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ABSTRACT

The discovery of carbon nanotubes (CNT) by Sumio lijima in 1991 has attracted
many researchers worldwide 1o study and explore the newly found materials. CNT are
considered for hydrogen storage due to their low density, high strength, and hydrogen
adsorption characteristics. Recent reports suggest that total surface arca of carbon affecet
the hydrogen storage capacitics in carbon nanotubes. An Artificial Neural Network
model was created to study the relationship between the surface area of carbon and the
hydrogen adsorption.
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1. INTRODUCTION

Hydrogen is the cleanest fuel and is expected to replace the conventional fossil
fuel. Hydrogen is the most promising candidate to replace the current fossil fuel since it
is not only.environmentally compatible (pollution-free). but it also can be produced from
rencwable energy sources, ‘lhus climinate the net production of greenhouse gases [1].
Despite tremendous efforts to use hydrogen as a source of energy, a safe and efficient on
board storage technology has never been casily accessible. Due to its explosiveness, an
efficient storage method is needed for hydrogen to become a replacement for fossil fuels.

“The ability to store hydrogen onboard vehicles is a key technological issue for the
development of fuel cell powered vehicles. The technique of hydrogen storage has to
mect the benchmark sct by the US Department of Energy (DOE) Hydrogen Plan for the
volumetric and gravimetric density of the stored hydrogen. According to DOE, a material
needs to store 6.5% of its own weight in hydrogen to make fuel cells practical for
commercial used.

In general, there are four main technologies being explored for hydrogen storage
[1]: Compressed gas. liquefaction, metal hydrides.and physisorption (gas-on-solid
adsorption). Although nowadays all of these options arc investigated extensively and
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progress is gained. none of these technologies is fully developed. There are still some
significant disadvantages which exist. For example. the critical issuc connccted with
compressed gas storage may be tank volume and safety, while liquefying hydrogen
wastes at least 1/3 of stored energy and suffers from potential losses due to cvaporation
and the hydride-based approach suffers from weight and cost concerns [1]. The storage
based on physisorption potentially may have a higher encrgy density [2]. Research
reports suggested that physisorption is the most promising hydrogen storage method for
meecting the goals of the DOE Hydrogen Plan for fuel cell powered vehicle [3,4].
Physisorption is an inherently safe and potentially high energy density H; storage method
that could be extremely energy cfficient [5]. The storage of hydrogen can rely on
physisorption because the adsorbed gas can be released reversibly [6].

Researchers worldwide have studied different types of adsorbent such as silica,
graphite, activated carbon, carbon nanofiber and carbon nanotubes in their physisorption
research. Carbon is well known as one of the better adsorbents for gases. This is due to
(i) the ability of this material to exist in a very fine powdered form with highly porous
structure and (ii) the existence of particular interactions between carbon atoms and gas
molecules [7]. The discovery of carbon nanotubes (CNT) by Sumio lijima [8] in 1991
has attracted many rescarchers worldwide to study and explore the materials. Carbon
nanotubes posscss unique characteristics such as low density. high strength, and
hydrogen adsorption characteristics that make them suitable for hydrogen storage.
Because of these characteristics, carbon nanotubes arc said to be a good adsorbents for
adsorption. Recent reports suggest that there was a dependence of the storage capacity on
the specific arca of the carbonic adsorbents [9-11].

2. METHODS -

Artificial neural network (ANN) was used to study the relationship between
carbon surface arca and hydrogen storage. Among the adsorbents used were carbon
nanotubes and activated carbon. ANN is a type of Artificial Intelligence that is inspired
by the way the brain process information. A neural network consists of simple
synchronous processing clements, called neurons. The neurons are connected to each
other by links with their own weight factors. A Icarning process in the ANN context can
be viewed as the problem of updating network architecture and connection weights so
that a network can efficiently perform a specific task. The network usually must learn the
connection weights from available training patterns. Performance is improved over time
by updating the weights in the network iteratively. ANN appears to learn the underlying
rules from the given collection of representative examples. Various aspects have to be
considered before a satisfactory model of neural network is developed. The development
of neural network model is including databasc collection. analysis and pre-processing of
the data. design and training of the ncural network. test of the trained network and use of
the trained neural network for simulations and predictions [12]. A feed forward
architecture was used for the design of the network. Such architecture is shown
schematically in Fig. 1, where the number of neurons in input and output layers is
constrained by the problem and the outputs required by it. respectively. The neurons are
ordered in layers and the information is processed in one direction, from input to output

The input layer consists of neurons that receive input from the user. The output
layer consists of neurons that communicate the output of the system to the user. There are

166



Artificial Neural Network Modeling of Hydrogen Uptake Based on Carbon Surface Area

usually a number of hidden layers between these two layers. Fig. 1 shows a simple
structure with only one hidden layer. When the input layer receives the input, its neurons
produce output, this becomes input to the other layer of the system. he process continues
until a certain condition is satistied or until the desired output is reached.
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Figure 1. Neural Network architecture

Back propagation algorithm was used in our artificial ncural network modeling.
Back propagation algorithm is based on the supervised learning procedures. It compares
the responses of the output units to the desired output, and readjusts the weights in the
network. It has to build the model up solely from the examples presented, which are
together assumed to implicitly contain the information necessary to establish the relation.
Training sets consist of input/output pattern pairs, which are taken from real data, are
used to train the network. The input data is repeatedly presented to the neural network.
Output of the neural network is compared to the desired output and an error is computed,
feed back and back propagated to the network and used to adjust the weight. This process
is known as training. Back propagation method is often capable of modeling complex
relationships between variables. It allows prediction of an output object for a given input
object. Typically, it needs both training and test set of data. The training set is used to
train the network while the test data is used to assess the performance of the network
afier training.

3. EXPECTED RESULTS

Monte Carlo simulations [3.13-16] and other calculations [17.18] have been
carried out to verify and predict the adsorption capacity of hydrogen in carbon nanotubes
based on the assumption of physical adsorption. It is important to notice that different
factors can influence the gas adsorption such as the specific area of the materials, the
method used in order to open the carbon nanotubes and the purification of the adsorbent
before any adsorption measurement. Consequently, the hydrogen storage properties of
high surface area carbons have been extensively studied. Nijkamp et al. [19] examined
that there was a correlation between the specific surface of carbonic materials and
hydrogen adsorption. Using volumetric method. Nijkamp et al. investigated different
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adsorbents for hydrogen at 77 K and atmospheric pressure. They found an
approximately linear correlation between the specific surface area determined by BET
measurements and the hydrogen adsorption. Zuttel et al. [9] did the electrochemical
measurements of the hydrogen adsorption in carbon nanotubes. They found that the
electrochemically measured discharge capacity at room temperature (T = 293K) of the
nanotubes samples correlate with the surface area. The linear relationship is shown in
Fig. 2 [20], where the line intercepts at the axis at the origin and the slope is 1.5
mass%/1000 m*/g. They plot their data in one plot together with the low-temperature
adsorption data mcasured by Nijkamp ct al. Their extrapolated maximum discharge
capacity of carbon sample is 2 mass%.

H M= 1 omins® e
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Figure 2. Desorbed amount of hydrogen versus the B.E.T. surfacc area

In figure 2, the round markers are few carbon nanotubes samples including two
measurements on high surface area graphite (HSAG) samples together with the fitted
line. The square markers are hydrogen gas adsorption measurements at 77K from
Nijkamp et al. [19]. The dotted line represents the calculated amount of hydrogen in a
monolayer at the surface of the substrate.

Based on the experiments performed by other researchers [9, 217 who found that
there was a correlation between the specific surface arca and the amount of hydrogen
uptake in carbon materials, we devcloped an artificial ncural network model to study the
influence of the total surface area on the hydrogen storage capacity of carbon. The model
is expected to predict that when the surface area is increased. the hydrogen uptake will
also increase. The artificial neural network model is still open for constant upgrade and
improvement.
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