Universiti Teknologi Malaysia Institutional Repository

Morphology, thermal and mechanical behavior of polypropylene nanocomposites toughened with poly(ethylene-co-octene)

Hassan, Azman and Jian, Wei Lim and Rahmat, Abdul Razak and Wahit, Mat Uzir (2006) Morphology, thermal and mechanical behavior of polypropylene nanocomposites toughened with poly(ethylene-co-octene). Polymer International, 55 (2). pp. 204-215. ISSN 0959-8103

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1002/pi.1942

Abstract

Rubber-toughened polypropylene (PP) nanocomposites containing organophilic layered silicates were prepared by means of melt extrusion at 230°C using a co-rotating twin-screw extruder in order to examine the influence of the organoclay and the addition of PP grafted with maleic anhydride (PPgMAH) as a compatibilizer on the morphological, mechanical and thermal properties. The mechanical properties of rubber-toughened polypropylene nanocomposites (RTPPNCs) were studied through tensile, flexural and impact tests. Scanning electron microscopy (SEM) was used for investigation of the phase morphology and rubber particles size. X-ray diffraction (XRD) was employed to characterize the formation of nanocomposites. The thermal properties were investigated by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dynamic mechanical properties were examined by using dynamic mechanical analysis (DMA). From the tensile and flexural tests, the optimum loading of organoclay in RTPP was found to be 6 wt%. The optimum loading of PPgMAH, based on the tensile and flexural properties, was also 6 wt%. The increase in the organoclay and PPgMAH content resulted in a severe embrittlement, manifested by a drop in the impact strength and tensile elongation at break. XRD studies revealed that intercalated RTPPNCs had been successfully prepared where the macromolecular PP segments were intercalated into the interlayer space of the organoclay. In addition, the organoclay was dispersed more evenly in the RTPPNC as the PPgMAH content increased. TGA results revealed that the thermal stability of the RTPPNC improved significantly with the addition of a small amount of organoclay.

Item Type:Article
Uncontrolled Keywords:Polypropylene, rubber toughened, nanocomposite, organoclay
Subjects:T Technology > TP Chemical technology
Divisions:Chemical and Natural Resources Engineering (Formerly known)
ID Code:7218
Deposited By: Maznira Sylvia Azra Mansor
Deposited On:01 Jan 2009 04:48
Last Modified:26 Nov 2012 03:48

Repository Staff Only: item control page