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Electricity load forecasting has become one of the most functioning tools in energy efficiency and load management

and utility companies which has been made very complex due to deregulation. Due to the importance of providing

a secure and economic electricty for the consumers, having a reliable and robust enough forecast engine in short-

term load management is very needful. Fuzzy inference system is one of primal branches of Artificial Intelligence

techniques which has been widely used for different applications of decision making in complex systems. This paper

aims to develop a Fuzzy inference system as a main forecast engine for Short term Load Forecasting (STLF) of a city

in Iran. However, the optimization of this platform for this special case remains a basic problem. Hence, to address

this issue, the Radial Movement Optimization (RMO) technique is proposed to optimize the whole Fuzzy platform.

To support this idea, the accuracy of the proposed model is analyzed using MAPE index and an average error of

1.38% is obtained for the forecast load demand which represents the reliability of the proposed method. Finally,

results achieved by this method, demonstrate that an adaptive two-stage hybrid system consisting of Fuzzy & RMO

can be an accurate and robust enough choice for STLF problems. VC 2016 Wiley Periodicals, Inc. Complexity 21:

521–532, 2016
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1. INTRODUCTION

D
ue to deregulation of the electric power systems pre-

dicting the demand load behavior has become a very

complex and chaotic [1,2]. Nowadays, electricity
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distributer companies feel a need for electrical load fore-

casting to certainly enhance the ability to manage the pro-

duction and demand at the same time, securely, and

economically. Normally, load forecasters are classified into

three types: Short-term Load forecast (STLF), Middle-term

Load Forecast, and Long-term Load forecast [3–6]. Short-

term Load forecast with the ability of hourly prediction

seems to be the most challenging, complex, and difficult

among them due to the fast changes in values and unpre-

dictable behavior of the users of electrical appliances and

units. During the past years, a wide variety of approaches

and techniques have been hired to tackle this problem

[7–9]. Forecasting techniques can be divided into two

main categories: classic and modern approaches. Most

classic techniques are based on time series estimation

which mainly includes approaches based on statistical

methods such as Box and Jenkis [6] double exponential

smoothing, halt-winter, autoregressive (AR), and autore-

gressive moving average (ARIMA) [10,11]. Quite the oppo-

site, modern forecasting techniques provide faster

convergence and more accurate forecasts [12,13]. Among

the modern forecasting algorithms, machine learning and

artificial intelligence (AI)-based techniques are of interest,

due to their remarkable performance compared with the

classic methods [14–16].

Fundamentally, classical methods rely on linear analy-

sis, while the load series are usually nonlinear functions of

the exogenous variables. It results in lack of accuracy in

developing a model which correlates the load and a series

of nonlinear factors such as daily time rhytms. For some

of which require nonlinear models such as ARIMA, the

main concern is the utilization of a search process that

requires a few iterations and occationally may not con-

verge. To avoid this, adjusting step sizes arbitrary and

determining stoppage criteria which may devalue the

search process are necessary [17,18]. Consequently, to

include the nonlinearity, the AI techniques have attracted

scientists’ and researchers’ attention in load forecasting

problems [19,20]. As examples of such techniques, Neural

Networks [21,22], Fuzzy Inference [23–26], Particle Swarm

Optimization [27–30], Genetic Algorithm, and Support

Vector machines can be mentioned [31–36].

Among the AI techniques, artificial neural networks

(ANN) and its have attracted many researchers’ attention

and therefore a lot of research has been focused on their

application in STLF. To mention some of them, Ringwood

et al. [37], modeled the short, medium and long term load

demands using a neural network (NN) technique by

employing an auto-correlation function as a network

structure. By comparing the proposed NN-based models

with some conventional methods such as Box-Jenkins,

better performance was reported. However, they still pro-

vided lower quality results compared with some similar

research reports such as [38–40]

The benefit of using ANN is its learning ability from

the input data in a train process. However, conventional

ANN models mostly suffer from overfitting or suboptim-

ization problems which result in unsatisfactory experi-

mental forecasting accuracy [3]. Conversely, the process of

parameters and network architecture selection consoder-

ably affects the performance of the forecast model; that is,

to achieve acceptable results, it requires in depth knowl-

edge of the neural networks. Moreover, the trial and error

and tedious tuning process makes its optimization hard

and uncertain.

Hybrid technique of PSO with radial basis function

(RBF) neural network was applied to load forecasting

problem which improved the traditional RBF model [40];

however, the quality of results was far from being consid-

ered as satisfactory. Hybrid of genetic algorithm (GA) and

ANN has also been utilized for load forecasting problems

[41,42]. The GA technique provides a global search engine

which has been widely used for different optimization

problems. In this hybrid strategy, GA globally optimizes

the architecture of the ANN by finding the best numbers

for the input neurons and the hidden layers. Although GA

is a powerful optimization tool, the systems use GA are

mostly suffering from high computational costs and

efforts which is generally not suitable for short time frame

problems such as STLF.

Fuzzy inference system has also been applied to the

STFL problem [42–46]. The weakness of fuzzy inference

system is that it returns uncertainty and again requires in

depth knowledge of its structure, as the number and

boundaries of membership functions is one of the main

challenges.

Although hybrid techniques mostly provide higher

accuracy and better convergence profile for the training

algorithm, they are mostly computationally expensive and

time consuming methods [47–49]. Conversely, their com-

plexity are rather high and debugging and adjusting the

parameters may lead to improper results. Therefore,

robust adjusting the parameters and handling the uncer-

tainties of such techniques may need another approach

which makes it more complex and reduces the overall reli-

ability of the method. In light of this fact, there is a cry for

a robust yet simple hybrid search engine which is able to

provide robust and accurate forecast results while provides

acceptable computational cost and reduces complexity of

the system.

This research project aims to perform a short-term

load forecast in Iran (Mashhad) by employing a fuzzy

engine. To develop such a forecasting system, the hourly

load profile of 10 years are collected and used for the train

and test purposes. The fuzzy platform is typically opti-

mized in rule base by expert systems and a gradient

method for membership function optimization. However,

to achieve good forecasting results in this study, a novel
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fast and efficient netaheuristic algorithm called Radial

Movement Optimization (RMO) is applied on the fuzzy

system to obtain the best solution for rule bases and

membership functions. Eventually, the designed system is

demonstrated to be exact and accurate as 1.38% MAPE,

which considered as a satisfactory and reliable result for a

1 h ahead load forecaster. It is apparently shown that the

suggested Fuzzy system guarantees a robust response with

high nonlinearity detection. RMO algorithm used in this

case, has a significant role to achieve a fast convergence

for fuzzy platform which enables the system adopt any

new database. Overall, the proposed hybrid Fuzzy-RMO

technique provides more accurate and more robust results

by optimizing the membership function number and

boundaries of the fuzzy inference system. At the same

time, it diminishes the uncertainty from the fuzzy infer-

ence system and removes the confusion from choosing

the fuzzy inference input sets and parameters in the

design structure. The contributions of this article are

twofold:

1. To propose a novel hybrid method for short term

load forecasting problem which is simple yet robust

with low complexity;

2. to improve the hourly forecasting accuracy, taking

into account the prominent results exiting in the

literature.

The rest of the article is organized as follows. Section 2

presents the proposed approach to forecast wind power.

Section 3 provides the different criterions used to evaluate

the forecasting accuracy. Section 4 provides the numerical

results from a real-world case study. Section 5 outlines the

conclusions.

2. MATERIALS & METHODS
2.1. Case Study

Mashhad is the capital city of Razavi Khorasan prov-

ince and located in the northeast of Iran with metropo-

lean area of 3946 km2 and total area of 850 km2. It is the

largest electricy consumer in Iran with about 15,542,000

MWh per year and also the second most populous city of

this country. Currently its population is 3,131,586 persons

where 2,567,243 are living in the city. The population

growth was 1.81% and 1.90% between 2007 to 2008, and

2008 to 2009, respectively.

It is predicted that the electricity consumption of

Mashhad will raise to 2500 MW per year by 2025. In 2006,

Iran consumed 199,800,000 MWh per year with annual

increment of 8% in electricity consumption while the

world’s average increase was 3.7% per year. Meanwhile,

Mashhad by itself keeps an annual increment of 6% in

electrical energy consumption.

Since it hosts over 20 million tourists and pilgrims per

year in addition to the growth of population and industrial

sections, the electricity forecast of the load demand is

very complex and yet very crucial for the future munici-

palization and investments.

2.2. Fuzzy Inference System
Sugeno method which adopted for the methodology in

this study is described in this section [50]. Although, Mam-

dani method is known as the most common fuzzy inference

system used by researchers, Sugeno method is more suita-

ble in some specific applications. Compared to Mamdani

method, Sugeno is computationally efficient and provides a

more compact representation which is very useful when-

ever an adaptive technique is being used for constructing

the fuzzy model [51,52]. Since the fuzzy inference model is

being optimized, in this research, Sugeno inference model

is employed to be customized. In terms of operation,

Sugeno and Mamdani methods are quite similar in the first

two parts of the fuzzy process, which are fuzzifying the

inputs and applying the operators to the fuzzified inputs.

The main difference is in the output membership functions

which is always linear for Sugeno inference system [53].

A typical rule is Sugeno fuzzy model is shown as

follows:

if x; y ! inputes;

then zi5aix1biy1ci ! output
(1)

where ai and bi are equal to zero for a zero-order Sugeno

model in which the output level zi is always a constant.

The output level zi is defined for each rule and

weighted by the firing strength of the rule, wi. As an

instance, considering an AND rule with inputs of x and y,

the firing strength is obtained using the Boolean dot as

follows:

wi5ANDðF1ðxÞ;F2ðyÞÞ5F1ðxÞ:F2ðyÞ (2)

where F1 and F2 are membership functions for inputs x

and y. The final output of the system is the weighted aver-

age of all rule outputs, computed as:

Final; Output5

XN

j51
wj:zjXN

j51
wj

(3)

The operational block diagram of Sugeno rule is shown

in Figure 1.

2.3. Radial Movement Optimization
Radial Movement Optimization (RMO) is a swarm-

based metaheuristic global optimization technique pro-

posed by Rahmani and Yusof [54,55] as a fast, simple and

efficient tool for global optimization of complex and
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nonlinear optimization problems. It starts with initializing

the particles inside the problem search-space that each of

them proposes a solution to the problem. The evaluation

function is called objective function and calculates the fit-

ness value of all the particles at each single step. The gen-

eration of resultant movement vector is dependent to two

‘‘best’’ values besides a random vector for the particles.

The location of particles is represented by a matrix

where nop indicates the number of particles and nod is

the number of dimensions. The number of particles is

elective and depends on the user, but nod denotes the

number of variables which are going to be optimized. The

location matrix of the algorithm is shown in Eq. (4).

Xi;j5

X1;1 X1;2 . . . X1;nod

X2;1
. .

.
. . . �

� . . . . .
.

�

Xnop;1 Xnop;2 . . . Xnop;nod

2
66666664

3
77777775

(4)

where i51; 2; 3; . . . ;nop and j51; 2; 3; . . . ;nod.

2.3.1. Initialization

The first choice for initializing the particles in the solu-

tion space of the problem is to assign locations to the par-

ticles randomly. This random assignment should be

performed such that covers the whole nop3nod dimen-

sional search space. A sample of this initialization is

shown in below:

Xi;j5XminðjÞ1randð0; 1Þ3 XmaxðjÞ2XminðjÞ
� �

(5)

where i51; 2; 3; . . . ;nop and j51; 2; 3; . . . ;nod:XminðjÞand

XmaxðjÞ are the constraints for the jth dimension which are

determined based the search-space. The rand(0,1) can be

obtained from a normal distribution function, such as the

Gaussian Distribution, between 0 and 1. However, the ini-

tialization method shown in Eq. (6) is used is this study.

The reason is sharing the particles in the search space

uniformly to decrease the possibility of getting trapped in

local optima.

stepj5
XmaxðjÞ2XminðjÞ

nop

for i52; . . . ;nop

for j51; 2; . . . ;nod
)

X1;j5XminðjÞ

Xi;j5Xi21;j1stepj

8><
>:

8><
>:

(6)

2.3.2. Movements of the Particles

Once the cp has been obtained, the next step is to

sprinkle the particles from the cp along the radii. This

would make the particles move along the radii in straight

lines from the cp based on V i,j vector. The V i,j vector is a

FIGURE 1

A two input and single output Sugeno inference system with linear
output.

FIGURE 2

The particles sprinkled along the radii where Vmax is the radius of
the sphere [54].

FIGURE 3

A simple diagram for updating the cp through up vector [54].
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nop3nop random vector obtained based on the following

equation:

Vi;j5randð0; 1Þ3VmaxðjÞ )
VmaxðjÞ5

XmaxðjÞ2XminðjÞ
k

i51; 2; . . . ;nop

j51; 2; . . . ;nod

8>>><
>>>:

(7)

The coefficient k must be an integer number. The trials

on different cases show that the best values for k is in a

range of 2 to 5. However, it still depends on the other

parameters which are going to be introduced. For the test

cases, k is considered equal to 5. Normally, in such meth-

ods that particles are hired to search the solution-space,

an inertia weight is defined to consider the convergence

issue. In RMO, the inertia weight is shown with W and

reduces throughout the generation run. Equation (8)

shows the relation between W and the generation steps.

Wk5Wmax2
Wmax2Wmin

Generationmax

� �
3Generationk

V k
i;j5Wk3randð0; 1Þ3VmaxðjÞ

(8)

Unlike other global optimization techniques such as

PSO and DE, the particles in RMO do not fly over the

solution-space, so there is no need to save their current

location for the next step. As the value of velocity vector

V k
i;j is dependent on Wk, the values of Wmax and Wmin

determine the impact of the velocity vectors on the move-

ment of the particles (see Figure 2). In the figure, the

radial movement of the particles from the center point, cp

is shown. The boundaries of the sphere where the par-

ticles are sprinkled is equal to Vmax. In this study, the

Wmax is set to 1 and Wmin is set to 0.1.

Next, the objective function is used to evaluate the fit-

ness of all the particles. The radial particles with the best

fitness value will be taken as the radial best (Rbest). The

location of this particle with its associated value fitness

value represents the Rbest particles. Among the radial best

FIGURE 5

Statistical graph for the available load data of Mashhad.

FIGURE 4

Updating the cp by up vector.
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particles, comparisons are made to obtain the fittest parti-

cle which is known as global best (Gbest) particle. The

locations of the Gbest and Rbest particles are used to

update a new best center point location using the Update

(up) vector, as shown in Eqs. (9) and (10). The vector dia-

gram of the mentioned equations is shown in Figure 3.

cpk115cpk1up (9)

up5C13 Gbest2cpk
� �

1C23 Rbest2cpk
� �

(10)

C1 and C2 are the coefficients which must be set prior

to running the simulation. After the cp is updated, the

particles will be sprinkled again from the new cp. In the

following iteration, the value of the Gbest is replaced with

the value of the Rbest obtained, only if it is better than the

existing one; which means, If any of the Rbest proposes a

better solution than Gbest, the location of Gbest must be

swapped with Rbest. The stoppage criteria in this study is

the maximum iteration. Figure 4 shows the optimization

scenario of two tandem generations based on Eq. (10)

where the up vector updates the location of the cp.

3. IMPLEMENTATION OF THE HYBRID TECHNIQUE
In this study, hourly load demand data of Mashhad is

analysed, trained and tested for 10 years from 2004 to

2014. This large amount of data can lead to a complete

cognition of load attributes in this city. The forecaster is

designed to predict the on hour ahead load demand in

terms of dependence to previous load values. Figure 5

shows statistical graph of the available data for the load

demand of Mashhad, in which the parts of each candle

from bottom to top represent values for the lowest daily

load recorded, average of daily lowest values, the average

value, average of daily highest values, and the highest load

recorded for each month; respectively. The point to men-

tion is that since the heating system in autumn and winter

is mainly based on gas appliances and the cooling systems

in summer are mostly water-based air cooler, the overall

electricity consumption is not affected by the seasonal

changes. According to the graph, the highest peak load

was recorded in April with 4,170,818 kW while the lowest

peak recorded was in September with 3,762,681 kW. More-

over, the highest and lowest variations in the load demand

belong to August and April, respectively.

In the first stage, the input data is classified into two

groups: Six previous day and hour parameters. Moreover,

other parameters, such as last 24 h average temperature

and humidity, month, day, and hour of forecast, and the

last 6 h average load are also taken into account to

increase the robustness of the predicted model. Neverthe-

less, the effects of other parameters in hourly load are

neglected. Meanwhile, this input selection is common in

most STLF techniques and will give a good observation of

load scheme to forecaster.

FIGURE 6

Flowchart of the proposed hybrid Fyzzy-RMO technique.

TABLE 1

Coefficients of the RMO Algorithm

C1 C2 wmax wmin Number of Particles (nop)

0.8 0.7 1 0.1 50
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The approach taken for designing and optimizing the

fuzzy forecaster consists of two stages. At first, to obtain

an appropriate rule base, a simple Sugeno system with

constant output membership functions is used. Second, to

optimize the rule base of forecaster, the RMO algorithm is

employed in discrete mode. This stage is similar to a clus-

tering problem in which the input data is collected into N

sections where N is the number of fuzzy rules. Also the

input variables are fuzzified using symmetric Gaussian

membership functions. The number of sets for the tem-

perature, day, month and previous loads is three while the

hour and humidity are chosen to have 4 and 2 sets of

membership functions respectively. Moreover, the output

is divided into five symmetric constant levels.

The second stage is to optimize input and output

membership functions using the sample data and the

optimized rule base. The output membership function in

this stage, is supposed to be a linear combination of input

values; this will eventuate a higher dependence of output

to inputs and admittedly more accurate results in output.

Table 1 tabulates the coefficients of the RMO algorithm

used in this study. In addition, a flowchart of the proposed

hybrid technique is demonstrated in Figure 6.

FIGURE 8

Optimized input membership functions using the RMO algorithm.

FIGURE 7

A sample particle used in PSO procedure for membership function
recognition.
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4. RESULTS AND DISCUSSION
4.1. Rule-Based Generation

To find a proper rule base for the Sugeno system, the

RMO technique is used. The effectiveness of RMO in this

problem is its fast convergence which can handle the pro-

cess of large data in a short time. Therefore, in this case

study it is tried to find the full-sized rule base which con-

tains all combinations of input fuzzy sets. The search

space of the problem consists of 23 dimensions though

which indicates the summation of all the input and output

sets. Training procedure is done using 1000 random sam-

ples. Given 100 iteration steps as the precondition to ter-

minate the training of the network study for 50 particles.

The location matrix of the RMO would be a 50 3 23

dimensional matrix to handle the location of all the 50

particles. Samples are chosen randomly to contain the

overall load scheme in it. Symmetric Gaussian functions

are used for all the input membership functions.

4.2. Membership Function Evaluation
Having the desired rule base, the Sugeno system is

trained in this stage to obtain the best membership func-

tions for this special problem. Input fuzzy sets are allowed

to change their bandwidth and centre, whether the output

variable is supposed to be generated by a linear combina-

tion of input values. Equation (11) illustrates the form of

each output fuzzy set, in this stage.

lðiÞ5
X6

j51

ajixj5a1ix11a2ix21 . . . 1a6ix61a7i (11)

where i51; 2; . . . ; 5 are number of output fuzzy sets; xj is

the input variable; aji is the output linear coefficient.

A sample designed particle is shown in Figure 7 where

the first and second eighteen places are appertained to

fuzzy sets bandwidth and centers respectively. And the

next 35 columns are supposed to contain the output

FIGURE 9

Optimized coefficients of the five output fuzzy sets.
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coefficients. In this way, both input and output fuzzy sets

are tuned and optimized.

Training is handled using 300 random samples, 100

iterations and 50 particles and finally the optimized input

membership functions are obtained as demonstrated in

Figure 8. Whilst the coefficient of each output fuzzy set

can be found in Figure 9.

4.3. Forecast Results Evaluation
The changes were made in the fuzzy system, led to a

highly accurate response for this special complex problem.

Figures 10 and 11 demonstrate the quality of the proposed

hybrid technique in forecasting the load demand of Mash-

had, while they show the forecast loads for the first 10

days and first three days of 2014, respectively.

To assess the results quantitatively, mean absolute per-

centage error (MAPE) is used to calculate the accuracy of

the forecast model for each month. Equation (12) demon-

strates the equation for MAPE index where Fm is the fore-

cast value, Am is actual value of the load data, and N is

the number of samples used for the assessment.

MAPE; %5
1

N

XN

m51

Fm2Am

Am

����
����3100 (12)

A comparative study has been performed as well by

considering some of state of the art techniques applied to

short term load forecasting problem, existing in the litera-

ture. Among all the techniques, we chose the ones with

most popularity and highest quality of the results

reported. Support vector regression machine [56], bagged

neural networks [57], ARMA and a hybrid usupervised-

supervised ANN [58] are used to calculate the MAPE val-

ues of every month. Figure 12 shows the results obtained,

in which except February and November, the proposed

fuzzy & RMO technique achieved the lowest MAPE values

for the load forecast. The lowest MAPE value in the graph

is obtained by the proposed method with the value of

1.11%. In contrast ARMA achieved the highest MAPE with

2.90% for June. Table 2 demonstrates the mean values of

the MAPE obtained for the 12 months for all the methods.

From the table, it can be observed that the proposed

method is enable to present the lowest amount of MAPE

among all the five methods under consideration. The pro-

posed fuzzy & RMO technique provided the best mean

MAPE of 1.38% followed by BNN and SSA-SVR with 1.59%

and 1.78%, respectively. The hybNN could only perform

FIGURE 12

Comparison of MAPE values obtained for different algorithms
applied for STLF problem.

FIGURE 10

Actual and forecast loads of Mashhad for the first 10 days of
2014.

FIGURE 11

Actual and forecast loads of Mashhad for the first 3 days of 2014.
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0.46% better than ARMA which achieved mean MAPE of

2.44%.

5. CONCLUSION
In this paper, a Fuzzy inference system is developed as

a main forecast engine for Short term Load Forecasting

(STLF) of a city in Iran (Mashhad). Hourly load demand

data of Mashhad is analysed, trained and tested for 10

years from 2004 to 2014. This large amount of data led to

a complete cognition of load attributes in this city. The

forecaster is designed to predict the on hour ahead load

demand in terms of dependence to previous load values.

To optimize the membership functions of the fuzzy infer-

ence system and obtain a robust and reliable forecaster

engine, the Radial Movement Optimization (RMO) tech-

nique is used to optimize the whole Fuzzy platform. To

support this idea, the accuracy of the proposed model is

analyzed using MAPE index and an average MAPE error of

1.38% is obtained for the forecast load demand which rep-

resents the reliability of the proposed method. Finally,

results achieved by this method, demonstrate that an

adaptive two-stage hybrid system consisting of Fuzzy &

RMO can be an accurate and robust enough choice for

STLF problems. Applying the proposed method in other

energy forecasting problems such as solar and wind

energy generation will be focus of the authors in the

future. To do so, there must be performed some adapta-

tion for real time data entry to the system.
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