CRACK GROWTH ANALYSIS IN REINFORCED CONCRETE UsING BEM

By A. L. Saleh' and M. H. Aliabadi’

ABSTRACT:

A boundary-element formulation for modeling the nonlinear behavior of reinforced concrete is

presented. The influence of reinforcements on the concrete is considered as a distribution of forces over the
region of attachment. The solution for the attachment forces is obtained from the condition that the deformations
of the concrete and the reinforcement under the action of the external loading are compatible. The yielding of
reinforcement is considered when the total force at any section of the reinforcement is greater than the yielding
force and is assumed to be broken when the strain reaches the maximum strain. The fracture of concrete is
simulated using the fictitious crack model in which the fracture zone is replaced by closing forces acting on
both crack surfaces. In using the boundary-element method to simulate cracks, the crack path is not known in
advance because it can be calculated during the iteration process, and then the need of remeshing becomes
obsolete. The numerical results obtained are compared to the finite-element method analysis and experimental

results.

INTRODUCTION

Reinforced concrete is a composite material in which steel
reinforcements are provided in the region of tension. In a typ-
ical situation, concrete is cracked and transmits mainly com-
pressive stresses, while reinforcement carries the tensile
stresses. Since cracking has a major influence on the structural
performance and because of the practical importance of this
problem, much research has been devoted to its solution. Re-
cent developments have been strongly influenced by the ap-
plication of the finite-element method (FEM) to the analysis
of cracks in the reinforced-concrete structures. The FEM in
conjunction with constitutive relationships permits the numer-
ical simulation of the nonlinear stress-strain behavior of the
materials. Concrete cracking is perhaps one of the major con-
tributing factors to the nonlinear behavior of the material. Gen-
erally, numerical models for analyzing crack growth in con-
crete may be distinguished in two categories: (1) The discrete
crack model; and (2) the smeared crack model.

The application of the boundary-element method (BEM) to
simulate crack growth in reinforced concrete is a new subject.
Therefore, the aim of this paper is to fill this gap and extend
the work in Saleh and Aliabadi (1995) to include steel rein-
forcement in the model. The fictitious crack model (FCM) is
used for the cracking of concrete and is bonded by stiffener
to represent the reinforcement. The dual boundary-element
method (DBEM) has been employed in the analysis. The result
obtained is compared to the FEM analysis and experimental
result.

The advantage of the method proposed in this paper and
others lies mainly in the simple modeling requirement to fol-
low the crack growth in the reinforced-concrete structures.

CRACKING OF CONCRETE

The tensile cracking of concrete creates physical disconti-
nuities. To model this problem, a fictitious crack approach has
been employed. The FCM is a theory applicable to numerical
calculation of crack propagation in a concrete structure or a
structure of similar materials having a low ultimate tensile
strength. The model is based on the following assumptions:
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1. The fracture zone starts to develop at one point when the
maximum principal stress reaches the maximum tensile
stress.

2. The fracture zone develops perpendicular to the maxi-
mum principal stress.

3. The material in the fracture zone is partly destroyed but
is still able to transfer stress. The stress is dependent on
the crack opening displacement.

4. The material properties outside the fracture zone are as-
sumed to be linear elastic and given by o-€ relationship.

In the model the fracture zone is replaced by closing forces
(or cohesive forces) acting on both crack surfaces and the in-
tensity of these forces are dependent on the crack opening
displacement [Fig. 1(a)]. The relationship between stress and
crack opening displacement is considered to be straight line
(SL) and bilinear line (BL) as shown in Fig. 1(b). When the
stress at the fictitious crack tip exceeds the maximum tensile
strength of the concrete, the fictitious crack will propagate per-
pendicular to the maximum principal stress. The fictitious
crack will become an open crack (traction-free) if the crack
opening displacement Au® is greater than the critical crack
opening displacement Au{".

In this paper, the DBEM is extended to model the cracking
of reinforced concrete. The DBEM is shown to be computa-
tionally efficient in simulating crack propagation especially
when dealing with the nonlinearity behavior in concrete. The
dual equations, on which the DBEM is based, are the displace-
ment and the traction boundary integral equations. The bound-
ary integral representation of the displacement components ,
can be written in terms of boundary point as

cy(xDu(x") + )[ T,(x', x)uy(x) dT'(x)

r-r,,

+ f Tij(x'9 x)uf’(x) drcr(x) - f Uij(x” x)tf’(x) drcr(x)
Ter

Fer

= J Uy(x’, x)t;(x) dI'(x)
r-r., @®

assuming continuity of the displacement at x’, the collocation
point. The coefficient ¢, (x’) is given by 8,/2 for smooth
boundary at the point x’ (3, is the Kronecker delta), and F is
the Cauchy principal value integral. The functions T (x’, x)
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FIG. 1. FCM: (a) Fracture Zone Is Replaced by Cohesive
Forces; (b) Relationship of o-Au®" Curve

and U,(x’, x) represent the Kelvin traction and displacement
fundamental solutions, respectively. At a boundary point x,
u;"(x) and #;"(x) are the displacement and distributed cohesive
forces, respectively, on one of the crack surfaces I',.

The boundary integral representation of the traction com-
ponents ¢ can be obtained from ¢, = o;n;, where oy, are the
stress components obtained by differentiating equation (1) fol-
lowed by application of Hooke’s law, and n; denotes the ith
component of the unit outward normal to the boundary. For a
point on a smooth boundary, ; can be written as

%tJ(X’) + ny(x’) )( Sy (X', Xuy(x) dT'(x)

r-r,.,

+ n(x") }‘ Skij(x,, x)uy'(x) dI.,(x)
rCI'

— n(x") f Dyy(x’, x)ty (x) dT,.,(x)
r:"
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= n,(x") J[ D, (x’, x)t:(x) dI'(x)
r-r,, 2)

where S, (x', x) and D,,(x’, x) = linear combinations of de-
rivatives of T,(x’, x) and U,(x’, x), respectively. ¥ denotes the
Hadamad principal value integral. The functions u;"(x) and
t;"(x) are the displacement and distributed cohesive forces, re-
spectively, at the other crack surfaces I',,. For a traction-free
crack, t;" = t;" = 0. Egs. (1) and (2) constitute the basis of the
DBEM and can be expressed in the matrix form as

X
[A [H.] [G.]] {{un}} = {F} (3)
{tCP‘}

in which A = coefficient corresponding to the vector X con-
taining unknowns « and ¢; and { F} contains the known values
of u and ¢ on the boundary nodes other than crack boundary.
[H.] and G,,] are coefficients corresponding to the nodes on
the crack boundary.
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FIG. 2. Unknown Parameters at Fictitious Crack Surfaces a
and b
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BOUNDARY CONDITION FOR FCM

The cohesive forces on the fictitious crack surfaces, i.e., the
fracture zone, can be derived by the relationship between trac-
tion and crack opening displacement in the local coordinate
system (n, ?). The linear (SL) softening constitutive law [see
Fig. 1(b)] can be written as

cr
=S (1 ~ 2:;), t5=0 @
where Au” = u? — u? = displacement discontinuity normal to
the crack in which u; = displacement at one of the crack sur-
faces; and u), = displacement at the opposite crack surfaces as
shown in Fig. 2. Au{" and f; are the material parameters. At
the interface of the fracture zone, to maintain the equilibrium,
the following conditions are enforced:

w=ul ti=—t2 =t (Sa~c)

The combination of boundary integral equations, [(1) and
(2)] and the fictitious crack boundary conditions [(3) and (4)]
can be expressed in the matrix form as

X
A [H (G _[F
[o [C. [Dc,]] {{{';::}’}‘{{sc,}} ©

where [C,] and [D,,] = fictitious crack boundary conditions
corresponding to the vectors {«.,} and {z.,}, respectively; and
the vector {S,,} contains the material parameters. In all cases,
subscript cr represents the fictitious crack boundary. For the
linear relation of o-Aug’, matrices [C.,] and [D,,] contain 4 X
4 submatrices given by

fi fi
- 0
ae 0 e
ca=} 0 -1 0 1 (Ta)
0 0 0 0
0 0 0 0
1 0 00
0 0 0O
01 01
and vectors {u.,}, {t..}, and {S,,} are given by
Ul Iy b
a td O
d=INI{ 8 (Rd=INI{ 30 Sd={,p (a0
u) 2 0

where [N] = transformation matrix from global to the local

e Element node

X Element end point

(2)

. ——— e ——

™
[
™

(b)

FIG. 4. Reinforced-Concrete Configuration: (a) Steel Reinforcement Node Separated by Equal Interval b,,; (b) Stress-Strain Curve for

Steel Is Assumed to Be Linear Perfectly Plastic
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reference system, varying node by node on the fictitious crack
surface.

The cracked boundaries are modeled with discontinuous
quadratic elements (see Fig. 3). This is due to efficiency and
to keep the simplicity of the standard boundary elements. Con-
tinuous quadratic elements are used along the remaining
boundary of the body, except at the intersection between a
crack and an edge, where discontinuous elements are required
on the edge to avoid a common node at the intersection.

MODELING OF REINFORCEMENTS

In general, three approaches are used to take into account
the effect of steel reinforcement in the calculation of stresses
in the reinforced-concrete members: (1) smear model; (2) em-
bedded model; and (3) discrete model.

() \A/
FIG. 5. (a) Boundary-Element Mesh; Deformed Shape for:
(b) Iteration 4; (c) iteration 8

In the present study, the embedded model is coupled with
the BEM to study the effect of the reinforcement in the sim-
ulation of crack propagation of the reinforced-concrete beam.
When using this model, the following assumptions are made:

1. The bond between concrete and reinforcement is as-
sumed to be perfect.

2. The stiffness contribution of the reinforcement is only in
the longitudinal direction.

3. Reinforcement is straight and has a constant cross-sec-
tional area.

4. Dowel action, shear transfer, and aggregate interlock are
not taken into account.

Using the embedded model, the influence of reinforcements
on the concrete can be considered as a distribution of forces
over the region of attachment, which for balance configura-
tions may be considered as body forces. In this case, the be-
havior of the concrete may be described using the theory of
generalized plane stress, and the theoretical modeling of the
reinforcement is a problem in terms of the unknown attach-
ment force distribution. The solution for the attachment forces
is obtained from the condition that the deformation of the con-
crete and the reinforcement under the action of the external
loading are compatible.

Development of Numerical Model

Consider a cracked reinforced-concrete configuration in Fig.
4(a). In addition to the plain concrete, a number of reinforce-
ments are bonded to the concrete over the loci L, (n = 1, 2,
..., N, where N* is the number of reinforcement). The re-
inforcement is subdivided into a continuous quadratic isopar-
ametric element that consists of three nodes with an equal
interval b,. Each reinforcement exerts a line distribution of
force (per unit arc length) f}(X) (j=1,2;n=1,2,...,N")
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FIG. 6. Load-Deflection Curves Obtained by BEM Analysis, FEM Analysis, and Experimental Results
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on the corresponding locus L, in the concrete, and it experi-
ences an equal and opposite reaction force —f7(X) along its
length. The condition that the displacements of the concrete
1;(X) and the nth reinforcement #/(X) are compatible with the
shear coefficient of the bond between concrete and reinforce-
ment @ and is given in term of f} by

[(F(X") — (Xo)] — [u(X") ~ 4(X0)] = P'[f}(X") = f7(X0)]

®
where X, and X' = distinct points on the nth reinforcement
locus L,. For a perfect hond, Q" is equal to zero.

The reaction forces of the reinforcement f7(X) can be in-
cluded in the displacement boundary integral equation [(1)] as
the body forces confined to a straight line instead of the do-
main and is given by

cy(xNDu(x") + J[ T, (x', x)uy(x) dI'(x)

r-r.,

+ f ﬂj(xlv x)ujr(x) drcr(x) - f Ulj(x’¢ x)tjcr(x) drcr(x)
rcr

T

cr

N

-> f Uy, X)f3(X) dL,(X) = f

nwl r-r

.

U,(x’, x)t(x) dI'(x)
' (10)

and in the traction boundary integral equation [(2)] as

1
E tj(x’) + ni(x") }‘ Skij(x,, X)u(x) dI'(x)

r-r,,

+ ni(x") % Sm(x’v x)u;'(x) dT.(x)
rcr

— n(x") J[ D, (x’', x)t;"(x) dI..(x)
Tep

Nt

= n(x’) 2

n=l Jr,

Dy(x', X)f i(X) dL,(X)

= n;(x") J[ D, (x', x)t(x) dl'(x)
r-r,, an

Combining (9) with (10) and (11) gives the compatibility
equation for points X, and X' on the nth reinforcement locus
as
(X') — wi(Xo)l + )[ AT u)(x) dT'(x)

T'-TF,

cr

+ f AT uj"(x) dI',,(x) — f AUt (x) dT.(x)
r-r,, T,

cr

— n(X) f ASyyun(x) dI'(x) — n(X) f ADyyti"(x) dI . (x)
r

rt r

N

-2

nwl JI

UyX" = Xo)f /(X)) dL,(X) = f

r-r,

<

AU t(x) dT'(x)

+ n(X) J[ ADyt(x) dI'(x)
r-r,, (12)

where ®” = 0 is assumed and

AT, = T (X', x) — T\(X,, x) (13a)

AUy = Uj(X’, x) — Uy(X,, X) (13b)

Asw = S,,,,(X', X) = Siy(Xo, X) (13¢c)

ADm = Dku(x'o X) — Dklj(XO; X) (13d)

The displacements u; of the nth reinforcement in (12) can
be expressed in terms of an arc length parameter x measured
in the longitudinal direction from one end. Therefore, the rel-
ative displacement of the reinforcement due to a body force
distribution —f;(x) per unit length (0 < x =< I) are given by

() — w(0) = [N][yx) — »p(0)] for j=1,2 (14
where [N] represents the transformation matrix from global to
local coordinate system. The displacements v, of the reinforce-
ment along the longitudinal directions are given as

1 X
[u(x) — v(0)] = W {xTx(O) + f x — §1i(®) d§} (15)
sdes (]

and along the transverse direction as

1 x
[v2(x) — v:(0)] = e {xTz(O) + f (x — §AE) d&}
sy [}

11 1 1
“z {-x’M(O) + gx’Tz(O) + f 5 @~ &%) dﬁ} — xB(0)
0

s 12
(16)

(@)

FIG. 7. (a) Boundary-Element Mesh; Deformed Shapes for:
(b) lteration 4; (c) iteration 8; (d) Final Load
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where A,, E,, G,, and R, = material properties that represent
the cross-sectional area, Young’s modulus, shear modulus, and
transverse flexural rigidity of the reinforcements, respectively.
T\(x), T»(x), and M(x) representing the internal forces and mo-
ment acting over the reinforcement cross section and 3(0) de-
noting the partial derivative dv,/dy evaluated at the end x = 0
to take account for any difference in the rigid body rotations
of the reinforcement and the concrete.

Additional equations are the equilibrium state under the ac-
tion of the body forces —f;(x) and the end loads T,(0), T:(!);
T,(0), T,(l);, and M(0), M(l). They can be expressed as

!
fﬁ(x) dx=T(l) — T(0) for j=1,2 (17a)
0

!
f ( — x)fo,(x) dx = M(l) — M) — IT,(0) (17b)
o

The end loads in (17) correspond to the boundary conditions
for the reinforcement. Setting all six values to zero will rep-
resent a reinforcement with free ends. Alternatively, the values
may be chosen to specify a given state of stress or strain at
the ends.

YIELDING OF REINFORCEMENT

The reinforcements are assumed to behave linearly up to the
yield stress oy and then as a perfectly plastic material as shown
in the stress-strain curve in Fig. 4(b). After yielding, the force
in the reinforcement is set to the yielding force F, = oA, until
the strain reaches the maximum strain €,,, where the reinforce-
ment is broken. The total force at any node in the reinforce-
ment F, is determined from the end load 7,(0) and the sum-
mation of forces (per unit arc length) f; multiplied by the node
interval b, as
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F,=Ty0) + b, D, f 8)

Jmn

The total force in (18) is compared with the yielding force
F,. If the force is greater than the yielding force, all the af-
fected nodes (j = n, ..., N) are set to a value in such a way
that the summation of forces per unit arc length at that partic-
ular node is equal to the yielding force per unit length F,/b,.

NUMERICAL EXAMPLE
Plain Concrete Beam

The first example is due to experimental and numerical re-
sults reported by Petersson (1981). It is used here to investi-
gate the Mode I crack propagation by means of a notched
beam subjected to three-point bending. The BEM mesh and
the boundary condition are shown in Fig. 5(a). In the BEM
analysis, the parameters used are beam depth 4 = 0.2 m, span
length [ = 2.0 m, width b = 0.05 m, and ratio between initial
crack depth and beam depth a:d is 0.5. The material properties
of the beam are E = 30,000 MPa; f; = 3.33 MPa; v = 0.2, and
Gy =124 N m™". Both in BEM and FEM analyses, the o-Au®
curves are assumed to be SL and BL. In the experimental tests
by Petersson (1981), six beams were tested to determine the
fracture energy Gr; and it was found that the highest value
was 137 N m™!, and the lowest value was 115 N m™%

The deformed shape at Iterations 4 and 8 are shown Figs.
5(b and c). The load-deflection curves plotted in Fig. 6 show
that a good agreement with the FEM analysis and experimental
results is obtained. It is observed that the BL of the o-Au®"
curve gives better results compared to SL both in BEM and
FEM analyses.

The second example is a beam tested by Bosco et al. (1990)
and has been analyzed using FEM by Hawkins and Hjorteset
(1992). In this example a concrete beam (Grade 4) with depth
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FIG. 9. (a) Crack Opening Displacement; (b) Stresses along
Line of Symmetry for iterations 4 and 6

h = 100 mm, width b = 150 mm, and span / = 600 mm is
used. The material properties of the beam are E = 34,300 MPa;
fi = 5.3 MPa, and v = 0.2. Fig. 7(a) shows the BEM mesh
and its boundary condition. There were 45 elements with 97
nodes in the initial state of the analysis after considering the
discontinuous elements on the crack and edge elements that

intersect with the crack. The initial crack of 10 mm shown in
Fig. 7(a) is not a traction free crack but loaded with the fic-
titious forces even in the early stage of loading. This was the
best configuration to match with the experimental results since
BEM analysis needs an initial crack to start the crack growth
while in the experimental results it is not essential. The crack
extension is chosen as 10 mm and Petersson’s BL of o-Au®
curve is assumed for the fracture property. The deformed shape
at Iterations 4 and 8 is shown in Figs. 7(b) and 6(c), respec-
tively. Fig. 8 shows the load versus midspan deflection by
FEM analysis, experimental results, and BEM analysis. The
fracture energy Gr used in the FEM analysis was 90 N m™},
and the load-deflection curve indicates that this value is rela-
tively small compared to the load-deflection curve given by
the experiment. For this reason, various numbers of Gr in the
range of 90-150 N m™' were tested in the BEM analysis, and
it was found that higher values of Gr are closer to the exper-
iment.

Fig. 9 shows the crack opening displacement (Au®/2) and
stresses along the line of symmetry for Iterations 4 and 6,
respectively, for Gr = 90 N m™". It shows that the crack is
completely loaded in Iteration 4 for both SL. and BL models,
but in Iteration 6, the traction-free crack appear in the SL
model and not in the BL model. It is indicated that the pre-
diction of the fracture behavior of concrete is more reliable
when using the BL model.

Reinforced-Concrete Beam

The same beam tested by Bosco et al. (1990) is used to-
gether with a reinforcement located 10 mm above the bottom
surface of the beam. The reinforcement is discretized using 20
elements with 41 nodes of equal intervals. The same number
of elements and nodes as in the unreinforced beam is applied
for the discretization of the concrete. The area of the reinforce-
ment and the yield stress is varied as shown in Table 1. The
crack is assumed to initiate when a value of stress along the
bottom surface has reached the maximum tensile stress of con-
crete f;. Fig. 10 shows the stresses along the reinforcement
immediately before the crack was initiated. At this stage, the
maximum cracking load P,, obtained by BEM analysis is com-
pared with the theoretical analysis of an uncracked section
using the triangular stress block by Mosley and Bungey (1987)
as shown in Table 1. It can be seen that good agreement is
obtained for both results.

The effect of reinforcement over the crack opening displace-
ment can be seen in Fig. 11 for Iterations 4 and 6, respectively,
with A, = 12.7 mm? It is clearly shown that the introduction
of reinforcement tends to close the crack opening both in SL
and BL models.

Fig. 12 shows the load versus mid-span deflection curve
obtained by the BEM analysis, FEM analysis, and experi-
mental results for A, = 12,7 mm®. The BEM analysis uses
various numbers of fracture energy as in the unreinforced
beam. The value of Gr = 110 N m™' seems to give good
agreement with the experimental result. After the fictitious
crack tip crossed the reinforcement, the stresses in the steel
stress of 5.8, 8.7, 13.9, 21.2, 31.3, 46.6, and 71.9% of f, for

TABLE 1. Maximum Cracking Load Immediately before Crack
Initiation

h b A f Cracking Load P,, (kN)
. i4

(mm) | (mm) | Steel | (mm®) | (MPa) | BEM | Theory | Percentage
{1 () (3) “) (5) {6) (7) (8)

100 150 | 194 12.7 637 9.05 8.95 -1.10
100 150 | 245 39.3 569 9.30 9.21 -0.97
100 150 | 248 100.5 441 9.88 9.79 —-091
100 150 | 2410 ] 157.1 456 [1041] 10.32 —0.86
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FIG. 13. (a) Boundary-Element Mesh; Deformed Shape for: (b) iteration 4; (c) Iteration 8 with Reinforcement

fictitious crack tip located at 20, 30, 40, 50, 60, 70, and 80
mm were observed. Note that the steel stresses increase mark-
edly only after the traction-free crack has developed (i.e., when
the fictitious crack tip reaches a depth of 80 mm).

The steel yielding was observed when the fictitious crack
tip approached a depth of 90 mm. At this stage the load was
kept constant until the strain in the steel exceeded the ultimate
capacity €, as shown in Fig. 12. The initial BEM mesh and
the deformed shape in Iterations 4 and 8 are shown in Fig. 13.

Fig. 14 shows the load-deflection curve for the various re-
inforc::ment areas. In all cases the value of Gy is taken as 110
Nm™.

The load-deflection curve obtained by BEM analysis are not
in good agreement with the experimental result by Carpinteri
(1990) due to the assumption of a perfect bond and the un-
realistic assumption of cracking on the center line only. The
predicted maximum load capacities are however, reasonably
accurate for all cases.
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CONCLUSIONS

A boundary-element formulation has been presented for
modeling cracking in plain and reinforced concrete. The model
utilized the FCM for the cracking of concrete. Both the linear
and bilinear stress-displacement curve have been implemented.
The BEM results were shown to agree well with the FEM and
experimental results. The advantage of the new formulation
over previous ones was demonstrated by simulating crack
growth where no remeshing is required.

The embedded approach is used to model the reinforcement.
The proposed model has a capability to detect the yield stress
in the steel with reasonable accuracy. It is assumed that the bond
between steel and concrete is perfect; however, modification can
be made to include bond slip by setting the value of ®" # 0.

The BEM results for the maximum cracking load of the
reinforced-concrete beam are in excellent agreement with the
theoretical results. As expected the results show that the intro-
duction of reinforcement slows the grack growth rates.
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