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ABSTRACT

Stochastic influences play an important role inos areas especially in
the area of biological process. Stochastic diffea¢requation is the differential
equation in which the terms of their characteristicolve stochastic process or
‘white noise’. In this study, we used the stochadifferential equation to describe
the population dynamics of the cell growth @f Acetobutylicumn fermentation
process. Stochasticity incorporated into the modela its growth

HUmax

coefficient- == . We used the model of stochastic logistic to madkdelgrowth

Ymax

of cell against time at different initial pH. Thange of initial pH level is from 4.0
until 7.0. The missing data were estimated usingeetation maximization (EM)
and regression approach. The estimated paramegeesoltained using simulated
maximum likelihood. The estimatad,,, ande values of stochastic differential
equation at five different initial pH level (4.0,%4 5.0, 6.0, and 7.0) are (0.1098,
0.09), (0.154, 0.04), (0.41, 0.01), (2.92, 0.111%) €0.341, 0.09) respectively. Five
different trajectories for different initial pH werformed based on EM and
regression approximation. It was found that aljectories based on EM show a
lower mean square error as compared to those appated using regression.
Thus, EM estimate is a better estimator for missiata and the model is adequate.
It was also found that the means square error fochastic are lower than
deterministic model at five different initial pHhi& implies that stochastic logistic
model is better in describing the growth of d@lAcetobutylicumn fermentation

process compared to deterministic model.
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ABSTRAK

Faktor-faktor rawak memainkan peranan yang pgntialam pelbagai
bidang terutamanya yang melibatkan proses biolgisamaan pembezaan rawak
merupakan persamaan terbitan dimana sebutan dalarsanpaan tersebut
melibatkan proses rawak. Kajian ini menggunakarsgrepan pembezaan rawak
untuk menggambarkan pergerakan populasiCsefcetobutylicundalam proses

fermentasi. Kerawakan dimasukkan ke dalam moddlatp pemboleh ubah

Hmax

pertumbuhan iaitu— ==, Kami menggunakan model logistik rawak untuk

Ymax

menggambarkan pertumbuhan sel tersebut terhadagp pada nilai pH awal yang
berlainan. Julat nilai pH awal adalah di antara Hifigga 7.0. Data yang tidak
lengkap dianggarkan dengan menggunakan kaedahaangkaksima dan kaedah
regresi. Nilai anggaran parameter diperolehi dengaenggunakan kaedah
‘simulated maximum likelihood’. Nilai anggaran pareter u,,,, dane bagi
persamaan pembezaan rawak pada lima nilai pH44605.0, 6.0, dan 7.0) adalah
(0.1098, 0.09), (0.154, 0.04), (0.41, 0.01), (2.92113), dan (0.341, 0.09).
Sebanyak lima lintasan telah disimulasi berdasarkasdah nilai anggaran
maksima dan nilai regresi. Hasil daripada simuleassebut, nilai kesalahan kuasa
dua bagi kaedah nilai anggaran maksima lebih Kesibanding menggunakan
kaedah nilai regresi. Oleh itu, kaedah nilai angganaksima merupakan kaedah
yang sesuai bagi menganggar nilai kehilangan dag#ain itu, nilai kesalahan
kuasa dua pada 5 nilai pH yang berbeza bagi maiehk adalah lebih kecil
berbanding model penentu. Ini menunjukkan bahawdemogistik rawak sesuai
digunakan bagi menggambarkan pertumbuharCs&tetobutylicundalam proses

fermentasi.
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1.2

CHAPTER 1

INTRODUCTION

Introduction

This chapter discusses the background of the problealso includes
statement of the problem, objectives of the studgopes of the study,

significance of the study and thesis organization.

Background of the Problem

A stochastic process which can be called as a mnpimcess is the
counterpart to a deterministic process in probgbtheory. Instead of dealing
with only one possibility of how the process mightolve under time for
example the solutions of an ordinary differentigliation, in a stochastic process
there is some indeterminacy in its future evolutescribed by probability

distributions. This means that even if the initaindition is known, there are



1.3

many possibilities the process might go to, butesgaths are more probable and
others less.

Stochastic differential equation (SDE) is a diffdral equation where
one or more of the terms involve in stochastic pssc Typically, stochastic
differential equation incorporates white noise vhman be thought of as the
derivative of Brownian motion. Non-stochastic diéfetial equation is a model
of dynamical systems where the state evolves cootisly in time. If they are
autonomous, then the state's future values depelydoo the present state; if
they are non-autonomous, it is allowed to depengreuious state as well.

With all these features, stochastic differentialiagpn can be applied in
such diverse areas such as neural networks, eeasydynamics, population
genetics and macro-economic systems.

In this dissertation, stochastic differential edquathad been used to
describe the population dynamics of fermentatiomcess. The proposed
stochastic model is stochastic logistic model. $bkition to stochastic logistic
model was approximated using Euler - Maruyama ntetidie approach taken
here was estimated the parameters for stochastidelmosing simulated
maximum likelihood and also studied the missinguegahnalysis to impute the

missing values of the data before doing a simutatio

Statement of the Problem

Stochastic influences play an important role ioldmgical processes.
Thus, fermentation process which is one of thedgichl processes will be
discussed in this study that may posses the stciy®f the cell growth. The
problem arises when the used data involve incorpésts data and expectation
maximization (EM) and regression imputation will dseried out. Thus, we want
to compare these two methods in dealing with mgssialue analysis. The
approach taken here was also to estimate paraesiarations using simulated
maximum likelihood and the data will be analyzethgdMatlab. The cell growth

of C.Acetobutylicunmin fermentation process will be modelled usingchastic



1.4

1.5

1.6

logistic model. Finally, we will make a comparisaf this model with
deterministic model in order to describe the cetivgh of C.Acetobutylicumn

fermentation process of sago starch.

Objective

The objectives of this study are:
I. To compare expectation maximization (EM) and regjagsas imputation
methods in dealing with missing value analysis.
il. To estimate the parameters of the model using sitedl maximum
likelihood.
ii. To model the growth o€.Acetobutylicumn fermentation process using

the stochastic logistic model.

Scope of the Study

This study discussed the appropriateness of stochagistic equation as
a model for the cell growth of.Acetobutylicumn fermentation process. The
approximate solution of the model was obtained giskuler- Maruyama
approximation. This study focused on the model patars which were
estimated using simulated maximum likelihood. T$tisdy compared only EM
and regression in estimating the stochastic diffigme equation based on Ito

approach.

Significance of the Study
The contribution of this study is in findings awkleguate model of
C.Acetobutylicuntell growth in fermentation process in a moreistialway and

also in modelling stochastic differential equatwith missing values.
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Thesis Organization

Chapter 1 discussed the background of problem astichdifferential
equation (SDE) in general followed by statementhef problem, the objectives
of the study, scope of the study as well as theifsi@nce of the study. Lastly,

we included the thesis organization to review therall of the study.

Chapter 2 introduced the fermentation process cgdpe in
microbiology. The review of researches developnmeriermentation process of
sago starch will be discussed in this chapter. d&ssiit was also included the
discussion of stochastic differential equation inldgical process. Lastly, the
growth cycle of microbial as well as factors thafiuenced the bacterial growth

also will be discussed in this chapter.

Chapter 3 discussed about the missing values sinddgfore numerically
estimate the parameter based on the model of stticHagistic. Besides, we
discussed the numerically method of parameter estoms as well as the method

of approximation to perform the simulation.

Chapter 4 discussed about imputation of missirig dalue in SPSS. The
application of stochastic differential equationfermentation process of sago
starch to determine the values of parameter esomaiill also be included here.

Lastly, we discussed the results of the simulation.

Chapter 5 discussed the conclusion of the wholglystand some
recommendations for those who interested to puttseistudy in various area of

the stochastic differential equation.
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