Universiti Teknologi Malaysia Institutional Repository

Pulsed Nd: YAG laser drilling of aerospace materials (Ti-6Al-4V)

Bahar, N. D. and Marimuthu, S. and Yahya, W. J. (2016) Pulsed Nd: YAG laser drilling of aerospace materials (Ti-6Al-4V). In: 6th Innovation in Aerospace Engineering and Technology, AEROTECH 2016, 8 November 2016 through 9 November 2016, Kuala Lumpur; Malaysia.

Full text not available from this repository.

Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

This paper studies the influence of Nd:YAG (neodymium-doped yttrium aluminium garnet) laser process parameters on laser drilled hole quality. Ti-6Al-4V of 1 mm and 3 mm thickness were used as the workpiece substrate. The principal findings are mainly based on minimising the taper angle in laser drilled holes, reducing the heat affected zone and reducing the production of spatter. Identification of key process variables associated with laser drilling process is accomplished by trial experimentation. Using the identified key process variables, further experiments were then performed with the assistance of statistical design of experiment (DOE) to find the interaction and individual effects of various laser process parameters on laser drilled hole quality. The lowest taper angle of 1.8 degrees was achieved with use of nitrogen as the assist gas. Furthermore, from the laser process observations, it was found that laser power significantly affects the quality of the laser drilled hole. Increase in laser power would increase the hole size and result in more spatter on the entry hole surfaces. The nozzle focus position substantially influenced the laser drilled hole size. The amount of spatter deposits increased with decrease in the nozzle offset. Increase in laser frequency significantly increased the exit diameter, which resulted in smaller taper angle. Number of pulse required to drill through a workpiece depends on the material properties and physical properties of the material. For 1mm Ti-6Al-4V, a minimum of two pulses was required to successfully removed the material during drilling and a minimum of 4 pulses was required to drill through the same material with 3mm thickness.

Item Type:Conference or Workshop Item (Paper)
Uncontrolled Keywords:Aerospace engineering, Aluminum, Design of experiments, Drills, Heat affected zone, Neodymium lasers, Nitrogen, Nozzles, Titanium alloys
Subjects:T Technology > T Technology (General)
Divisions:Malaysia-Japan International Institute of Technology
ID Code:72978
Deposited By: Muhammad Atiff Mahussain
Deposited On:29 Nov 2017 23:58
Last Modified:29 Nov 2017 23:58

Repository Staff Only: item control page