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ABSTRACT

Unprecedented deforestation and forest degradation in recent decades have severely depleted the carbon storage in 
Borneo. Estimating aboveground biomass (AGB) with high accuracy is crucial to quantifying carbon stocks for Reducing 
Emissions from Deforestation and Forest Degradation-plus implementation (REDD+). Airborne Light Detection and Ranging 
(LiDAR) is a promising remote sensing technology that provides fine-scale forest structure variability data. This paper high-
lights the use of airborne LiDAR data for estimating the AGB of a logged-over tropical forest in Sabah, Malaysia. The LiDAR 
data was acquired using an Optech Orion C200 sensor onboard a fixed wing aircraft. The canopy height of each LiDAR point 
was calculated from the height difference between the first returns and the Digital Terrain Model (DTM) constructed from 
the ground points. Among the obtained LiDAR height metrics, the mean canopy height produced the strongest relationship 
with the observed AGB. This single-variable model had a root mean squared error (RMSE) of 80.02 t ha-1 or 22.31% of the 
mean AGB, which performed exceptionally when compared with recent tropical rainforest studies. Overall, airborne LiDAR 
did provide fine-scale canopy height measurements for accurately and reliably estimating the AGB in a logged-over forest in 
Sabah, thus supporting the state’s effort in realizing the REDD+ mechanism.
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1. INTRODUCTION

Over past decades the lowland rainforest of Borneo 
has disappeared at an alarming rate due to anthropogenic 
activities, with recent rates of deforestation at 1.7% per year 
between 2002 and 2005 (Langner et al. 2007). The land area 
of Sabah is 73631 km2, representing slightly less than 10% 
of the total area of Borneo. Within Sabah, forest cover has 
declined rapidly from nearly 75% in 1975 (Ross 2001), to 
60.1% in 1986 (FAO 1987). The rates of forest loss have 
varied over this time, with forest loss estimates of 1.37% 
per year for the period 1975 - 1985. The deforestation rate 
between 1990 and 2008 had recently increased to 1.6% per 
year (Osman et al. 2012). This sharp decline in primary or 

intact lowland forests in Sabah was due mainly to forest-
agricultural land conversion and logging (McMorrow and 
Talip 2001; Osman et al. 2012) that accelerated carbon de-
pletion. This leads to increasing carbon emissions into the 
atmosphere and thus contributes to global warming.

Reducing Emissions from Deforestation and forest 
Degradation (REDD) has been under negotiation by the 
United Nations Framework Convention on Climate Change 
(UNFCCC) to mitigate global warming since 2005. This 
scheme was later known as REDD+ after putting an em-
phasis on the roles of conservation, sustainable forest man-
agement and forest carbon stock activities enhancement as 
a mitigation strategy against the increasing carbon emis-
sions due to land use and land cover change (UNFCCC 
2009). Accurate carbon stock estimation and monitoring is  
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important to REDD+ success. In order to implement REDD+ 
effectively it is recommended that remote sensing technol-
ogy be applied with ground inventory (UNFCCC 2009). 
Ground inventory can be expensive and time consuming to 
produce consistent global data (Chave et al. 2005), hence 
it is necessary to apply remote sensing technology to as-
sess forest condition information in large inaccessible areas 
(Saatchi et al. 2007).

Remote sensing technology, especially optical satel-
lite imaging, has been widely used in aboveground bio-
mass (AGB) estimation based on multispectral (Phua and 
Saito 2003; Langner et al. 2012) and texture information 
(Lu 2005). Conventionally, the spectral responses of the 
vegetation cover are related with estimated AGB through a 
statistical model (Brown 1997). Unfortunately, cloud cover, 
the shadow effect and low spectral band saturation level 
and derived indices (Gibbs et al. 2007) limits the applica-
tion of medium resolution satellite remote sensing for AGB 
estimation. Additional information such as crown variables 
extracted from high-resolution satellite remote sensing im-
proves the AGB estimation results (Palace et al. 2008; Phua 
et al. 2014). However, optical satellite remote sensing pro-
vides information only on the upper canopy trees and may 
substantially underestimate the AGB of a disturbed forest 
(Lu 2005, 2006). Anthropogenic disturbances, especially 
logging, create complex three-dimensional structures, in-
cluding canopy height and sub-canopy topography, which 
are less likely to be detected by optical satellite remote sens-
ing (Ioki et al. 2014).

Light Detection and Ranging (LiDAR) has the poten-
tial to overcome these problems. LiDAR is an active remote 
sensing that emits laser pulses to the target area and records 
the travel time of the reflected pulse. The emitted lasers fall 
on the canopy surface and also penetrate the forest canopy 
to assess the dense and complex forest structure. The re-
flected laser pulses generate three dimensional point clouds 
(x, y, z) to give a direct measurement of the horizontal and 
vertical forest structures (Wulder et al. 2012).

Numerous studies have highlighted the importance of 
airborne LiDAR in estimating AGB in temperate and boreal 
forests but only a few studies focused on tropical forests. 
Clark et al. (2011) demonstrates the effectiveness of small 
footprint LiDAR for AGB estimation in Costa Rica by deriv-
ing LiDAR height metrics to estimate the forest AGB. As-
ner et al. (2012c) examined the effectiveness of the extract-
ed mean canopy height to estimate AGB in Panama, Peru, 
Madagascar, and Hawaii (R2 = 0.8, RMSE = 27.6 Mg C ha-1).  
In Borneo, Kronseder et al. (2012) and Jubanski et al. (2013) 
examined the use of LiDAR derived height metrics to esti-
mate the AGB in logged peat swamp forest and unlogged 
lowland dipterocarp forest in Central Kalimantan. Ioki et al. 
(2014) tested the use of laser penetration rate from LiDAR 
data for AGB estimation of primary and degraded tropical 
montane forests of in Sabah, Borneo (R2 = 0.78, RMSE = 

27.6 t ha-1).
Most of the lowland dipterocarps in Borneo were re-

peatedly logged and disturbed by anthropogenic activities. 
These logged-over forests have a highly heterogeneous for-
est structure. A disturbed forest recovers by undergoing 
growth in horizontal (e.g., diameter at breast height, DBH) 
and vertical structure (e.g., stand height) accompanied with 
the overall increase in AGB. Horizontal and vertical struc-
tures are inter-related with AGB, thus creating an opportu-
nity for LiDAR to examine the forest in different structural 
conditions (Lefsky et al. 1999, 2002; Drake et al. 2002). 
High point density and multiple discrete heights from small 
footprint airborne LiDAR can retrieve such forest structures 
and predict AGB in fine spatial scale (Houghton 2005). 
Studies on the use of LiDAR to estimate logged-over low-
land dipterocarp forests are relatively few. The objective of 
this study is to examine the use of airborne LiDAR data to 
estimate AGB in a logged-over lowland dipterocarp forest 
in Sabah, Malaysia.

2. MATERIAL AND METHODS
2.1 Study Area

The study area is located within the Sapat Kalisun 
catchment within the Ulu Segama Forest Reserve (5°N; 
117°30’E) under the management of Yayasan Sabah  
(Fig. 1). It is located just outside Danum Valley Field Cen-
ter (DVFC), which is about 70 km west of Lahad Datu town. 
The forest in this region is dipterocarp forest, with Parasho-
rea malaanonam as the typical dominant tree species. The 
dipterocarp forest of Sapat Kalisun is dominated by species 
from Dipterocarpaceae and Euphorbiaceae while the un-
derstory is dominated by Rubiaceae and Melastomataceae 
families (Newbery et al. 1992).

The Sapat Kalisun catchment is generally undulating 
to hilly but not mountainous. This study site was selectively 
logged in 1988 and 1989, with an annual production volume 
of between 96 - 100 m3 ha-1 (Tangki and Chappell 2008). 
The logging operation was conducted using a combination 
of tractor and high lead logging. After logging, the coupes 
were closed down and the study site was allowed to regener-
ate naturally.

2.2 Acquisition and Processing of Airborne LiDAR 
Data

Airborne LiDAR data were acquired in October 2013 
using an Optech C200 sensor, mounted on a Nomad C22 
aircraft. The LiDAR data collection mission was operated at 
an altitude of 600 m, speed of 41.2 m s-1, scan angle of ±14° 
and pulse frequency of 175 kHz (Table 1). The sensor sys-
tem also consists of a differential global navigation satellite 
system (DGNSS) receiver coupled to an inertial measure-
ment unit, both components ensuring that a sub-decimeter 
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differential position can be calculated for the aircraft in post-
processing. A calibration site within a residential area (less 
than 20 km) was also scanned for LiDAR data processing.

We used the Applanix IN-FusionTM single baseline 
processing approach to generate the optimal smoothed best 
estimate of trajectory (SBET) from the global navigation 
satellite system (GNSS) and inertial data in POSPac Mobile 
Mapping Suite (MMS). This approach requires the rover to 
be at most 70 km from the nearest reference station to ini-
tially resolve the correct ambiguities (Hutton et al. 2008). 
We established the reference station with Javad Triumph-1 
on a surveying benchmark at Taliwas Forest Reserve during 

the LiDAR data acquisition. The GNSS base station data 
was post-processed with Javad’s proprietary software (Jus-
tin). The generated SBET was used to calibrate the raw Li-
DAR range data in Optech’s LiDAR Mapping Suit (LMS) 
software to calculate the boresight misalignments (x, y, z) 
for the calibration site. The boresight misalignments were 
estimated in LMS with iterative pitch shift, roll shift, mirror 
scale, and heading shift error calculations. The laser point 
clouds in las 1.2 format were extracted for further processing 
in Microstation V8i. Points that were obviously much high-
er than the surrounding points were removed as noise. The 
average point density of the point cloud was 25 points m-2.  

Fig. 1. Location of the study area. The study site comprised of logging coupes of 1988 and 1989 (plots in black color squres) in the Ulu Segama 
Forest Reserve, which is next to Danum Valley Conservation Area. Box in dashed line is LiDAR scanning area.

System Optech C200

Date of acquisition 11 October 2013

Platform airplane (Nomad N22)

Flying altitude about 600 m above ground

Average speed 41.2 m s-1

Scan angle ±14°

Scanning frequency 70 Hz

Table 1. Summary of LiDAR data acquisition using 
Optech C200 system.
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We then used a filtering algorithm (Axelsson 2000) in Ter-
raScan software to process and classify point clouds into 
ground and vegetation points. The ground points were dis-
tinguished by iteratively building a triangulated surface 
model with the following parameters: maximum building 
size = 60 m, terrain angle = 88°, iteration angle = 6°, and 
iteration distance = 1.4 m. The ground points were used to 
correct the pitch shift, roll shift, mirror scale, heading shift, 
and then z shift in TerraMatch. The overall elevation bias 
for the flight lines was 0.1044 m.

The terrain points were used to generate a Digital Ter-
rain Model (DTM) (pixel size 1 m) with the triangulation 
method in ArcGIS. Figure 2 shows examples of the vegeta-
tion point cloud profiles (first returns) from plots. The can-
opy height was calculated by taking the height difference 
between the first returns and the DTM. Canopy height point 
clouds were clipped using plot boundary polygons. We then 
calculated LiDAR variables, including maximum (hmax) and 
mean (hmean) canopy height as well as the 10th, 30th, 50th, 70th, 
and 90th percentiles (h10, h30, h50, h70, h90) of canopy height, 
from the point clouds for all the plots.

2.3 Forest Inventory

The field data were collected in April, June, and Oc-
tober 2014. Thirty square plots (30 × 30 m) were randomly 
established within the study site to estimate AGB. All trees 

in the plot with DBH greater than 10 cm were measured. 
The structural variables included DBH, tree height (H) and 
crown diameter. Tree species were identified in the field 
by an experienced and field-botanist. Specimens were col-
lected for species that could not be identified in the field for 
further determination at the DVFC herbarium.

The plot locations were determined using the Javad Tri-
umph-1 receivers. We first established a base station at the 
DVFC weather station by referring to the nearest surveying 
benchmark at Taliwas Forest Reserve using the differential 
positioning method (static survey). A GNSS receiver was 
established at the base station while a rover was placed at 
the center of each plot to determine the plot’s location at 
centimeter accuracy. The two DGNSS receivers received 
signals from the Global Orbiting Navigation Satellite Sys-
tem (GLONASS) and Global Positioning System (GPS) 
concurrently to allow GNSS data post-processing to correct 
the positioning error based on the difference between the 
signal ranges of these two points.

AGB for each tree was calculated from the DBH and 
height (H) data using an existing allometric equation (Ya-
makura et al. 1986). This allometric equation was devel-
oped in an undisturbed lowland dipterocarp forest at East 
Kalimantan, Indonesia. In the allometric equation AGB as 
dry weight (kg) of a single tree is calculated by summing 
up various tree components i.e., wS (stem dry weight), wB 
(branch dry weight), and wL (leaf dry weight), calculated 

(a) (b) (c)

Fig. 2. The LiDAR point clouds of selected plots. (a) Plot DV20 (maximum canopy height: 38.4 m, AGB: 215.54 t ha-1); (b) Plot DV05 (maximum 
canopy height: 39.81 m, AGB: 316.31 t ha-1); (c) Plot DV305 (maximum canopy height: 59.93 m, AGB: 757.56 t ha-1). (Color online only)
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using the following equations;
wS = 2.906 × 10-2 (DBH2H)0.9813

wB = 0.1192 wS
1.059

wL = 9.146 × 10-2 (wS + wB)0.7266

AGB = wS + wB + wL

The AGB (kg) for all trees within the plot were summed and 
used to calculate the plot level AGB in t ha-1.

2.4 Statistical Analyses

One of the most common LiDAR approaches for AGB 
estimation was used in this study (Magnussen and Boud-
ewyn 1998; Patenaude et al. 2004; Kronseder et al. 2012; 
Ioki et al. 2014). LiDAR variables calculated from the point 
clouds within the plots were regressed with field measure-
ments. The LiDAR variables, including mean canopy height 
(hmean), maximum canopy profile height (hmax), percentiles of 
canopy height corresponding to 10th, 30th, 50th, 70th, and 90th 
(h10, h30, h50, h70, h90), were used as predictors in plot level 
AGB statistical analysis.

We first performed correlation analysis to explore the 
statistical association between the LiDAR variables and 
AGB. This was followed by simple regression analysis 
to examine the performance of the each variable in AGB 
estimation. Multiple linear regression analysis was then 
performed to examine any further model improvement by 
incorporating multiple LiDAR variables. The simple re-
gression analyses were carried out with power models be-
cause the power models were successfully used to estimate 
AGB in tropical forests (Asner et al. 2012a, b; Jubanski et 
al. 2013). In the multiple regression analysis all LiDAR 
variables were transformed using the natural logarithm and 
stepwise regression using the Akaike Information Criterion 
(AIC) conducted to determine the final model. The indepen-
dent variables with the lowest AIC value will be included in 
the final model. Coefficient of determination (R2), the root 
mean squared error (RMSE) and RMSE as a percentage of 
the average AGB (RMSE %) were used for model evalua-
tion. Leave-one-out cross-validation (LOOCV) was carried 
out for testing the overfitting of the final model using R soft-
ware (http://cran.r-project.org/). One plot was selected as a 
validation sample while the remaining N-1 plots were used 
to train the model. The predictive value was assessed by 
comparing the cross-validated RMSE (RMSEcv) with the 
full model RMSE. A close agreement between the RMSEcv 
and RMSE indicates that the model is not overfitting the 
data and the predictive value is good.

3. RESULTS
3.1 Forest Structure and AGB of the Logged-Over  

Forest

Field measurements of the main structural variables 
i.e., DBH and H were examined to understand the logged-

over forest characteristics. The mean DBH was 22.45 cm 
with a maximum of 135 cm. Tree height ranged between 
4.1 - 65 m, with a mean of 18.5 m (Table 2). Tree height was 
strongly correlated to DBH with an R2 of 0.74 (Fig. 3). There 
were only six trees greater than 50 m tall in the study areas. 
The estimated AGB ranged from 170.64 - 757.66 t ha-1, with 
a mean (±SD) of 358.58 t ha-1 (±132.79), with trees between 
20 - 50 m tall contributed the bulk of the AGB of the logged-
over forest (Fig. 4).

Mean SD Min Max

DBH (cm) 22.45 16.65 10 135

Height (m) 18.49 8.61 4.1 65

AGB (t ha-1) 358.58 132.79 170.64 757.66

Table 2. Summary of field measurements on the forest 
structure.

Fig. 3. Relationship between H (m) and DBH (cm) in the logged-over 
forest. Very few large trees were present due to past selective logging.

Fig. 4. AGB (t) distribution in height classes (m) based on field data.

http://cran.r-project.org/
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3.2 AGB Estimation Model

Table 3 shows the correlations between AGB (t ha-1) 
with different LiDAR variables estimated for the 30 plots. 
With a coefficient R (Pearson correlation) of 0.80, hmean hav-
ing the strongest correlation with AGB in the logged-over 
forest. This was followed by the 50th percentile or median 
of canopy height with a coefficient R of 0.75. Only hmax had 
no significant correlation with AGB. The correlations de-
creased with lower and also higher percentile variables.

Simple regression with power models to estimate AGB 
were tested with all the LiDAR variables. The results indi-
cate that hmean was the best predictor of AGB compared to all 
other LiDAR variables (Table 3). The power model fitted to 
the plot data had a R2 of 0.67 (sig. 0.01) (Fig. 5). In the step-
wise multiple regression analysis, only hmean was retained 
in the final model. The hmean had the lowest AIC value in 

comparison to other multiple variable models (Table 4). The 
multiple regression analysis did confirm that the simple re-
gression model with hmean as the predictor is the best model 
to estimate the AGB for this forest. The full model RMSE 
was 80.02 t ha-1 or 22.31% of the average AGB. The RM-
SEcv calculated using LOOCV was 87.40 t ha-1 or 24.37%. 
The difference between the RMSE and the RMSEcv was 
7.38 t ha-1 or about 2% relative to the mean AGB. A scat-
terplot of the observed AGB versus the LiDAR estimated 
AGB is shown in Fig. 6. The regression line was well-fitted 
between the observed AGB and LiDAR estimated AGB 
through the origin with a slope of 0.94.

4. DISCUSSION

Most of the lowland rainforest in Sabah had been 
logged at least once starting from the 1960s. The study site 

Variables R R2 (power model) RMSE (t ha-1) RMSE (%)

h10 0.50* 0.27* 115.95 32.34

h30 0.62** 0.37** 106.27 29.64

h50 0.75** 0.58 88.40 24.65

h70 0.66** 0.48** 101.16 28.21

h90 0.59** 0.39** 107.85 30.08

hmax 0.39 0.13 123.94 34.56

hmean 0.80** 0.67** 80.02 22.31

Table 3. Correlation and simple regression analyses between AGB and 
LiDAR variables.

Note: *: significant at the 0.05 level; **: significant at the 0.01 level.

Fig. 5. Relationship between hmean derived from the LiDAR data and 
AGB fitted with a power regression model.

Variables included in the model AIC

h50, h90, h30, h70, h10, hmean 272.62

h90, h30, h70, h10, hmean 271.35

h30, h70, h10, hmean 269.67

h70, h10, hmean 268.07

h10, hmean 267.77

hmean 266.29

Table 4. Multiple linear regression analyses results using Akaike In-
formation Criterion (AIC).

Fig. 6. Observed AGB (t ha-1) versus LiDAR estimated AGB (t ha-1).
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was logged selectively 25 years ago and still shows clear 
impacts of the logging operation on both stand structure and 
AGB (Fig. 3). The DBH and height data for the plots had a 
right skew, with the mean H and DBH to the lower side of 
the data distribution (Table 2). The site had very few trees 
greater than 50 m, with most of the AGB contributed by the 
20 - 50 m height class. Since the AGB was calculated with 
both H and DBH in the Yamakura’s allometric equation, 
the mean AGB also skewed to the right side of the data dis-
tribution. While our estimated mean AGB of 358.58 t ha-1 
(Table 2), is low compared to AGB estimate of 506.37 t ha-1 
for a primary mixed dipterocarp forest (Tangki and Chap-
pell 2008), it is, however, comparable to estimate obtained 
for logged-over mixed dipterocarp forests. Langner et al. 
(2012) reported a mean AGB of 335.8 t ha-1 for the logged-
over forests of the Deramakot Forest Reserve.

We found a substantial variation in AGB within the 
sample of 30 plots (Figs. 3 and 4), suggesting that the past 
disturbances were not uniform and caused the regenerating 
forest to become highly heterogeneous (Brown and Lugo 
1992). The AGB of the heterogeneous logged-over forest 
in the study site could be estimated from the mean cano-
py height (Fig. 5). Selective logging created canopy gaps 
(Johns 1988) allowing laser-pulse penetration through the 
forest canopy. Heterogeneous forest structure means differ-
ences in vertical layering (Asner et al. 2009). Loss of emer-
gent and upper canopy trees enables the lower canopy trees 
to receive more laser pulses thus allowing for a better as-
sessment of the lower vertical layer forest structure. By tak-
ing the mean of all laser pulse first returns, the mean canopy 
height considered trees in all sizes in the vertical layers, and 
thus accurately characterized the three dimensional tree dis-
tribution of the logged-over forest.

Mean height metric from LiDAR data has widely been 
used to develop the AGB or carbon estimation models: low-
land rainforest in Central Kalimantan (Jubanski et al. 2013), 
rainforest in Panama, Peru, Madagascar, and Hawaii (Asner 
et al. 2012c), and tropical montane forest in Sabah, Borneo 
(Ioki et al. 2014). Although the model’s coefficient of deter-
mination was not very high (R2 = 0.67), the single-variable 
model had an RMSE of 22.31% of the mean AGB, which 
is lower than the RMSE of the single-variable model using 
mean canopy height (28% of the mean AGB) and multiple-
variable model (26% of the mean AGB) (Ioki et al. 2014). 
Overall the estimated AGB corresponded well with the ob-
served AGB (Fig. 6). Only a few plots had considerable over 
and under-estimation issues. Further examination of the plots 
with AGB over-estimation suggest that this was due to the 
presence of a few big trees in a relatively low density stand. 
As most of the LiDAR pulses were reflected by the few big 
trees, the hmean values became relatively high, thus tending to 
over-estimate the AGB. On the other hand, AGB under-esti-
mation occurred in a few plots with hmean of more than 25 m  
but less than 30 m. These areas were heavily logged 25 years 

ago and provided a lot of gaps for regeneration. These ar-
eas are now constituted by mostly medium-size trees that 
are summed to a substantial amount of AGB. Nevertheless, 
these plots were within the RMSE with the exception of one 
plot. This plot had 70% more trees than an average plots 
with similar mean H and DBH, leading to a higher observed 
AGB than was derived from the LiDAR data.

5. CONCLUSION

This study examined the use of airborne LiDAR to esti-
mate AGB in a logged-over forest in Sabah. Among the Li-
DAR variables, mean canopy height was best correlated with 
AGB in the logged-over forest. The AGB estimation model 
using mean canopy height had the lowest RMSE, suggesting 
it yields the most accurate AGB estimates and can be used 
as a reliable approach to estimate carbon stocks for REDD+. 
While the deployment of an airborne LiDAR sensor is rela-
tively expensive, it greatly reduces the number of field plots 
required to accurately estimate the AGB of a highly hetero-
geneous logged-over forest. We suggest that LiDAR based 
estimates will be more time and cost effective, and provide 
a more realistic Measurement, Reporting, and Verification 
(MRV) system for REDD+. As most of the permanent for-
est estates in Sabah consist of logged-over forests, further 
studies are recommended to see if the mean canopy height is 
the universal predictor for AGB for other logged-over low-
land rainforest sites in Sabah and to also investigate whether 
these findings can be applied to estimate carbon stocks in the 
remaining primary lowland rainforests.
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