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Abstract

Developing carbon fiber from polyacrylonitrile (PAN) based fiber is generally subjected to three processes namely stabilization, carboniza-
tion, and graphitization under controlled conditions. The PAN fiber is first stretched and simultaneously oxidized in a temperature range of
200e300 �C. This treatment converts thermoplastic PAN to a non-plastic cyclic or a ladder compound. After oxidation, the fibers are carbonized
at about 1000 �C in inert atmosphere which is usually nitrogen. Then, in order to improve the ordering and orientation of the crystallites in the
direction of the fiber axis, the fiber must be heated at about 1500e3000 �C until the polymer contains 92e100%. High temperature process
generally leads to higher modulus fibers which expel impurities in the chain as volatile by-products. During heating treatment, the fiber shrinks
in diameter, builds the structure into a large structure and upgrades the strength by removing the initial nitrogen content of PAN precursor and
the timing of nitrogen. With better-controlled condition, the strength of the fiber can achieve up to 400 GPa after this pyrolysis process.
� 2007 Published by Elsevier Ltd.
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1. Introduction

It has been documented that the majority of all carbon fi-
bers used today are made from PAN precursor, which is
a form of acrylic fiber. PAN which is a polymer with a chain
of carbon connected to one another (Fig. 1) is hard, horny, rel-
atively insoluble, and a high-melting material [1]. It has been
established that PAN-based carbon fiber is stronger than other
type of precursor-based carbon fiber [2]. PAN-based fibers also
have been found to be the most suitable precursors for produc-
ing high performance carbon fibers (compared to pitch, rayon,
etc.) generally because of its higher melting point and greater
carbon yield (>50% of the original precursor mass) [3e7].
Although carbon fiber can be from pitch precursor, the pro-
cessing and purifying it to the fiber form is very expensive
and generally, they are more expensive than PAN-based fibers
[8]. PAN with molecular formula [C3H3N]n can produce car-
bon fiber of relatively high carbon yield giving rise to
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a thermally stable, extremely oriented molecular structure
when subjected to a low temperature treatment [9]. PAN fiber
was also preferred to be the precursor because of its fast rate in
pyrolysis without changing its basic structure [9]. Optimizing
the pyrolysis of PAN precursor fiber would ideally result in en-
hanced performance of the resulting carbon fiber.

Recent study has established that PAN fibers were used on
a large scale in textile industry and one of the most suitable
and widely applied for making high performance carbon fibers
[10e13]. Most PAN-based carbon fibers extensively applied in
last two decades were used in the composite technology [14].
They are highly desirable for high performance composites for
automotive and aerospace technologies due to their enhanced
physical and mechanical characteristics [9]. Fitzer [15] and
Chen and Harrison [16] believed that the optimization of
PAN fiber would ideally result in high performance for use
in aerospace application. Hence PAN-based fiber that leads
to a good balance in properties can be used in structural appli-
cations and provide high strength [2].

Year by year there will be an improvement on performance
as well as strength and modulus of PAN-based carbon fiber
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[17]. Traceski [18] stated that the total worldwide production
of PAN-based carbon fiber was 19 million lbs per year for
1989 and increased up to 26 million lbs per year. In addition,
the worldwide outlook for the demand of PAN carbon fibers is
currently amounting to a nearly $6 billion pound per year
worldwide effort [19,20]. So, the wide availability of PAN pre-
cursor had triggered the production of carbon fiber.

1.1. Heat treatment

Heat treatment is a process that converts the PAN fiber pre-
cursor to carbon fiber. Currently 90% of all commercial carbon
or graphite fibers are produced by the thermal conversion of
a PAN precursor, which is a form of acrylic fiber. The successful
conversion of PAN to high strength, high modulus fibers depend
in part upon the understanding of the oxidative and thermal
treatment. Liu et al. [21] listed the three steps for the conversion
of precursor of PAN-based fiber to carbon, which are as follows.

i. Oxidative stabilization, which forms ladder structure to
enable them to undergo processing at higher temperatures.

ii. High temperature carbonization, (�1600 �C) to keep out
noncarbon atoms and yield a turbostatic structure.

iii. Further heat up to 2000 �C to improve the orientation of
the basal planes and the stiffness of fibers, which is
called graphitization.

2. Precursor stabilization

Among the conversion processes shown in Fig. 2, an essen-
tial and time-consuming step in the conversion of PAN fibers
to high performance carbon fiber is the oxidative stabilization
step [7]. This can be explained by chemical reactions that are
involved in this process, which are cyclization, dehydrogena-
tion, aromatization, oxidation and crosslinking which can re-
sult in the formation of the conjugated ladder structure
[22,23]. The oxidative stabilization stage is one of the most
complicated stages, since different chemical reactions take
place and the structure of the carbon fiber is set in this stage.

Stabilization process, which is done in atmosphere can
change chemical structure of the fiber and cause them to become
thermally stable and so melting will not reoccur [24]. Recently,
the stabilization process is found to play an important role in
converting PAN fiber to an infusible stable ladder polymer
that converts C^N bonds to C]N bonds [25] and to develop
crosslink between molecules of PAN [26] which tend to operate
at high temperatures, with minimum volatilization of carbona-
ceous material. The thermal stability of the stabilized fiber is at-
tributed to the formation of the ladder structure due to

Fig. 1. Molecular structure of polyacrylonitrile.
cyclization of the nitrile groups in acrylic molecule. Setnescu
et al. [27] observed that CH2 and CN groups disappeared com-
pletely due to elimination, cyclization and aromatization reac-
tions and formed C]C, C]N and ]CeH groups. Typically,
during the course of stabilization, the PAN-based precursor fiber
undergoes a change in colour from white through shades of yel-
low and browns to ultimately a black stabilized fiber. The mech-
anism for colouration is not fully understood. However, the
appearance of black colour is believed to be due to the formation
of ladder ring structure [28,29].

In this process, the required temperature is the important
factor that would affect the heating treatment of PAN fiber.
Heat treatment involved in stabilization of PAN fiber is carried
out usually at the region of 180e300 �C [24,30]. When tem-
perature exceeds 180 �C, the molecular chains will unfold
and move around. But some researchers found that heating
temperature within 200e300 �C are usually used to stabilize
the fiber [7,23,25,31e34]. Fitzer et al. [35] suggested that in
producing best performance carbon fiber, the best stabilized
temperature is 270 �C. However, other researchers [36e38]
found that heating treatment needs higher than 300 �C to com-
plete the stabilization. Mathur et al. [39] also proposed that
PAN fiber does not get preferred stability at 270 �C but needs
higher temperature up to 400 �C. It was known that PAN fiber
with optimum stabilization condition can produce higher mod-
ulus carbon fiber than unstablized fiber or than fiber which is
prepared at high temperature stabilization process [31]. If the
temperature is too high, the fibers can overheat and fuse or
even burn. However, if the temperature is too low, the reac-
tions are slow and incomplete stabilization can be resulted,
yielding poor carbon fiber properties.

Fig. 2. PAN precursor carbon fiber conversion process.
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Previously two important reactions occur during stabiliza-
tion process which can change the chemistry of PAN structure
[40]. They are dehydrogenation and cyclization reactions as
illustrated in Fig. 3. Both are important to form ladder polymer
structure which was thermally stable and might be able to
withstand high temperature during pyrolysis process. In addi-
tion, stabilization process also could be present in oxidation
reaction which gives an insight about diffusion of oxygen
through the reacting polymer [41].

2.1. Oxidation reaction

The oxidation reaction during PAN-based precursor stabili-
zation is the least reaction and is the step which most precur-
sors depend. Commercially, stabilization of PAN fiber is done
in an ‘oxidizing’ medium which is typically air. The reaction
exotherm when PAN is stabilized in air is partly due to reac-
tion with oxygen. Although stabilization could be done in an
inert atmosphere, a polymer back-bone containing oxygen-
bearing groups that evolves in PAN ladder structure (Fig. 4)
provides greater stability to sustain high temperature carbon-
ization treatment [42].

Fitzer and Muller [43] have concluded that the activation
energy and the frequency factor were greater in air than in ni-
trogen (inert gas). This indicates that oxygen is an initiator for
the formation of activated center for cyclization because of the
increase in the activation energy. Consequently, various struc-
tures of oxidized PAN that account for the presence of oxygen
have been proposed including those containing bridging ether
links, those containing carbonyl groups, and those in which
each nitrogen atom donates its lone pair of electron to an
oxygen (as shown in Fig. 5) [5,44].

2.2. Dehydrogenation process

Dehydrogenation is the formation of double bonds that sta-
bilizes carbon chain and cyclization is the process by which
the rings are formed. The dehydrogenation reactions have at
least two elementary steps, with oxidation in the first step
and elimination of water in the second. Studies have shown
that either the original PAN polymer or cyclized ladder poly-
mer can undergo dehydrogenation [43]. As a conclusion from
Fig. 3, the reactions are usually written in the form of Fig. 6.
Since oxygen is required for the reaction to proceed, dehydro-
genation does not occur in inert atmosphere. This is different
from the cyclization reaction. The double bond or unsaturated
bond that formed in the reaction improves the polymer’s ther-
mal stability and reduces chain scission during carbonization
[45].

2.3. Cyclization reaction

The last reaction that would be discussed is cyclization
which is the most important reaction in the stabilization of
PAN fiber. Cyclization is the reaction of the nitrile groups in
the precursor polymer with adjacent groups to form a stable,
ladder polymer and could be described by first order kinetic
equation [43]. Cyclization is the most important reaction in
stabilization process. The cyclization of the nitrile groups is
an exothermic reaction and that the evolution of gaseous prod-
ucts accompanies this reaction [46]. The reaction is necessary
to hold molecules in fiber together and increases the stiffness
[47e50]. In addition, the idea of cyclization was conceived by

Fig. 4. Ladder PAN structure [26].
Fig. 3. Proposed chemistry of PAN stabilization [9,40].
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Houtz [51] in 1950 from his observation that PAN stabilization
led to change in colouration.

During the stabilization process, the PAN structure un-
dergoes cyclization reaction and converts the triple bond struc-
ture (e.g. C^N) to double bond structure (e.g. C]N),
resulting in a six-membered cyclic pyridine ring proposed
by Houtz [51] as illustrated in Fig. 7 and changes the aliphatic
to cyclic structure prior to the formation of ladder polymer.
Referring to this figure (Fig. 7), cyclization reactions can pro-
ceed in either an inert atmosphere or in the presence of oxy-
gen. In other words, oxygen is not involved in the reaction
mechanism of cyclization. When the temperature rises up to
600 �C, the cyclized structure undergoes dehydrogenation
and links up in lateral direction, producing a graphite-like

Fig. 5. Proposed structures of oxidized PAN: (a) bridging ether links; (b) car-

bonyl groups; (c) donation of lone pair electron to oxygen atom; (d) hydroxyl

and carbonyl groups [44,45].
layer or ribbon structure (shown in Fig. 8) consisting of three
hexagons in the lateral direction and bounded by nitrogen
atom [52].

The initiation of the cyclization reaction has been attributed
to several sources: (1) impurities such as catalyst fragments, re-
sidual polymerization products, inhibitors, etc. [53] (2) the chain
end groups; [54] (3) random initiation by hydrogen atoms a to
the nitrile; [55] (4) transformation of a nitrile to an azomethine;
[56];(5) the presence of a ketonitrile formed by hydrolysis dur-
ing polymerization; [28] and (6) hydrolysis of nitriles to acids
during polymerization [57]. In addition, due to their reaction,
cyclization reactions can proceed in either an inert atmosphere
or in the presence of oxygen. In other words, oxygen is not in-
volved in the reaction mechanism of cyclization.

2.4. Miscellaneous types of stabilization process

Although a wide variety of stabilization processes are
described, they have several design objectives in common.

1. Runaway reactions from heat must be prevented.
2. Stabilization must be completed throughout the fiber.
3. The shrinkage must be completed throughout the fibers.
4. The reactions are slow and accelerations are helpful.

When the production volume increased specific methods of
stabilizing the fiber were patented. The patents deal with three
major areas: batch process, continuous process, and accelera-
tion of stabilization reactions. This section provides general
example from each of these areas that illustrates common de-
sign objectives described above.

2.4.1. Batch process
Three examples of batch processes are shown in Figs. 9e11.

The first process blows hot air through a spool precursor
loosely wound on a porous core. The air permits heat removal

Fig. 7. Fully aromatic cyclized structure proposed by Houtz [51].
Fig. 6. The dehydrogenation reaction during stabilization process: (a) PAN polymer; (b) cyclized PAN.
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and provides a source of oxygen. Shrinkage is controlled by
the fiber itself as it is wound and spool. However, since the
air flow is not uniform and the fibers are in contact with one
another, a batch process with a method to move the yarn
and improve the uniformity was developed as in Fig. 10.
The ends are tied and the rollers turned to minimize the

Fig. 8. Schematic of graphite ribbon [52].

Fig. 9. Batch stabilization of polyacrylonitrile yarn on the tube [58].
contact of the yarn with the rollers. And the shrinkage is con-
trolled by adjusting the tension applied to the rack. The final
process in Fig. 11 is a step toward continuous process and
probably is more expensive to operate than the two processes
(Figs. 9 and 10) described before. The initial stages of stabili-
zation are performed continuously in a multiphase oven with
the fiber restrained from shrinkage by the oven roller. The
more stable final stages are completed in batch oven where
the yarn is wrapped into loose skeins. However, the process
is limited in its ability to produce since the yarn in contact
with the support will differ from that surrounded by air, and
the tension is not uniform in the skein.

2.4.2. Continuous process
The continuous processes for stabilizing PAN are all based

on the idea of pulling tows through heated boxes. The first
sketch in Fig. 12 illustrates the basic heated box with multiple
passes. The tow may be oriented horizontally or vertically in
the oven and the air in the oven is circulated to control heat
and mass transfers.

It also patented by Toho Company [61], where the fiber
passes through the oven, turns on a roller, and re-enters the
oven. In addition, the heat is controlled by the yarn moving
outside the hot oven every few minutes. Meanwhile Cour-
taulds (Fig. 13) has patented a stabilization oven which con-
tains a number of different temperature zones in a single
oven [62]. The yarn is wound on long rollers which pass
through a series of buffled oven zones. This concept of multi-
ple zones with a stage temperature is probably used in all com-
mercial processes. An interesting continuous process is shown
by the fluidized bed process (Fig. 14) [63]. Here the fibers are

Fig. 10. Moving rack process by atomic energy authority [59].
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Fig. 11. Semi-batch production of carbon fibers from PAN fiber [60].
passed through a bed of fluidized hollow balls, significantly
improving the heat and mass transfer rates. This design could
allow the use of higher temperatures and still avoid runaway
reaction and should allow more rapid dehydrogenation and
oxidation.

2.4.3. Accelerator process
Most accelerators serve as initiators for the cyclization re-

actions. An example of this is the introduction of acidic groups
like itaconic acids which was claimed by the US patent
4,079,122 [64]. This monomer contains two acid groups which
provide two initiation sites, leaving fewer uncyclized links for
later carbonization. Besides, the US patent 4,397,831 [61]
claimed that by passing the fibers through a bath which con-
tains a water-soluble zinc compound and then washes the fiber
with the water, could result in Lewis acid served to initiate the
cyclization reaction. Other than that, an example for accelera-
tor process by modifying the stabilization gas is given by the
US patent 3,954,947 [65]. An atmosphere of oxygen and hy-
drogen chloride is used, resulting in shorter times for complete
stabilization.

3. Carbonization

Carbonization was an aromatic growth and polymerization,
in which the fiber would undergo heating process at a high

Fig. 12. Continuous stabilization process with roller outside the oven [61].
temperature up to 800e3000 �C, typically to a 95% carbon
content [31]. Carbonization at 1000 �C will produce carbon fi-
ber in low modulus type and intermediate modulus or type II
carbon fiber will produce at up to 1500 �C [13,16,31,66]. Trin-
quecoste and group [67], also observed that heating process
around 1000 �C produced high tensile strength fiber, and for
high modulus fiber, higher temperature treatment is needed.
Thus, it would change the PAN structure as illustrated
Fig. 15 [68] and Fig. 16 [69].

A few researchers had put in effort to understand the car-
bonization step especially in continuous model [21]. However,
whatever be the technique, the process only occurs in inert at-
mosphere condition and usually involves heating the polymer
in a nitrogen rich environment (Fig. 17) [70]. In addition, ten-
sile and modulus have shown significant increase with carbon-
ization treatment under N2 [71]. But some researchers proved
that argon also can act as inert gas in carbonization process
[72e76]. Whereas, carbonizing the stabilized PAN fiber in
an atmosphere of HCl vapors could enhance the carbon fiber
yield, subsequently decreasing the amount of hydrogen cya-
nide (HCN) by eliminating nitrogen as ammonia. However,

Fig. 13. Courtaulds furnace for oxidation, carbonization and graphitization

[62].
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the consumption of argon and HCl was very costly and HCl
could make the equipment corrosive [76,77].

In carbonization process, there are two steps wherein, the
first step involves in carbonization process and is the thermal
pyrolysis up to 600 �C. Low heating rate as low as 5 �C/min
was used which could lower the mass transfer because of in-
ability of the structure [35]. In the second stage, high heating
rate for high final temperature is needed.

Unlike the first stage, the high heating rate had been used in
the second stage because of lesser possibility of damage to the
structure due to stability of PAN structure [38]. Thus, the pro-
cess requires only less than 10 min for the second stage [78].
However, previous study claimed that too high heating rate
could cause higher amount of shrinkage [16,35]. Some studies

Fig. 14. Rolls-Royce equipment for stabilization of PAN fiber in a fluidized

bed [63].
stated that PAN fiber that stabilized at temperature fewer than
250 �C could not withstand at high heating rate beyond
1700 �C and produced a brittle fiber [38]. Hence, the optimum
carbonization was required in order to form better properties
of final carbon fiber.

3.1. Stretching during pyrolysis

Stretching during pyrolysis process helps to develop high
tensile modulus and improves fiber strength upon subsequent
heat treatment. Some study indicated that the strength of the
fiber had been restored and could be improved when the high
temperatures were accompanied by reasonable degree of
stretching [79]. Tsai and Lin [80] and Edie [33] also stated
that with the requirement of the stretching in this step, ade-
quate modulus and strength of carbon fiber could be
produced.

Other than that stretching could attenuate amount of shrink-
age, which was caused by high heating rate [70]. Therefore, if
no stretching was applied in the early stage of pyrolysis, then
the length shrinkage and the loss of preferred orientation occur
and hence deteriorate the mechanical properties of carbon
fiber [80].

4. Graphitization

For further improvement on the performance, carbonized fi-
ber must undergo graphitization process. Graphitization is the
transformation of carbon structure into graphite structure by
heat treatment as well as thermal decomposition at high tem-
perature processing. Actually, the process of production of
both carbon fiber and graphite fiber was essentially the same
either in carbonization or in graphitization. During graphitiza-
tion the temperature does not only rise until 1600 �C, but ex-
ceeds up to 3000 �C [38,77,81]. In other words, graphitization
process was a carbonization process at high heating tempera-
ture. At this stage, up to 99% of PAN polymer was converted
to carbon structure. Carbon fiber which was produced in this
condition was in very high modulus fiber or can be classified
as type I carbon fiber.
Fig. 15. Structure changes for PAN precursor during carbonization [68].
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Fig. 16. Sketch of the structural and chemical transformation of the stabilized PAN precursor along with increasing carbonization temperature. N-5, cetopyridine;

N-6, pyridine-like N; N-X, pyridine-N-oxide; N-Q, graphitic-like N [69].
5. Functionality gaseous

Generally, carbonized fiber can be found when the temper-
ature reaches 1200 �C and above in inert atmosphere [76].
Through the heating process, the fiber could expel impurities
as volatile by-products such as methane (CH4), hydrogen
(H2), hydrogen cyanide (HCN), water (H2O), CO2, NH3 and
various gases [25,33,35,82]. Among that gases, HCN, NH3

and CO are the toxic compounds that evolved during pyrolysis
[83]. But, HCN and NH3 are the major toxic gases that
evolved from decomposition of PAN. Data pertaining to evo-
lution of gases during the carbonization process, from Donnet
and Bahl [84], are shown in Fig. 18.

The other factor that promoted excessively volatile compo-
nent was high stabilization temperature. High stabilization
temperature promotes over absorption of oxygen in stabilized
fiber and might form excessive eC]O bonds. Usually, the ox-
ygen in these bonds escapes as water vapor [25]. It is known
that the decrease of oxygen as water vapor is due to evolution
of H2O in the early stages of carbonization in the range be-
tween 300e500 �C. The evolution of H2O results from the
crosslinking condensation reactions between two monomer
units of the adjacent ladder polymeric molecular chains which
is illustrated in Fig. 19 [85]. When the temperature increased
up to 800 �C, hydrogen cyanide and ammonia were the side
gases which also evolved and released with water [68]. Watt
[86] stated that reaction involving chain termination have
been stated as the reason for the formation of ammonia.
This could be either by the formation of ammonia from active
chain ends, or by the end-to-end joining of two ladder struc-
ture (Fig. 20A). While, the mechanisms for evolution of hy-
drogen cyanide by the same author are shown in Fig. 20A,B.

Meanwhile, the formation of N2 has been found to start
early at 720 �C [68] and more nitrogen was eliminated from
the bulk than from the surface during this heating process
[69]. Evolution of nitrogen and hydrogen was explained by
Watt [86] with the scheme in Fig. 21. This results in nitrogen
atoms substituted in the hexagonal lattice of aromatized car-
bon, and explains the presence of large amounts of nitrogen
in the carbonized fiber. Graphitization at higher temperatures
reduces the concentration of residual nitrogen to very small
levels. An alternate scheme for dehydrogenation and denitro-
genation has been proposed by Zhu et al. [68] and is shown
in Fig. 15. In addition, there is also elimination of CH4, CO2

and CO that occurs at temperature higher than 800 �C [87].
As a result, the gases were removed until the fiber contains

up to 50% carbon content and above [9,88,89]. Sometimes,
when the temperature increased up to 1300 �C, the carbonized
PAN fiber could achieve 96% carbon content [31]. The in-
crease in the carbon would decrease the nitrogen, hydrogen
and oxygen content [25,31,69]. Table 1 shows the percentage
of nitrogen and hydrogen which was released from the fiber
and the increase of carbon content when the temperature rises.
The release of the gases would result in loss in the fiber weight
Fig. 17. Schematic diagram of the apparatus used for carbonization [70].
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within 55e60 wt%, and likely generate pores [33]. Some stud-
ies divided the decrease in the weight into two conditions, for
about 32% weight loss in the range of 350e800 �C and 13%
loss within 900e1000 �C [90]. However, no weight loss was
observed beyond 1900 �C, and the fiber contains only carbon
[91].

Much of the research work has been done either to improve
mechanical properties or to decrease the manufacturing cost of
carbon fiber [4,35,92]. The manufacturing of carbon fiber is
not an easy task due to their strict procedure. The fiber also
tends to brittle without proper control on optimization process.
Therefore, a comprehensive study should be done to find the
optimum condition for the production of carbon fiber with
excellent performance that used in advanced materials and
becoming worldwide application.

6. Effect of heating treatment on PAN-based
carbon fiber properties

The characteristics of PAN-based carbon fiber could be
measured through infrared spectra. The infrared spectrum
would identify whether the PAN fiber was stabilized and car-
bonized or not. Sometimes the characteristic was measured by
physical properties as well as the diameter and the density of
the fiber. There was a relationship between diameter, density

Fig. 18. Evolution of noncarbon elements from PAN fiber during carbonization

[84].
and performance of carbon fiber. Mittal et al. [38] observed
that generally when the diameter decreased, the density would
be increased. In general, reducing the PAN fiber diameter and
increasing fiber density could make the fiber denser and hence
improved the performance of carbon fiber. The improvement
could be done by introducing proper treatment especially
heat treatment.

6.1. Infrared (IR) characteristics

Infrared (IR) spectra can be used to analyze the chemical
structure that exists in the fiber. According to IR analyzes,
PAN fiber showed prominent peaks at 2940 cm�1 (eCH
stretch), 2240 cm�1 (C^N stretch) and 1452 cm�1 (eCH2

bend) and for SAF with 1% IA and 6% MA, the carbonyl
stretch of comonomer units appeared at 1730 cm�1 [23].

Conley and Beron [93] stated that two dominant peaks,
which are at 2940 cm�1 and 2240 cm�1 start decreasing at
180 �C due to the formation of cyclization reaction. However,
Colemen and coworkers [94e99] suggested that the

Fig. 20. (A) Elimination of NH3 and HCN at low temperatures; (B) high-tem-

perature elimination of HCN [86].
Fig. 19. The crosslinking condensation reactions between two monomer units of the adjacent ladder polymeric chains [85].
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Fig. 21. Elimination of N2 and H2 at high temperature [86].
disappearance of 2240 cm�1 band for the nitrile began as early
as 160 �C under vacuum. Setnescu et al. [27] observed,
through pyrolysis process, that two peaks almost completely
disappeared and new peaks appeared around 800 cm�1 and
1600 cm�1. The change in peaks are due to the formation of
C]C, C]N and ]CeH and results in the formation of car-
bon fiber structure.

6.2. Diameter

Large diameter is one of the limitations of fiber strength. As
mentioned before, to give uniformity in heat treatment, fibers
must have a small diameter. Chen and Harrison [16], stated
that small diameter can reduce any gradient temperature
across the fiber to form uniformity of heat treatment.

Commercial PAN fiber like Dralon T (DT) and Special
Acrylic Fiber (SAF) have diameter in the range of 8e20 mm
[23]. As stated before, plasticizer is applied in post-spinning
modification to reduce fiber diameter prior to heat treatment.
When heat treatment has been applied as well as the rise in
the temperature, the diameter of the fiber would shrink again

Table 1

Chemical composition of some pyrolyzed PAN samples found by elemental

analysis [27]

Pyrolysis temperature (�C) Element content

Carbon (%) Nitrogen (%) Hydrogen (%)

Initial 66.33 26.00 5.47

600 68.51 11.93 3.69

900 75.46 6.28 1.46
and produced small fiber diameter. Sometimes a diameter
with ten times lower than human hair could be produced
[16]. The significant reduction in diameter has been observed
within the carbonization temperature (below 1000 �C) [38].
Similar trend of the reduction of fiber diameter has been found
by Liu et al. [21]. In other words, the diameter diminished
throughout the carbonization treatment.

6.3. Density

Various studies indicated that a significant change in the fi-
ber density occurred below carbonization temperature
[31,81,100]. Within the carbonization temperature (300e
1200 �C), the changes in the density of the fibers take place
up to 800 �C [38]. Sometimes, it could rapidly change up to
1000 �C [31]. The density could be changed due to the com-
paction of the structure taking place during the early stages
of carbonization. It is also due to the presence of the noncar-
bon elements in the fiber and the ladder polymer structures in-
terconnecting with one another [100].

However, the density increase was followed by a sharp drop
at 1000 �C which is due to the conversion of open pores to
closed pores [31]. As a consequence, the air would be trapped
inside the fibers and hence results in low density which could
limit the tensile strength of the final carbon fiber [25]. How-
ever, Ozbek and Isaac [79] and Sauder et al. [101] observed
that heating temperature (HTT), which increases up to
3000 �C, can eliminate the effect of open and closed pores.
This is because, in this region high heating rate and high tem-
perature were used which made the vibrations of molecules
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faster. So, the air in closed pores will be freed and thus reduces
the number of closed pores.
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