuron is
used as a reference signal voltage (a22=mi). The speed
command of the controller is represented by P2. The
connections weight parameter between/h and jth neuron at mth
layer is given by wmij, while bias parameter of this layer at i
neuron is given by bmi. Transfer function of the network at ith
neuron in mth layer is defined by:

Sm-1
m m m-1im

n = w a + bn
j=l

The output function of neuron at mth layer is given by:
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(3)

Updating of the connection weight and bias parameters are
given by:

Wi (k + 1) = w (k)-;a eOF (k)

bi (k + 1) = bi (k)-oa Ob (kn)

where k is sampling time, a is learning rate,
performance index function of the network.

(4)

(5)

and F

B. Online Learning Algorithm ofBPEOC
After the neural network architecture is modelled, the next

stage defines the learning model to update network
parameters. By this learning capability, it makes the ANN
suitable to be implemented for the system with motor
parameters which are difficult to define and vary against with
environment. The training process minimizes the error output
of the network through an optimization method. Generally, in
learning mode of the neural network controller a sufficient
training data input-output mapping data of a plant is required.
Since the motor parameters of the induction motor drive vary
with temperature and magnetic saturation, the online learning
Back propagation algorithm is developed.
Based on first order optimization scheme, updating of the
network parameters are determined. The performance index
sum of square error is given by:

F(k) =
I
E e72 (k)

ei (k) = ti (k) - ai (k)

(6)

(7)

where ti is target signal and ai output signal on last layer.

The gradient descent of the performance index against to
the connection weight is given by:

(1) OF OF anin
Wi n i aW (8)

The sensitivity parameter of the network is defined as:
a m

= fnm (nm ) (2)

Where f is activation function of the neuron. In this design
the activation function of the output layer is unity and for the
hidden layer is a tangent hyperbolic function given by:

m_ OF
si. -

Onn (9)
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Gradient the transfer function again to the connection weight

parameter is given by:

an'm
= am 1

700

bW0

4W0

From substitution equation (9) and (1 1) into (4) the

updating connection parameter is given by:

i i

200

1W0

0
(12) 268 3 3.2

time (s)

3.4 3.6 368

With the same technique the updating bias parameter is

given by:

bm1m (k+1)=b mi'(k) -asn2(k) (13)

IV. SIMULATION AND EXPERIMENTAL RiESULTS

A. Simulation Results

Simulation was carried out to investigate the performace of

the BPEOC. In this section the dynamic model of a three-

phase induction motor, space vector PWM and neural network

control model have been developed. The simulation is

developed using Borland C++, and then embedded as 5-

function in Simulink-Matlab. The parameters for the motor are

given by:

Power, frequency and pole are 0.25 Hp, 50 Hz and 4.

Stator and rotor resistances, Rs 5.1 Q2. and R, 4.0 Q2.

Stator and rotor self inductances are 0.21 land 0.21 1 H.

Mutual inductance is 0.199 H.

Combined of inertia is 0.003kg-in2.

To represent a compressor load, equation of the load

torque proportional to the square of the speed is approached

by:

Tioad

where Wm, is the rotor speed in rpm and cl is the compressor

load coefficient (cl, 6.5x10-7).

To verify performance of the proposed BPEOC, the

simulation results for a conventional neural network (NN)

constant volt/hertz and the proposed controller are compared.

With the same speed reference, the simulations of both

methods are run simultaneously. The speed trajectory of the

motor when the reference is decreased from 700 to 500 rpm is

shown in Fig.4.

Fig.4. Speed response comparison between BPEOC and NN constant V/f
controller with speed reference is varied down.

Based on speed command variations the consumed power

of the compressor motor using neural network NN constant

V/f and BPEOC controller can be shown through the input

power trajectory. The input power searching is captured from

maximum overshoot to steady state value. Fig. 5 shows the

input power search curve when the speed reference varies

down from 700 rpm to 500 rpm.
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Fig.5. Input power search curve between BPEOC and NN constant V/f
controller with speed reference is varied from 700 to 500 rpm.

B. Experimental Results

Based on the simulation model, the experimental setup of

the proposed efficiency optimization control using neural

network was developed. The BPEOC on the test system was

implemented using the digital signal processor control board

DS 1 102. The DSP board consists of TMS320C3 1 and

TMS320P14 DSPs. The first processor implements the space

vector PWM scheme, whereas the second provides the

BPEOC controller. The rotor of the induction motor was

coupled with a dynamometer system as a compressor load

simulator. The three phase space vector PWM inverter was

implemented using IGBTs.
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Fig. 6 shows the experimental response, when the speed

command varying downs from 700 to 500 rpm. From this

figure, it shows that the overshoot and ripple of the speed

decrease. Therefore it is clear that the speed dynamic

responses of the proposed method have improvement.
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Fig.6. Speed response measurement between (a) BPEOC and (b) NN constant

V/f controller with speed reference is varied down from 700 to 500 rpm.

Measurement of the input power of the motor when the

speed command was varied from 700 to 500 rpm is shown in

Fig.7. From this figure, it shows that the same speed reference

and load condition the input power of the motor reduce.

Beside that ripple of the input power also reduce.
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Based on the input and output power measurement at steady

state, efficiency of the motor drive for various speed oeration

is depicted in Fig.8
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Fig.8. The efficiency measurement between BPEOC and NN constant V/f
controller for various speed operation.
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From figure 8 it shows that at near nominal speed operation
the efficiency of both methods are quite the same, while for
low speed operation the efficiency of the proposed method
increase.

V. CONCLUSION

The neural network controller for efficiency optimization
of variable speed compressor motor drive system has been
presented in this paper. The proposed method employs a first
order online learning Back propagation algorithm to generate
the stator voltage and frequency references simultaneously.
The controller does not require motor parameters data.
Experimental and simulation results validate the effectiveness
of the method. The results show that at low speed operation
the speed performance and efficiency of motor drive can be
increased.
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