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Abstract: In recent years, extensive works on genetic algorithms have been reported covering various
applications. Genetic algorithms (GAs) have received significant interest from researchers and have
been applied to various optimization problems. They offer many advantages such as global search
characteristics, and this has led to the idea of using this programming method in modelling dynamic
non-linear systems. In this paper, a methodology for model structure selection based on a genetic
algorithm was developed and applied to non-linear discrete-time dynamic systems. First the effect of
different combinations of GA operators on the performance of the model developed is studied. A
proposed algorithm called modified GA, or MGA, is presented and a comparison between a simple
GA and a modified GA is carried out. The performance of the proposed algorithm is also compared
to the model developed using the orthogonal least squares (OLS) algorithm. The adequacy of the
developed models is tested using one-step-ahead prediction and correlation-based model validation
tests. The results show that the proposed algorithm can be employed as an algorithm to select the
structure of the proposed model.

Keywords: model structure selection, system identification, evolutionary programming, genetic
algorithms

NOTATION 1 INTRODUCTION

a
i
, b
i
, c
i

coefficients of polynomial models The identification of unknown dynamic systems has
d time delay been studied and literature on system identification is
e(t) random white noise extensive [1–3]. In system identification, a mathematical
Fl [.] a non-linear polynomial model is developed to simulate the actual system. System
l degree of non-linearity identification is then necessary to provide information
L size of the regressor for the analysis and design of an appropriate controller
M number of terms of the regressors for a particular system. Procedures involved in system
n
y
, n
u

and n
c

output, input and noise lags identification (SI ) are the acquisition of data, definition
N data length of model structure, parameter estimation and model
pc crossover probability validation.
pm mutation probability In conventional identification problems, a model
u(t) system input structure is defined and the parameters of the model are
y(t) system output estimated. The methods used in conventional algorithms,
ŷ(t) one-step-ahead prediction such as those based on least mean squares or maximum

likelihood, estimate model parameters by optimizing the
e(t) residual sequence objective function based on gradient descent techniques.
h
i

unknown parameters These methods suffer drawbacks, such as the solution
w
i
(t) regressors becoming trapped in a local minima [4]. Since there is

no particular algorithm being used to define the correct
The MS was received on 3 April 2003 and was accepted after revision model structure, a trial-and-error method is adopted
for publication on 8 October 2003.

and the identification procedure becomes laborious in* Corresponding author: Faculty of Mechanical Engineering, Universiti
Teknologi Malaysia, 81310 Skudai, Johor, Malaysia. determining the correct model structure.
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2 R AHMAD, H JAMALUDDIN AND M A HUSSAIN

Recently, evolutionary programming has been applied bines structure selection and parameter estimation and
was shown to be much more efficient than ordinary leastto various optimization problems [5] and offers many
squares based algorithms [20]. The algorithm providesadvantages, such as global search characteristics. One
information regarding which terms in the model areof these evolutionary programming approaches is the
significant using its by-product, called the error reductiongenetic algorithm (GA). Genetic algorithms were intro-
ratio (ERR). However, the problem encountered usingduced by Holland [6 ] and extensively explored by
the OLS for the identification of an unknown modelGoldberg [7 ]. Such an algorithm evaluates multiple
structure is the difficulty in deciding the ERR value atpoints in the solution space simultaneously and therefore
which to stop.has the potential to converge to the globally optimum

In this study, a genetic algorithm is used to determinesolution [7, 8]. Some related works on the application of
the model structure of linear and non-linear systems thatGA to system identification have been published [9-14].
best represent the system from input–output data. TheMost of these assumed that the structures of the models
structure of the system considered in this study is obtainedwere known and the genetic algorithm was then applied
from difference equations of discrete-time systems. Theto estimate the parameters of those models, i.e. the GA
performance of the GA with varying genetic operatorsis used as a parameter estimation algorithm.
is investigated to study the effect of those operatorsThe work by Kristinsson and Dumont [9] was con-
on the performance of the GA in system identificationsidered as the first step in the direction of using a GA
problems. An improved strategy called a modified GAin system identification. They applied a GA to estimate
(MGA) is proposed as the algorithm to select modelparameters of both continuous and discrete time systems
structure. The model parameters are estimated using theusing an ARMAX (autoregressive moving average with
least squares method. The identification results are com-exogenous inputs) model. They also showed that a GA
pared with those from the simple GA (SGA) methodcould be used to identify physical parameters or poles
and the OLS method. The parameters used were keptand zeros. This work was then followed by several other
the same throughout for a fair comparison. The resultresearchers. Zibo and Naghdy [10] applied GAs not only
of the study has shown that the proposed algorithm givesto single-input–single-output (SISO) systems but also to
an efficient way of modelling structure selection and themulti-input–multi-output (MIMO) systems. Tan et al.
modelling accuracy is as good or better when compared[11] and Jeong and Lee [12] fine-tuned GAs with simu-
with the OLS method.lated annealing. The ARMAX model was widely used

The paper is organized as follows. Section 2 reviewsas a candidate model in their studies [9-12]. Sheta and
model structure selection in system identification including

De Jong [13] explored GAs as the key search procedures
the OLS method. Section 3 reviews GAs and their appli-

for parameter estimation and particular focus was on
cation to model structure selection. Section 4 shows

noisy environments and autonomous systems with vary-
simulation results that include the effect of different GA

ing initial conditions. Hong and Billings [14] intro- operators on the applications, the comparison between
duced a new parameter-estimation algorithm based on the SGA and MGA and the comparison between the pro-
stacked regression and evolutionary algorithms while the posed algorithm and the OLS method. The conclusion
parsimony of the model structure was determined using summarizes the main contributions of the paper.
the forward orthogonal least squares (OLS) algorithm.

Another important step in system identification is
model structure selection and various approaches have
been proposed. Haber and Unbehauen [15] reviewed

2 MODEL STRUCTURE SELECTIONseveral structure identification algorithms based on
different classes of models such as block-oriented models,

A very common model structure for discrete systems usedcascade models, semi-linear models with signal-dependent
in control applications is the ARMAX model, where theparameters, linear-in-parameter models and a group
system output can be predicted using the past input and

method of data handling (GMDH). Desrochers and
output lags of the system. The ARMAX model is defined

Mohseni [16 ] proposed an algorithm based on projection
as [21]

matrices to model non-linear systems using a GMDH.
Veres [17 ] defined model structure selection as a y(t)+a1y(t−1)+,+a

n
y

y(t−n
y
)

procedure of estimating the orders of lag y, u, e and
=b1u(t−1)+,+b

n
u

u(t−n
u
)time delay d (ARMAX systems) on the basis of the

knowledge of the input and output sequences u(t) and +e(t)+c1e(t−1)+,+c
n
c

e(t−n
c
) (1)

y(t) respectively, where e(t) is the noise sequence. The
main task in model structure selection is to determine where e(t) is a noise sequence with zero mean, u(t) and
the significant terms to be included in the selected model. y(t) are the system input and output respectively while
Among the techniques that have been developed are OLS n

y
, n
u

and n
c

are the orders of output, input and noise
lags respectively.[18] and genetic algorithms [19]. The OLS algorithm com-
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3MODEL STRUCTURE SELECTION FOR A DISCRETE-TIME NON-LINEAR SYSTEM USING A GA

To represent the discrete non-linear system, the The order of the input and output lags and the order
of non-linearity chosen for the system also affect theNARMAX model was introduced [22]
model structure selection. Larger non-linearities will pro-

y(t)=Fl(y(t−1), … , y(t−n
y
), u(t−1), … , duce a more complex model and the search space would

become very large and impractical. However, some ofu(t−n
u
))+e(t)l (2)

these terms can be excluded to simplify the structure
detection and parameter estimation in order to produceBy defining Fl(.) as a non-linear polynomial with l degree
a smaller model; therefore, a model with an accurateof non-linearity, the model belongs to the class of linear
result can be determined. For example, for a systemregression models
of n
y
=n
u
=3 and n

l
=2, the complete polynomial has

27 terms. To determine the coefficients of each modely(t)= ∑
M

i=1
h
i
w
i
(t)+e(t), ∏t∏N (3)

structure combinations by solving normal calculations
requires 134 217 726 of searching space. Employing the

where w
i
(t) and h

i
are non-linear regressors and unknown principle of survival of the fittest in the GA, this search-

parameters respectively, M is the number of terms of the ing technique can avoid calculating all possible models
regressors and N is the data length. and is capable of retaining a few significant terms, while

The number of possible terms in the ARMAX model at the same time maintaining the accuracy of the system.
is equal to the sum of allowed maximum lags, while the This leads to the superiority of the GA for model structure
maximum number of terms in the NARMAX model of determination.
equation (2) is [20]

L=M+1
3 GENETIC ALGORITHMS FOR MODEL

STRUCTURE SELECTIONwhere

A genetic algorithm is a search procedure that imitatesM= ∑
l

i=1
n
i
, for l=order of non-linearity

the principle of natural evolution. It searches from a
population of points or individuals where each individual

and represents a potential solution. These individuals, called
chromosomes, evolve through the action of operators

n
i
=

n
i−1

(n
y
+n
u
+ i−1)

i
, n0=1 (4) such as selection, crossover and mutation. In this study

a genetic algorithm is used to determine the model
structure of a system that best represents the system. TheA discrete-time system with n

y
=n
u
=2, if expanded as

outline of an SGA is summarized in Fig. 1.a second degree of non-linearity model (l=2), would
contain 14 possible terms. In an NARMAX model
the number of terms is extremely large; therefore it is

3.1 Model structure selection and parameter estimationimportant to select the significant terms for the model
that will produce a parsimonious model that adequately A genetic algorithm is used to select the model structure.
represents the data set. A chromosome representing a potential solution is defined.

One method proposed for structure selection is to use The length of the chromosome, L, is equal to the number
the OLS method [18]. In OLS, the contributions of each of regressors in the model. A chromosome is made up of
term in the model are measured based on an error genes. Each gene will indicate whether a regressor is to
reduction ratio (ERR). The simple derivation of the be included in the model. There are 2L−1 possible models
ERR is calculated from the equation [18] for selection and for each model the representation is

expressed by an L-bit binary code of chromosome c.
By defining the initial population composed of a numberERR

i
=

g2
i
E [w2
i
(t)]

E [ y2(t)]
(5)

of chromosomes, through the process of evolution a
better population will be produced. Since the models

where g
i

is the coefficient of parameter estimates and
are linear-in-the-parameter forms, the identified para-

w
i
(t) the orthogonal data set. However, it is found that

meters are estimated using the least squares estimation
the value of the ERR depends on the order of the terms

algorithm [21].
in the regression equation, which sometimes may pro-
duce incorrect information for the significant terms
[23]. These problems can be solved using the forward

3.2 GA control parameters
regression OLS [24]; however, the computation would
be more expensive. Furthermore, the user needs to The control parameters of the GA include population

size, crossover and mutation probability, and crossoverdecide the ERR value but there is no specific criteria for
the value, as discussed later in section 4.3. and selection strategy. The choices of these parameters
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4 R AHMAD, H JAMALUDDIN AND M A HUSSAIN

Fig. 1 Outline of a simple genetic algorithm

can affect the behaviour and performance of the GA and There are limitations encountered when using the SGA.
The convergence is too rapid and the so-called superiorhave been studied by researchers such as Grefenstette

[25], Michalewicz [8] and Qingsheng et al. [26 ]. The chromosomes dominate the population. Therefore, the
population diversity decreases due to the increase inchoice of an appropriate population size is particularly

important. If the population size is too small, the GA selective pressure. In order to find a balance between
population diversity and selective pressure, some modi-will converge too quickly and in many cases will cause

premature convergence, while if the population size is too fications have been made, particularly in the selection
procedure to the algorithm based on concepts foundlarge, it will take a longer time to converge. Theoretically,

it might be concluded that a larger population size will in the literature [31, 32], which is called the modified
genetic algorithm, or MGA. However, some modi-produce a better search and therefore will result in a

better solution. fications were made. To maintain the diversity of the
population, ordinary chromosomes undergo a normalThe mutation and crossover operators are the sources

of exploration in the GA, and Grefenstette [25] discussed GA procedure and the worst performing individual does
not reproduced but is replaced with new individuals.the probability rate for these operators. The individuals

in a population are called chromosomes and are made There is the possibility that the good individuals are
prevented from reproduction, which results in poorup of genes. The different values of individual genes

are called alleles. A schemata is a similarity template exploration, and can therefore lead to a premature con-
vergence. To preserve the potential solutions and the lossdescribing a set of chromosomes that match each other

at certain positions. Crossover is an information exchange of critical alleles, the best chromosomes are selected for
small alterations.between chromosomes while mutation is applied to intro-

duce a random change into the population. Disruption
of schemata occurs when a crossover point between two
alleles that are critical members of a certain solution is
chosen. Variations of crossover techniques are used to

3.3 The modified algorithmreduce the probability of disruption due to crossover.
Some researchers reported other types of crossover, such The flowchart of the model structure selection formu-
as Eshelman et al. [27], who experimented with two- lation using the MGA is shown in Fig. 2. The difference
point crossover, and segmented and shuffle crossover, between the SGA and the MGA is in the selection
and Syswerda [28] and Yuping et al. [29], who tried with procedure. After every generation, the individuals
uniform crossover. are categorized into three different groups based on

Holland [6 ] and Goldberg [7] emphasized the fact that their fitness values. Each group will undergo different
mutation is also important and serves as a background recombination procedures.
operator to support a crossover operator by ensuring Details of the procedures are as follows:
that all the allele values are accessible to the search.
A relatively small value of pm (pmµ [0.001, 0.01]) is 1. Representation. The individual or chromosome

represents the model structure, and therefore eachrecommended for a canonical GA [25 ]. Recently,
empirical and theoretical investigations have shown the bit of the chromosome represents the term for

the regressor in the equation. Bit string encoding isbenefits of emphasizing mutation as a search operator
[30]. used because of its simplicity and traceability for this
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5MODEL STRUCTURE SELECTION FOR A DISCRETE-TIME NON-LINEAR SYSTEM USING A GA

Fig. 2 Modified genetic algorithm for model structure selection

application. It consists of an L-bit binary code, where ARMAX model as in equation (1) for n
y
=n
u
=5,

the equation would becomethe length of L equals the size of the regressor. The
maximum number of terms in the ARMAX model is

y(t)+a1y(t−1)+a2y(t−2)+a3y(t−3)equal to the input and output lags and the maximum
number of terms in the NARMAX model is as in +a4y(t−4)+a5y(t−5)
equations (4).

=b1u(t−1)+b2u(t−2)+b3u(t−3)2. Create individuals. Initially, m individuals are created
at random. Each individual that represents a possible +b4u(t−4)+b5u(t−5)
model is expressed by the L-bit binary model code c.
Binary bits represent genes. If some bits of the binary where L equals n

y
+n
u
=10 and therefore there are

1024 possible models to be selected. Let the 10-bitmodel of chromosome c equal zero, the terms are
excluded from the model. For example, in an binary model code be c1= [1001001010]; then the
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6 R AHMAD, H JAMALUDDIN AND M A HUSSAIN

model can be expressed as three categories, namely the good, the second best
and the bad chromosomes, based on the value of the

y(t)=a1y(t−1)+a4y(t−4)+b2u(t−2) objective function. The first and the second groups
are selected and will undergo mutation and crossover.+b4u(t−4)
Solutions with a large sum-squared error falling into

For the NARMAX model, as in equation (2) with the third category are eliminated from the population.
n
y
=n
u
=n
l
=2, there are 14 possible terms with 6. Mutation. The good chromosomes have to undergo

16 383 possible models and the equation for the full a mutation process in order to prevent schemata
model is disruption as well as to preserve these potential

populations. For a binary coded string, mutation isy(t)=a1y(t−1)+a2y(t−2)+a3u(t−1)
a process of replacing a bit of value 1 with 0 and vice

+a4u(t−2)+a5y2(t−1)+a6y(t−1)y(t−2) versa, with a specified mutation rate of pm .
7. Crossover. The second best chromosomes will have+a7y(t−1)u(t−1)+a8y(t−1)u(t−2)

to undergo both crossover and mutation processes.
+a9y2(t−2)+a10y(t−2)u(t−1) In crossover, two chromosomes are selected from

the mating pool and information between these+a11y(t−2)u(t−2)+a12u2(t−1)
individuals (parents) is exchanged to produce two

+a13u(t−1)u(t−2)+a14u2(t−2) offspring with a probability of pc .
8. After a stopping criteria has been met (a specifiedIf the binary model code is c2= [10110011000100],

number of generations), the final model will bethe model can be expressed as
selected among all the possible models based on the
highest fitness value.y(t)=a1y(t−1)+a3u(t−1)+a4u(t−2)

+a7y(t−1)u(t−1)+a7y(t−1)u(t−1)

+a12u2(t−1)
3.4 Model validity test

3. Parameter estimation h
i
. The selected term for the

Model validation is the final procedure in system identi-
model is identified by the value 1 for each chromo-

fication. The objective is to check whether the model fits
some. Based on the identified model structure, the

the data adequately without any bias. The model validity
value of the parameters h

i
are calculated using the

test employed in this study includes the correlation test
least squares estimation method. The values of

[33] based on the following conditions:
parameters to be calculated for the above example
are a1 , a4 , b2 and b4 respectively.

w
ee

(t)=
E [e(t)e(t−t)]

E [e2(t)]
=d(t), t=04. Fitness function. The objective of the algorithm is to

minimize the error between the model and the system.
In a genetic algorithm, the fitness function is defined

w
ue

(t)=
E [u(t)e(t−t)]

√E [u2(t)e2(t)]
=0 for all t

as the quality of the model. The fitness function used
in this study is the adaptive fitness function [10],
where for every new generation, a positive scaling w

e(eu)
(t)=

E [e(t)e(t−1−t)u(t−1−t)]

√E [e2(t)]E [e2(t)u2(t)]
=0, t�0

value (SV ) is found before the objective function
(OF) is calculated. The fitness function is defined as

w
u2∞e

(t)=
E [(u2(t)−u2)e(t−t)]

√E [(u2(t)−u2)2 ]E [e2(t)]
=0, for all tFitness function=SV−OF (6)

where SV is a positive scaling value of the objective
function and OF is defined by w

u2∞e2
(t)=

E [(u2(t)−u2)e2(t)]

√E [(u2(t)−u2)2 ]E [e4(t)]
=0, for all t

OF=∑
N

i
[ y(t)− ŷ(t)]2 (7) (9)

where w represents the standard correlation function,where
e(t) represents the residual sequence

ŷ(t)= ∑
M

i=1
w
i
(t)ĥ
i

(8)
e= ŷ−y

is the one-step-ahead prediction of the model output and the overbar denotes the time average and is given
using the selected terms and estimated parameters as as
determined in step 3.

5. Selection. Based on the fitness function, a new popu- u2=
1

N
∑
N

t=1
u2(t)

lation is generated by dividing the chromosomes into
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7MODEL STRUCTURE SELECTION FOR A DISCRETE-TIME NON-LINEAR SYSTEM USING A GA

The tests are able to indicate adequacy of the fitted 2. Crossover mechanism. Single crossover and double
crossover.model. Generally, if the correlation functions are within

3. Crossover probabilities. Probabilities of 0.05, 0.6 andthe 95 per cent confidence interval, i.e. ±1.96√N, the
0.95 were used.model is regarded as adequate where N is the number

4. Mutation probabilities. Probabilities of 0.001, 0.01of data points. Another test includes the one-step-ahead
and 0.1 were used.(OSA) prediction given by

The experimental studies included a wide range of valuesŷ(t)= f̂(y(t−1), … , y(t−n
y
), u(t−1), … , u(t−n

u
))

for these GA control parameters to bracket the best
(10) MGA performance.

The systems that are investigated are based on thewhere the predicted output is based on the previous input
following equations [34]and output data. The performance of the model is also

evaluated using an error index (EI ), defined as Model 1:

y(t)=0.954y(t−1)−0.222y(t−3)+0.123y(t−6)
EI=SW [ y(t)− ŷ(t)]2

W y2(t)
(11)

+0.456u(t−1)+0.096u(t−2)

−0.052y2(t−1)+0.231y(t−1)u(t−2)

+0.321u(t−2)u(t−3)+e(t)4 SIMULATION STUDY
Model 2:

Based on the methodology discussed in the previous
y(t)=0.797y(t−1)−0.237y(t−3)+0.441u(t−1)sections, simulation studies were conducted. The first part

of the study investigated the effect of GA control para- +0.105y(t−4)u(t−4)+0.333u(t−3)u(t−5)
meters such as population size, crossover and mutation

+e(t)probabilities and the crossover mechanism used in the
proposed algorithm as a benchmark for system identi- where u(t) is a zero mean random sequence and e(t) is a
fication problems. The performance of the algorithm random white noise. These models are selected since they
based on those different values of GA parameters was have a large number of possible terms giving a chance
studied. A wide range of values for population size as of studying the effects of varying GA operators. In this
well as crossover and mutation probabilities was used. study, 1000 data points, N, were generated. Models 1
The goal of this study is to examine and compare these and 2 are non-linear systems with an NARMAX model
various strategies and help to obtain a better understand- structure. The values of n

y
, n
u
, and n

l
are 6, 3 and 2

ing of the conditions under which these operators are respectively for model 1 and 4, 5 and 2 respectively for
effective. The second part of the study compared the model 2. The total number of possible terms is 54; there-
SGA and the MGA. In order to evaluate the perform- fore there are a total of 1054−1 possible forms or model
ance of the MGA, four simulated non-linear systems structures. The number of generations used was 100, pcwere used for both cases and the effect on the con- was 0.6 and pm was 0.01. Table 1 gives a comparison of
vergence rate was investigated. The third part of the the values of EI produced by the final model selected
study is the comparison between the MGA and OLS by the GA using different population sizes (n) in models
with application to discrete-time non-linear systems 1 and 2 respectively.
identification. The model structures identified by those The results in Table 1 showed that the lowest EI for
two methods were compared with respect to the accuracy model 1 is n=10 and model 2 is n=50 for generations
of the models as well as the identified model structures up to 100. The EI values are larger after n=10 for model 1
determined by those two methods. and n=50 for model 2 because larger populations will

need more generation for convergence. The results above
indicate that the performance of the algorithm improves
when the population size is increased. For a small4.1 Genetic algorithm control parameters

As discussed previously, the performance of a GA is greatly
Table 1 Effect of population size on error index (EI )influenced by the genetic operators. In this section, the

effect of the performance of the proposed algorithm or
Population size EI for model 1 (×10−2) EI for model 2 (×10−2)MGA based on different values of GA parameters is

investigated to understand better how it works. The 5 2.425353 4.447845
10 1.272846 4.379760control parameters used in the study are:
50 1.372062 2.559774

100 1.527128 4.1327351. Population size. Population sizes of 5, 10, 50, 100 and
200 1.774084 5.209113

200 were used.
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8 R AHMAD, H JAMALUDDIN AND M A HUSSAIN

Table 3 Values of EI for varied crossover andnumber of populations, most of the highly superior
mutation rates (model 2)individuals will dominate the population towards a later

generation, giving them the chance of being selected.
pc=0.05 pc=0.6 pc=0.95

However, the disadvantage is that there will be a chance
pm=0.001 0.0211 0.0426 0.0473of not selecting the better solution. On the other hand, a
pm=0.01 0.0139 0.0318 0.0274larger population gives more diversity in the population
pm=0.1 0.0385 0.0440 0.0271

and better search, but requires more evaluation per
iterations and takes a longer time to converge. Therefore,

For model 1, a less significant effect is seen for a variedother GA operators such as crossover and mutation
mutation rate at a very low crossover rate. The effectalso play an important role for overall performance of
of a varied mutation rate can be seen at pc=0.6, asthe GA.
shown in Fig. 3b and the best performance can be seenIn the next simulation, by varying the crossover and
at pm=0.01, with EI equal to 0.0127. For model 2, themutation rates, the convergence of the algorithms is
best performance can be seen at pc=0.05 and pm=0.01observed. The population size is set 30 and the number
with the value of EI of 0.0139. In this simulation, aof generations is set 100. The effect on different crossover
generalization cannot be made due to different resultsstrategies is also included. These results are shown in
that have been obtained. These results indicate that thereTables 2 and 3 and Figs 3, 4 and 5 respectively.
are no specific rules for optimal values for pc and pm and
the optimal performance that can be achieved depends

Table 2 Values of EI for varied crossover and on the models to be studied. However, varying the cross-
mutation rates (model 1) over strategy had some effect on the performance of the

algorithm for both cases in the examples and these effects
pc=0.05 pc=0.6 pc=0.95

are shown in Fig. 5. Using a probability rate of pc=0.6
pm=0.001 0.0246 0.0127 0.0176 and a mutation rate of pm=0.01, a double crossover
pm=0.01 0.0351 0.0147 0.0152 strategy will give faster convergence for both model 1
pm=0.1 0.0312 0.0199 0.0169

and model 2.

Fig. 3 Simulation results for model 1 on the effect of varied crossover and mutation rates: (a) pc=0.05,
varied pm ; (b) pc=0.6, varied pm ; (c) pc=0.95, varied pm

Fig. 4 Simulation results for model 2 on the effect of crossover and mutation rates: (a) pc=0.05, varied pm ;
(b) pc=0.6, varied pm ; (c) pc=0.95, varied pm
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9MODEL STRUCTURE SELECTION FOR A DISCRETE-TIME NON-LINEAR SYSTEM USING A GA

Fig. 5 Single crossover versus double crossover for (a) model 1 and (b) model 2

4.2 The comparison between the SGA and the MGA linear and non-linear models were used in this study in
order to investigate the efficiency of the GA in selecting

The comparison between SGA and MGA is investigated
the structure for a wider range of system. The results are

with linear and non-linear discrete-time models. The
shown in Figs 6 and 7 respectively. Similar trends of the

models investigated were based on the following
convergence rate for both the SGA and the MGA are

equations:
observed from these figures where for all cases the SGA
has a faster convergence rate than the MGA; howeverModel 3:
the MGA produces smaller variations towards later

y(t)=1.5y(t−1)−0.7y(t−2)+u(t−5)
generations.

A faster convergence can be seen using the SGA+0.5u(t−6)+e(t)
for these models as compared with the MGA. Larger

Model 4: variations in the value of the fitness function over many
generations suggest that it is good for exploring they(t)=0.5y(t−1)+u(t−2)+0.1u2(t−1)+e(t)
potential region for the solution, but still lacks in finding

Model 5: the optimum solution. In a few generations, the SGA
has located the possible region of the solution, but isy(t)=0.5y(t−1)+u(t−2)+0.2u(t−3)
unable to converge to a global solution. For a similar

−0.1u2(t−1)+e(t) number of generations using the MGA, the convergence
curve looks more stable and smooth and appears to beModel 6:
more promising in finding solutions with lower costs.

y(t)=0.8y(t−1)+0.5u2(t−1)y(t−1)+u3(t−1)

where u(t) is a zero mean random sequence, e(t) is
random white noise and N equals 500. For model 3,

4.3 Model structure selection using the OLS and the
the system is a linear system using an ARMAX model

MGA
representation with values of n

y
and n

u
being 2 and 6.

For a non-linear system with the NARMAX model In this section, the adequacy of model structures of
non-linear systems selected and fitted by two algorithms,representation, the values for model 4 are n

y
=1, n

u
=2

and n
l
=2, the values for model 5 are n

y
=1, n

u
=3 and the OLS and the MGA, are compared. For this purpose,

the algorithms are tested for two different non-linearn
l
=2 and for model 6 are n

y
=1, n

u
=1 and n

l
=3. These

Fig. 6 Convergence of the SGA and MGA for (a) model 3 and (b) model 4
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10 R AHMAD, H JAMALUDDIN AND M A HUSSAIN

Fig. 7 Convergence of the SGA and MGA for (a) model 5 and (b) model 6

Table 4 Estimated model using the OLS fordynamic systems. The seventh example is a simulated
model 7system governed by the difference equation

Terms Estimate ERR
iy(t+1)

y(t−1) 7.1450×10−1 9.829×10−1
y(t−2) 3.2473×10−1 1.140×10−3=

0.3y(t)+0.6y(t−1)+0.6 sin[pu(t)]+0.4 sin[3pu(t)]

5.5 u(t−1) 4.1198×10−1 5.006×10−4
u(t−2) −3.8389×10−1 1.769×10−4

where the input u(t) is chosen to be y(t−3) −6.7701×10−2 7.214×10−5
y(t−3)y(t−1) −1.1087×10−1 2.313×10−5
u(t−2)u(t−1) −1.4331×10 2.099×10−5

u(t)=sinA2pt

250B u(t−2)u(t−2) 1.8335×10 1.958×10−5
u(t−2)y(t−1) 8.4943×10−2 1.498×10−5
y(t−2)y(t−1) 2.0637×10−1 7.591×10−6

with 500 pairs of input–output data. The input and y(t−3)u(t−2) −2.1958×10 4.656×10−6
y(t−3)y(t−3) 6.7980×10−2 3.354×10−6output lags chosen for this model are n

u
=2 and n

y
=3,

y(t−3)y(t−2) 6.4252×10−2 3.060×10−6the non-linearity l is equal to 2, the maximum number y2(t−1) −2.9870×10−2 2.993×10−6
of model terms is 20 and there are 1 048 575 possible y(t−1)u(t−1) −8.0519×10−2 2.134×10−6

y(t−2)y(t−2) −1.3626×10−1 1.028×10−6models to be selected from.
y(t−2)u(t−1) 3.4280×10−1 6.984×10−7The eighth example is based on input–output data y(t−3)u(t−1) 2.1021×10 1.829×10−7

originating from Box and Jenkins [35] concerning the y(t−2)u(t−2) −3.2076×10−1 1.526×10−7
u(t−1)u(t−1) −3.8951×10−1 9.459×10−9identification of a gas oven. There are 296 pairs of input–

output data. The input u(t) of the plant is the methane
gas flowrate into the furnace and the output y(t) is the
%CO2 concentration in the outlet gas with the sampling Table 5 Estimated model using the
interval equal to 9 s. In this example, the MGA is used GA for model 7
to identify a non-linear system based on an NARMAX

Terms Estimatemodel structure with n
y
=2, n

u
=2 and the non-linearity

l is equal to 2. The maximum number of model terms is y(t−1) 7.072627×10−1
14 and there are 16 384 possible models to be selected y(t−2) 2.557947×10−1

u(t−2) 3.633663×10−2from.
y2(t−1) 2.863361×10−2The parameters used in the algorithms are 50, 0.6 and y(t−1)y(t−2) −3.614872×10−2

0.01 for population size, pc and pm respectively. The y(t−1)u(t−1) 2.218746×10−2
y(t−2)u(t−2) 3.277503×10−2values of EI for both MGA and OLS methods are then
y(t−3)u(t−2) −3.759731×10−2compared. The results for structure selection using the u(t−2)u(t−1) −8.189368×10−3

OLS and MGA are shown in Tables 4, 5, 6 and 7. The
seventh example is a simulated example and the eighth
example is a real experimental data. Both of these
examples are not NARMAX model representations and For model 7, the EI produced by the GA is 0.1237 as

compared with the EI produced by the OLS of 0.1245,are fitted using NARMAX models. The purpose of this
study is to investigate whether the MGA would yield as given in Table 8. However, the number of terms for

the GA is less, which is 9 compared with the OLS whichmore compact model structures than the OLS.
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11MODEL STRUCTURE SELECTION FOR A DISCRETE-TIME NON-LINEAR SYSTEM USING A GA

Table 8 Simulation results for models 7 and 8Table 6 Estimated model using the OLS for
model 8

Example Methods EI Number of terms
Terms Estimate ERR

i 7 OLS 0.1245 20
MGA 0.1237 9y(t−1) −5.6095×10 9.998×10−1

y(t−2) 6.7452×10 1.339×10−4 8 OLS 0.0064 14
u(t−2) −2.2006×10 2.642×10−5 MGA 0.0048 11
y(t−2)y(t−1) −8.4325×10−2 9.156×10−6
y(t−1)u(t−1) 4.2536×10−1 1.468×10−6
u2(t−2) −1.8162×10−1 1.132×10−6
y(t−2)u(t−1) −3.8277×10−1 9.714×10−7
u2(t−1) −1.7146×10−1 8.287×10−7

used as a criterium to select the significant terms to bey2(t−2) −2.6074×10−2 6.472×10−7
y2(t−1) 1.0787×10−1 5.024×10−7 included in the model. However, based on the result in
u(t−1)u(t−2) 5.2008×10−1 3.942×10−7 Table 4, it is difficult to decide on the ERR value to stopu(t−1) −1.8454×10 3.275×10−7

regression.y(t−2)u(t−2) 6.5491×10−2 1.789×10−7
y(t−1)u(t−2) −3.9876×10−2 1.613×10−7 For model 8, the value of EI given by the MGA is

0.0048, which is smaller compared with the EI deter-
mined by the OLS, which is 0.0064, as given in Table 8.

Table 7 Estimated model using the This result indicates that the proposed algorithm out-
GA for model 8

performed the OLS algorithm in terms of execution time,
number of terms and accuracy.Terms Estimate

y(t−1) 1.055281×10
y(t−2) 7.797739×10−2
u(t−1) −8.263638×10−1 4.4 Correlation tests
y2(t−1) 4.842900×10−2
y(t−1)y(t−2) −8.960925×10−2 The correlation tests for models 7 and 8 identified using
y(t−1)u(t−1) 2.050143×10−2

the OLS and the MGA are shown in Figs 8, 9, 10 andy(t−1) u(t−2) 5.958990×10−2
y2(t−2) 3.868690×10−2 11 respectively. It is observed that almost all the corre-
y(t−2)u(t−2) −7.221528×10−2 lation tests were within the 95 per cent confidence bands
u2(t−1) 7.702835×10−3

except for w
ee

and w
e(eu) tests using the OLS for modelu(t−1)u(t−2) 1.523536×10−2

8; w
ee

outside the confidence band can be rectified by
introducing the noise model. The tests also indicate that
the model developed using the OLS is not yet adequateis 20. The result shows that the proposed algorithm is

able to determine a more compact model of the system and extra terms might be needed. Generally, it can be
concluded that the tests reveal that the models using thethan using the OLS and still gives models with good

predictive accuracy. Using the OLS, the ERR value is MGA for both examples are adequate.

Fig. 8 Model validity test for model 7 identified using the OLS

I03103 © IMechE 2004 Proc. Instn Mech. Engrs Vol. 218 Part I: J. Systems and Control Engineering

mi00003103 15-01-04 11:52:56 Rev 14.05

The Charlesworth Group, Huddersfield 01484 517077



12 R AHMAD, H JAMALUDDIN AND M A HUSSAIN

Fig. 9 Model validity test for model 7 identified using the MGA

Fig. 10 Model validity test for model 8 identified using the OLS

4.5 Discussion to a non-optimal solution due to loss of some important
characteristics (genes) in the chromosome. The resultsA study on the influence of the control parameters on
indicated that (a) the loss of critical alleles (bits/positions)the genetic search was presented. These empirical studies
occur where the chromosomes carrying those alleles arehave shown that there is no specific guidance on how to
not chosen for reproduction and (b) selection directs thechoose these recombination operators. The best setting
GA towards promising regions; however, too strongof the GA operators is also dependent on other factors
selection will lead the highly fit individuals to take oversuch as population size, fitness function and problem
the population, causing it to miss much better solutionsdefinition. In relation to population size, as discussed
elsewhere in the search.previously, it was suggested that more disruptive recom-

To further improve the search, the SGA needs to bebination (higher pc and pm) should be used for a smaller
modified. The success of the genetic search dependspopulation size.
on balancing the aspects of population diversity whereThere are some limitations to the SGA discovered in

the work, such as the premature convergence of the GA the different regions of the search space are explored;
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13MODEL STRUCTURE SELECTION FOR A DISCRETE-TIME NON-LINEAR SYSTEM USING A GA

Fig. 11 Model validity test for model 8 identified using the MGA

therefore, it is necessary to tune the search. In the 5 CONCLUSION
MGA, crossover and mutation are positioned where
they should occur so that the best few chromosomes are The study has focused on model structure selection for

linear-in-the-parameters dynamic systems using geneticdisrupted with less probability than those with weaker
fitness. algorithms. It is shown that the proposed algorithm

provides an efficient way of determining the modelThe ERR values given in the OLS algorithm indicate
the significance of the terms to the model; therefore structure of unknown linear and non-linear systems. The

algorithm is able to select and explore potential solutionsonly the significant terms will be chosen, eliminating
the insignificant terms. However, the values of ERR in and makes it easier to determine the optimal solution.

The case studies demonstrated that it is possible to findthe empirical studies (Tables 4 and 6) showed that these
values reduce gradually and therefore lead to the diffi- an effective search space in the GA and the simulated

examples in section 4.2 seem to confirm the conclusionculty in deciding when to stop the regression ending up
choosing all the terms. However, in the GA the different that was made. Optimal tuning of the GA operators

remains an open issue. The proper selection of thechoices of structures are explored and the best one is
selected among them, giving the model with the mini- parameters much depends on the characteristic of the

solution space. However, the results indicated thatmum error and a smaller number of terms. Furthermore,
the GA has the advantage of computational time different values of these parameters affect the perform-

ance of the algorithm. In conclusion, the simulationcompared to the OLS. For example, there are 1 048 575
possible models for the identification of the seventh results compared to OLS algorithms showed that the

modelling accuracy is as good or may be better thanexample and with a population size of 50, results will be
obtained after the hundredth generation. There are the OLS algorithm, but with a more compact model.

Furthermore, the problem encountered when using thetherefore only 5000 states to be computed for the GA
to reach a viable solution. OLS is when to stop the regression, which is not inherent

when using the GA.The results obtained in this study indicated that the
algorithm is capable of determining the model structure
of an unknown dynamic system with a fewer number
of terms as compared with the OLS and is also able
to identify the models with a faster convergence rate REFERENCES
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