
DEVELOPMENT OF A SOFTWARE FOR SIMULATING ACTIVE FORCE CONTROL 49

Jurnal Teknologi, 43(A) Dis. 2005: 49–72
© Universiti Teknologi Malaysia

DEVELOPMENT OF A SOFTWARE FOR SIMULATING ACTIVE
FORCE CONTROL SCHEMES OF A TWO-LINK PLANAR

MANIPULATOR

MUSA MAILAH1* & POH YANG LIANG2

Abstract. The paper describes the development of a software in the form of an interactive
computer program that integrates a number of robotic control schemes with the active force control
(AFC) strategy as the key element of the robotic system that assumes a rigid two-link planar
configuration. The various AFC schemes are employed in conjunction with a number of conventional
and intelligent techniques embedded in the main control loop to approximate the estimated inertia
matrix of the robot arm. The schemes have been individually developed and rigorously
experimented through simulation studies. The results of these studies clearly indicate that the AFC
technique provides a practical solution to enhance the robustness of the robotic system even in the
wake of uncertainties, disturbances and varied loading conditions. Thus, it is deemed useful to
develop software that can integrate a number of individual AFC schemes into a single program
using a graphic user interface (GUI) technique. In this manner, the user can effectively select and
execute any scheme by the manipulation of a few keystrokes or buttons of the input devices. This
resulted in a program that is user friendly, readily accessible, flexible and proved very convenient.
On top of that, the graphical results can be observed and analysed on-line while the program is
running. By using MATLAB and its GUI facility, all the AFC schemes already described in the
previous works such as the AFC with crude approximation method, AFC and Iterative Learning
(AFCAIL), AFC and Neural Network (AFCANN), AFC and Fuzzy Logic (AFCAFL), and AFC
and Genetic Algorithm (AFCAGA) schemes were linked into a single menu-driven program where
each of the scheme can be easily selected and executed by the user. A classic proportional-derivative
(PD) control scheme was also included in the program for the purpose of benchmarking.

Keywords: Active force control, robot arm, estimated inertia matrix, graphic user interface

Abstrak. Kajian ini adalah berkaitan dengan pembangunan perisian dalam bentuk suatu
aturcara komputer berinteraktif yang menyepadukan beberapa skema kawalan robotik dengan
kawalan daya aktif (AFC) sebagai elemen utama melibatkan tatarajah sebuah lengan robot planar
tegar dua-sendi. Skema AFC yang digunakan bersama dengan beberapa kaedah konvensyenal
dan pintar dimuatkan ke dalam gelung kawalan utama untuk mendapatkan matriks inersia anggaran
lengan robot. Skema robot telah dibangunkan secara individu menerusi kajian yang dilakukan
sebelum ini. Hasil daripada kajian yang telah dijalankan menunjukkan bahawa teknik AFC
menyediakan suatu penyelesaian praktik untuk menambahkan lagi kelasakan sistem walaupun
disertai dengan pelbagai keadaan tidak menentu, gangguan dan bebanan. Oleh yang demikian,
adalah dirasakan perlu untuk membangunkan suatu perisian yang dapat menyepadukan kesemua
skema AFC tadi menjadi satu program menerusi penggunaan kaedah antara muka grafik pengguna

1&2Department of Applied Mechanics, Faculty of Mechanical Engineering, Universiti Teknologi
Malaysia, 81310 Skudai, Johor Bahru.

* Corresponding author: Email: musa@fkm.utm.my

JTDIS43A[05]new.pmd 02/15/2007, 15:5349

MUSA MAILAH & POH YANG LIANG50

(GUI). Dengan itu, pengguna boleh memilih dan menjalankan kerja simulasi skema yang dipilih
dengan mudah melalui operasi menekan papan kunci atau butang pada alat masukan. Ini
menghasilkan suatu aturcara yang berbentuk mesra pengguna, mudah dicapai, bolehsuai dan
terbukti keberkesanannya. Selain daripada itu, hasil keputusan secara grafik dapat ditunjukkan
serta dibuat analisis secara dalam-talian semasa aturcara sedang berjalan. Dengan menggunakan
MATLAB dan kemudahan GUInya, kesemua skema AFC yang telah dikaji sebelum ini seperti
AFC menggunakan kaedah anggaran kasar, AFC bersama kaedah pembelajaran berlelaran
(AFCAIL), AFC bersama rangkaian neural (AFCANN), AFC bersama logik kabur (AFCAFL),
dan AFC bersama algoritma genetik (AFCAGA) dapat dihubungkan ke dalam satu aturcara
berasaskan menu di mana setiap skema boleh dipilih dan dijalankan oleh pengguna. Suatu skema
kawalan berkadaran campur terbitan (PD) juga dimuatkan ke dalam aturcara sebagai kayu pengukur
terhadap keberkesanan skema AFC.

Kata kunci: Kawalan daya aktif, lengan robot, matriks inersia anggaran, antara muka grafik
pengguna

1.0 INTRODUCTION

Control of a robot arm has been a subject of active research for the last two decades.
A number of control methods have been proposed to achieve stable and robust
performance ranging from a simple classical proportional-derivative (PD) control to
the more advance methods such as adaptive and intelligent control. The PD control
is quite efficient and stable at low speed operation and with minor disturbances [1].
However, in view of the current robotic applications that are becoming more complex
and challenging, there is a need for a more robust and effective control method.
One of such method is the active force control (AFC) strategy that had been
introduced in the early eighties [2]. This method has demonstrated very robust
performance of the dynamic systems in the presence of disturbances, uncertainties
and changes in the system’s parameters [3, 4]. Throughout the years, a number of
research works have been carried out to further investigate the capabilities of the
method including the incorporation of various intelligent mechanisms to effect the
control action.

Intelligent AFC schemes that were developed were based on neural network
(AFCANN), fuzzy logic (AFCAFL), genetic algorithm (AFCAGA) and iterative
learning (AFCAIL) [5-9]. All the schemes have been shown to perform excellently
through rigorous simulation studies. Experimental study on the AFCAIL scheme
applied to robot arm has also produced some positive results [10, 11]. It is the
main aim of this paper to provide a platform for an effective analysis of various
intelligent AFC schemes described above through a software development process
using GUI technique that integrates all the schemes into a single menu-driven
program. Each individual scheme can be readily accessed, executed and analysed
by the manipulation of a few keystrokes or buttons of the computer input
devices.

JTDIS43A[05]new.pmd 02/15/2007, 15:5350

DEVELOPMENT OF A SOFTWARE FOR SIMULATING ACTIVE FORCE CONTROL 51

2.0 PROBLEM STATEMENT AND STUDY APPROACH

In robot control, AFC is a technique that can be applied to a robot system as a
‘disturbance rejector’ to increase the robustness of the system’s performance. This
strategy is attributed to work accomplished by Hewit and Burdess in the early eighties
[3]. In AFC, the system mainly uses the estimated or measured values of a number
of parameters to accomplish the compensation of all disturbances that are prevalent
in any dynamical system. However, the main drawback in AFC is the appropriate
acquisition of the estimated inertia matrix, INININININ of the robot that is required in the
AFC feedforward loop. The conventional approach to estimate INININININ requires prior
knowledge of the parameter. The method relies on prefect modelling of the INININININ and
crude approximation technique which although quite efficient in implementation,
they do not offer systematic and clear-cut means towards solving the problem [3]. A
number of intelligent methods utilising neural network (NN), fuzzy logic (FL), iterative
learning (IL) and most recently, the genetic algorithm (GA) has been proposed and
embedded into the parent AFC scheme with positive results obtained from the
studies [5-9]. It was shown that each intelligent mechanism was able to estimate INININININ
automatically and continuously while at the same time produced excellent results in
terms of the robust performance of the schemes. The studies were carried out in
isolation and a direct comparison was made to the classic ‘pure’ PD control scheme
for the purpose of benchmarking. Thus, in order to assess and analyse the various
robot control schemes (particularly the AFCs) effectively, it is deemed very useful to
design and develop a computer program that can integrate all the schemes into a
single program that is user friendly, easy to use and menu driven through a developed
GUI. In this way, users can easily access the selected robotic control scheme/s by
simply clicking the appropriate ‘menus’ of the GUI windows via a pointing device
such as a mouse. A number of relevant parameters can also be keyed in conveniently
before any simulation is executed. Comparisons between the schemes can be readily
performed through this program. On-line graphical results can be easily shown on
the computer screen, thereby providing immediate observation and analysis capability.

It seems that it is a matter of simple integration of the previous accomplished
works to develop a computer program that can perform the above functions, but in
reality a number of well thought-out works have to be carried out. Prior to developing
the program, it is important to identify the common elements of all the schemes
considered in the study. It is very obvious that a PD-type control of the robot arm is
inherent in all the schemes and thus should be first designed as the central subject of
interest. Common sub-elements such as the pre-defined trajectories, robot physical
parameters and its dynamics, and disturbance models could be regarded as the
standard (or default) parts of the scheme. Others shall come into the picture in the
forms of the AFC positive feedback loop, intelligent mechanisms and their respective
parameters which can be regarded as the ‘non-standard’ components introduced as
varieties in the control scheme. MATLAB with its GUI capability [12] is fully exploited

JTDIS43A[05]new.pmd 02/15/2007, 15:5351

MUSA MAILAH & POH YANG LIANG52

to accomplish the task of developing the desired program that shall fulfil all the
requirements mentioned earlier. Figure 1 shows the approach that is used in the
study.

Before discussing the details regarding the software development, it is useful to
highlight the basic theories and underlying concepts associated with the relevant
components of the control schemes considered in the study.

3.0 DYNAMIC MODEL OF THE ARM

The dynamic model of the arm can be described as follows [1]:

() ()q dT h , T= + +H θ θ θ θ (1)

where
Tq : vector of actuated torque at joint
HHHHH : N × N dimensional manipulator and actuator inertia matrix

 and ,θ θ θ : vectors of joint position, velocity and acceleration respectively
h : vector of the Coriolis and centrifugal torque

Td : vector of the external disturbance torque

Start

Problem statement
and

design
consideration

AFC and PD-type
control scheme

MATLAB
programming

and
development of GUI

AFCANN

AFCAFL

AFCAIL

AFCAGA

Test and evaluate

End

Figure 1 Approach used in the study

JTDIS43A[05]new.pmd 02/15/2007, 15:5352

DEVELOPMENT OF A SOFTWARE FOR SIMULATING ACTIVE FORCE CONTROL 53

The gravitational term is not considered since the arm is assumed to move in a
horizontal plane. In the study, a rigid two-link planar manipulator is used as shown
in Figure 2.

4.0 ROBOT CONTROL

It is the ultimate aim of any robot control to ensure that the performance of the
system is in line with the desired command. In this case, the robot is instructed to
track specified trajectories accurately and robustly in the presence of disturbances.
Two types of feedback control methods relevant to the study, namely the PD control
and AFC shall be briefly described in the following sections.

4.1 Classical PD Control

The basic PD control algorithm of a robot system that described the actuated torque
at a joint is [1]:

q p dT K e K e= + (2)

 or () ()q p d d dT K K= − + −θ θ θ θ (3)

where
Kp and Kd : proportional and derivative gains respectively

 and e e : joint position error and its derivative respectively

 and dθ θ : desired joint position and velocity respectively

 and dθ θ : actual joint position and velocity respectively

A block digram of the PD control scheme applied to a robotic system is shown in
Figure 3.

Figure 2 A representation of a two-link planar manipulator

link 1

L1

L2

(x, y)

θ2

θ1

link 2

JTDIS43A[05]new.pmd 02/15/2007, 15:5353

MUSA MAILAH & POH YANG LIANG54

4.2 Active Force Control

Active Force Control (AFC) is a very robust control scheme first proposed by Hewit
and Burdess [3]. It is based on the well-known principle of invariance which relies
on estimated and measured values of the relevant parameters that can render a
dynamical system stable even in the presence of disturbances and uncertainties. The
schematic of such a scheme applied to robot control can be seen in Figure 4.
The notation used in Figure 4 is as follows:

Kp and Kd : PD controller gains
Ktn : motor torque constant
Ic : current command vector
Ia : compensated current vector
It : armature current for the torque motor

Figure 3 A PD robot control scheme

Desired
trajectory

Position
sensor

PD controller Actuator Robot arm

Actual
trajectory

Figure 4 AFC scheme applied to a robot arm

+

_

+ + ++

+

+ _

_

+ _

+
+

+
+Coordinate

transformation
IN/Ktn

Coordinate
transformation

Coordinate
transformation

Torque
sensor

Accelero-
meter

Ktn

1/Ktn

Kd

Kp

Td

TqItIc
1/H 1/s 1/s

IN

Td
*

Ia

 bar

bar

bar� �

� �

�

ref ref

�

θ θ θ θ

JTDIS43A[05]new.pmd 02/15/2007, 15:5354

DEVELOPMENT OF A SOFTWARE FOR SIMULATING ACTIVE FORCE CONTROL 55

H : modelled inertia matrix of the robot arm
IN : estimated inertia matrix of the robot arm
Td

* : estimated disturbance torque
Tq : applied torque
x and xbar : vectors of the actual and desired positions respectively in

Cartesian space
 and ref refxθ : reference acceleration vectors in joint and Cartesian space

respectively

In AFC, the important equation is as follows:

*
d qT T= − INθ (4)

The expression can be simplified as:

*
d tn tT K I= − INθ (5)

where

q tn tT K I= (6)

The main computational burden in AFC is the product of the estimated inertia
matrix (IN) with the angular acceleration of the arm before being fed into the AFC
feed forward loop. Apart from that, the output of the system (in Cartesian space)
needs to be computed from the joint angle space via forward kinematics operation.
A controller in the outer loop should be added to the AFC component, thereby
establishing an effective two degrees-of-freedom (DOF) controller. Normally, a classic
PD control in the outer loop would suffice. However, in the study, a modified PD
scheme is proposed here. It is known as resolved motion acceleration control
(RMAC) which could improve the overall performance of the control system by
providing a reference acceleration command [6]. RMAC is governed by the following
equation:

() ()ref bar bar barp dx x K x x K x x= + − + − (7)

Knowing that the performance of the AFC depends largely on appropriate value
of IN, the method to estimate this inertial parameter is of considerable importance.
Both conventional and intelligent methods of estimating IN are employed in the
study. The former utilises a heuristic approach by simply assuming suitable IN
value that is frequently based on modelled inertia matrix of the robot arm, H [3].
The latter method employs neural network (NN), fuzzy logic (FL), iterative learning
(IL) and genetic algorithm (GA). The implementation of the intelligent schemes
shall be described individually in the next sections.

JTDIS43A[05]new.pmd 02/15/2007, 15:5355

MUSA MAILAH & POH YANG LIANG56

4.3 Active Force Control and Neural Network (AFCANN)

Neural network as an artificial intelligence (AI) technique has been known to have
capability in approximating any arbitrary non-linear function to an acceptable degree
of accuracy [13]. Generally, the basic structure of the network consists of a series of
three layers that correspond to the input-hidden-output layers. Each layer possesses
a number of neurons which are interlinked and interconnected with biases and
weights assigned. Together, they form parallel processing units. Network with biases,
a sigmoid layer and a linear output layer is capable of approximating any function
with finite number of discontinuities. It is either trained through supervised or
unsupervised learning procedure.

In the study, a multilayer feed-forward neural network with an error back
propagation (BP) algorithm (a type of supervised learning method) was used to
estimate the IN. The structure assumes a 2-5-2 configuration which corresponds to
the number of neurons (nodes) in the input-hidden-output layers respectively [6].
The input variables are the joint positions, θ of the robot arm while the output is the
computed IN. The implementation of the neural network was accomplished in two
phases, namely the off-line training and the on-line implementation. The network
was first trained off-line using a set of training data comprising 300 input-output pair
prior to the on-line implementation of the neural network in the AFC scheme. The
trained network resulted in the computation of fixed network weights and biases
that are needed for the on-line phase. Figure 5 shows the neural network architecture
used in the study.

The BP learning rule was used to adjust the weight and biases of the networks in
order to minimize the sum-squared error (SSE) of the network. This is accomplished

Figure 5 A multi layer feed forward neural network with a 2-5-2 configuration

Input Output

JTDIS43A[05]new.pmd 02/15/2007, 15:5356

DEVELOPMENT OF A SOFTWARE FOR SIMULATING ACTIVE FORCE CONTROL 57

by continually changing the value of the network weights and biases in the direction
of the descent with respect to error.

SSE can be expressed as

()2
dSSE y y= −∑ (8)

where
yd : desired output vectors
y : actual output vector

The weight adaptation mechanism with momentum factor and learning rate in
the BP algorithm can be mathematically described as follows [14]:

() () () () ()1c c rW i , j m W i , j m l d i p j∆ = ∆ + − (9)

where
∆W : weight change matrix
lr : learning rate
mc : momentum constant
d : delta vector (derivatives of error vector)
p : current input vector

BP algorithm, sometimes known as the gradient descent method with momentum,
consists of changing or adjusting each weight connection proportionally to the
generated error in the direction that decreases the error as rapidly as possible. The
amount of adjustment is governed by two control parameters: the learning rate and
momentum constant. The fully trained neural network can be treated as a black box
for the on-line implementation and computation of the ‘optimised’ IN. The box is
directly embedded into the AFC scheme to estimate IN during the actual operation
of the robot arm. The incorporation of the neural network mechanism in the
AFCANN scheme is shown schematically in Figure 6.

4.4 Active Force Control and Fuzzy Logic (AFCAFL)

Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to
handle the concept of partial truth-truth values between ‘completely true’ and
‘completely false’. The basic fuzzy logic concept is as shown in Figure 7.

The first step of the fuzzy logic is fuzzification in which crisp input values are
transformed into fuzzy input involving the construction of suitable membership
functions representing the fuzzy sets. For the robot arm under consideration, this
corresponds to the sets of joint positions and inertia matrix of the arm. After that, the
process of rules evaluation normally in the form of linguistic statements (if-then rules

JTDIS43A[05]new.pmd 02/15/2007, 15:5357

MUSA MAILAH & POH YANG LIANG58

or Boolean rules) to determined the dynamics of the controller as a response to the
given fuzzy inputs. It is then passed through a defuzzification process using an
averaging technique to produce crisp output values. The centroidal or centre of
gravity method is described by the following equation:

()

()
X

X

x .xdx
x

x dx

µ
=

µ
∫
∫ (10)

The method is graphically depicted in Figure 8.

Figure 7 Fuzzy concept

Crisp input

Fuzzification

Rules evaluation

Defuzzification

Crisp output

Figure 6 The AFCANN control scheme

+ + ++

+

+ _

_

+ _

+
+

+
+Coordinate

transformation
IN/Ktn

Coordinate
transformation

Coordinate
transformation

Torque
sensor

Accelero-
meter

Ktn

1/Ktn

Kd

Kp

Td

TqItIc
1/H 1/s 1/s

IN

Td
*

Ia

 bar

bar

bar� �

� �

�

Neural
network

refref

�

θ θ θ θ

JTDIS43A[05]new.pmd 02/15/2007, 15:5358

DEVELOPMENT OF A SOFTWARE FOR SIMULATING ACTIVE FORCE CONTROL 59

The completely designed fuzzy logic component can then be treated like a black
box as shown in Figure 9. Note that the input of the black box is the vector of joint
positions and the output being the inertia matrix.

Once the FL black box is appropriately designed, it can be directly embedded
into the AFC loop to estimate INININININ as depicted in Figure 10.

Figure 8 Centroidal method

µµµµµX

x
–

x

Figure 9 Fuzzy logic black box

FL
black box

INθ

Figure 10 AFCAFL control scheme

+ + ++

+

+ _

_

+ _

+
+

+
+Coordinate

transformation
IN/Ktn

Coordinate
transformation

Coordinate
transformation

Torque
sensor

Accelero-
meter

Ktn

1/Ktn

Kd

Kp

Td

TqItIc
1/H 1/s 1/s

IN

Td
*

Ia

ref bar

bar

bar

Fuzzy
logic

� �

� �

�

ref

�

θ θ θ θ

JTDIS43A[05]new.pmd 02/15/2007, 15:5359

MUSA MAILAH & POH YANG LIANG60

4.5 Active Force Control and Genetic Algorithm (AFCAGA)

Genetic algorithm (GA) search method is based in the mechanism of evolution and
natural genetics. GAs generate a sequence of population using selection and search
mechanisms involving the process of crossover and mutation. GA operates on a
population of potential solutions applying the principle of survival of the fittest to
produce better and better approximations to a solution. At each generation, a new
set of approximations is created by process of selecting individuals according to
their level of fitness in the problem domain and breeding them together using
operators borrowed from natural genetics. This process leads to the evolutions of
populations of individuals that are better suited to the current environment then the
individual that were created from, just as in natural adaptation.

Figure 11 shows a flow chart on how this algorithm works. To use a GA, a solution
must be presented to the problem as a genome (or chromosome). The genetic
algorithm then creates a population of solutions and applies genetic operators such
as mutation and crossover to evolve the solutions in order to find the best one(s). In
this case, track error will be feed into the algorithm to search for a better IN for the
AFC schemes as shown in Figure 12.

In GA, fitness function has been chosen to evaluate the objective function using
equation.

Figure 11 Structure of a single population evolutionary algorithm

Start

Generate initial
population

Evaluate
objective function

Are optimization
criteria met?

No

Mutation

Best
individual

Result

Yes

Recombination

Selection

Generate new
population

JTDIS43A[05]new.pmd 02/15/2007, 15:5360

DEVELOPMENT OF A SOFTWARE FOR SIMULATING ACTIVE FORCE CONTROL 61

Fitness function,

1
1

f
E

=
+ (11)

where,

()
0

t

t

E e t
=

= ∑
E : sum of the track error from rest to the completion of a full circular

trajectory

Figure 13 shows the proposed AFCAGA control scheme and the way GA
component is embedded into the control strategy as the IN estimator.

Figure 12 GA for optimizing INININININ

GA INe

AFC

Figure 13 AFCAGA control scheme

+ + ++

+

+ _

_

+ _

+
+

+
+Coordinate

transformation
IN/Ktn

Coordinate
transformation

Coordinate
transformation

Torque
sensor

Accelero-
meter

Ktn

1/Ktn

Kd

Kp

Td

TqItIc
1/H 1/s 1/s

IN

Td
*

Ia

ref bar

bar

bar

GA
� �

�

�

ref�

�

θ θ θ θ

JTDIS43A[05]new.pmd 02/15/2007, 15:5361

MUSA MAILAH & POH YANG LIANG62

4.6 Active Force Control and Iterative Learning (AFCAIL)

From the word ‘iterative’, it is understood that the work is done again and again,
over and over again. Through the iteration process, the intelligent will improve itself
and reduce the error. Arimoto and co-workers are the first to propose iterative
learning method to robot control. As the number of iteration, k(t) increases, k→∞,
for t∈[0,tstop], the track error, e converge to zero. One of the learning algorithms
proposed by Arimoto et al. is as follows [6]:

1k k k

d
y y e

dt+
 = + + Γ
φ (12)

where,
yk+1 : next step value of the output
yk : current output value
ek : current positional error input given by ek = xd – xk

φ and Γ : suitable constants or learning parameters.

This expression can be simply called the proportional-derivative or PD type learning
algorithm. In AFC, the above algorithm can be slightly change to suit the application
and is given as follows:

1k k k

d
TE

dt+
 = + + Γ

IN IN φ (13)

where,
INk+1 : next step value of the output
INk : current output value
TEk : current positional error input given by ()2

k kTE x x= Σ −
φ and Γ : suitable constants or learning parameters

The implementation of AFCAIL to a robot arm is shown in Figure 14. The box
(shown in dashed lines) represents the most important part of the proposed scheme,
which integrates AFC and the learning algorithm.

5.0 DESIGN CONSIDERATION IN SOFTWARE
DEVELOPMENT

Prior to the development of the computer program (software), four major aspects
related to the design criterion of the software need to be examined. The first is on
the proposed external designed features of the program while the rest are concerned
with the inner specifications of the proposed robot control schemes:

JTDIS43A[05]new.pmd 02/15/2007, 15:5362

DEVELOPMENT OF A SOFTWARE FOR SIMULATING ACTIVE FORCE CONTROL 63

+ + ++

+

+ _

_

+

+
+

+
+

+ _

+

+

(1) Software features
The software should be PC Window-based and designed in such a manner that
it exhibits a user-friendly and interactive environment accomplished through
the use of a GUI technique. It should also feature easy-to-use menu driven
facility (with push-button feature) and sufficient on-line assistance with appropriate
error messages prompting. The clicking operation of the pointing device, i.e.
mouse to execute the selected control scheme should be minimal. The graphics
should be simple, clear and appealing. The software should also offer adequate
flexibility in dealing with changes to the system synonymous to an open-
architecture design. In other words, the user can customize part of the system
to include desired functions and additional features. On top of that, the graphical
simulation results should be made available on-line through the computer screen
for instant observation and analysis.

(2) AFC schemes
There are various AFC schemes involved, namely the ‘pure’ AFC, AFCANN,
AFCAFL, AFCAGA and AFCAIL. The schemes were largely based on the
method that is used to estimate the inertia matrix of the robot arm. Thus, the
design of the program should take into account the capability of the program to
provide users to readily select the scheme/s he wish to apply in simulating the
desired robot control. In addition to that, a PD-type control scheme is also
deliberately included due to the fact that it (or its variant) is coupled with all the
AFC schemes. Pure PD control scheme is incorporated into the program for
the purpose of benchmarking.

Figure 14 AFCAIL control scheme

Coordinate
transformation

IN/Ktn

Coordinate
transformation

Coordinate
transformation

Torque
sensor

Accelero-
meter

Ktn

1/Ktn

Kd

Kp

Td

TqItIc
1/H 1/s 1/s

INk

Td
*

Ia

ref bar

bar

bar

ref

� �

�

�

�

�

TEk

d/dt Γ

Φ

θ θ θ θ

INk+n

JTDIS43A[05]new.pmd 02/15/2007, 15:5363

MUSA MAILAH & POH YANG LIANG64

(3) Operating conditions
In this part of the program, the user shall state the desired operating conditions.
These include parameters such as the robot’s end-point velocity, simulation
parameters (starting and stopping times, step size and integral algorithm),
controller gains, initial conditions and parameters related to the respective
intelligent mechanisms (learning parameters, momentum constant, error goals
etc.). The design should also consider appropriate default values for all the
parameters to assist new users in particular.

(4) Loading conditions
The loading conditions relate to the manipulation of specific forces/torques
that are prevalent (either deliberate or otherwise) in the robot system. These
include all forms of external disturbances and payload mass at the robot’s end-
effector. In the developed program, it is expected that the user will define the
specific type of disturbances acting on the robot arm. In the study, constant
applied force, linear spring force, harmonic force, pulsating force and the hybrids
(combination) were modelled and can be readily selected for the simulation
work. It should also be noted that all motors employ direct drive transmission
and hence no gear ratios were ever considered. In addition, the friction effects
were not explicitly modelled in the study. In any case, it is expected that the
AFC scheme should be able to counteract most of the inherent or applied
disturbances including friction. However, future works could include this model
and others.

5.1 Parameters Handling

A number of parameters related to the execution of the control schemes have to be
clearly identified before the simulation study. These are the simulation parameters,
robot physical parameters, intelligent (learning) parameters, controller gains and
disturbance models parameters. It should be emphasised that some of the parameters,
specifically the robot parameters such as the link’s length should not be changed
because they are directly related to the trajectory of the system and hence, they
should be considered as fixed default values. The identified parameters considered
in the software are listed as follows:

(1) Robot parameters (in all schemes)
• Link length: L1, L2 (defined and fixed by program)
• Link mass: m1, m2
• Motor mass, mot11, mot21

(2) Controller parameters (in all schemes)
• Controller gain, Kp, Kd
• Motor torque constant, Ktn

JTDIS43A[05]new.pmd 02/15/2007, 15:5364

DEVELOPMENT OF A SOFTWARE FOR SIMULATING ACTIVE FORCE CONTROL 65

(3) Operating conditions (in all schemes)
• Tangential velocity, Vcut
• Stopping time, tstop

(4) Simulation solver (in all schemes)
• ode23

(5) Iterative learning parameters (in AFCAIL)
• Proportional term, φ
• Derivative term, Γ

(6) Neural network parameters (in AFCANN)
• Number of neuron, nl
• Display frequency, df
• Maximum epochs, me (defined by program)
• Error goal, eg
• Learning rate, lr
• Momentum constant, mc

(7) Fuzzy logic parameters (in AFCAFL)
• List of rules set in the fuzzy controller
• Inference mechanism

(8) Genetic algorithm parameters (in AFCAGA)
• Number of generation
• Crossover probability (defined by program)
• Mutation rate (defined by program)
• Genes per parameter

(9) Disturbance models parameters
• Constant torque, Td
• Constant force, F
• Payload mass, Fm
• Spring force, Fk
• Harmonic force, Fh
• Pulsating force, Fp
• No force, Fo

Note that, most of the parameters can be customised and experimented unless
hence or otherwise stated. However, suitable default values were pre-defined in the
program to assist new users. Part of the program related to these parameters can be
observed in Figure 15.

JTDIS43A[05]new.pmd 02/15/2007, 15:5365

MUSA MAILAH & POH YANG LIANG66

Figure 15 Program showing parameters that can be customised by user

%User’s input
mass(1)=eval(get(h_mass1,’string’));
mass(2)=eval(get(h_mass2,’string’));
Kp(1)=eval(get(h_kp1,’string’));
Kp(2)=eval(get(h_kp2,’string’));
Kd(1)=eval(get(h_kd1,’string’));
Kd(2)=eval(get(h_kd2,’string’));
Kc(1)=eval(get(h_kcval,’string’));
Kc(2)=eval(get(h_kcval,’string’));
Ktn(1)=eval(get(h_ktn,’string’));
Ktn(2)=eval(get(h_ktn,’string’));
H11=eval(get(h_h11,’string’));
H22=eval(get(h_h22,’string’));
Vcut=eval(get(h_vc,’string’));
tstop=eval(get(h_tstop,’string’));

5.2 Development of the Graphic User Interface

As a guide on how the GUI part of the software functions, consider the flow chart as
shown in Figure 16. The very first thing to consider is to assign names to the current

Figure 16 A flow chart on creating the GUI figure

Assign handles to objects and
initial values of parameters

Declare global
variables

Start

Create frames

Generate static text

Assign handles to
unicontrol

Initialise
figure

Setting the CallBack

Stop

JTDIS43A[05]new.pmd 02/15/2007, 15:5366

DEVELOPMENT OF A SOFTWARE FOR SIMULATING ACTIVE FORCE CONTROL 67

files as ‘functions’ so that MATLAB knows that the respective file is a function. After
that, all the relevant variables need to be declared as global variables, so that the
linking within function’s workspace and the base workspace is firmly established. A
number of ‘handling elements’ or ‘handles’ then need to be assigned so that
manipulation of the functions can be conveniently performed. All these handles are
directly involved in creating real-time objects like ‘sliders’ and ‘check boxes’ (that
can cause changes of the variables graphically). For example, the changes made on
the sliders will result in the corresponding changes in the editable text (field). Next,
the values of the relevant parameters have to be assigned or defined. All values can
be considered as default values with a number of them deliberately made fixed and
can not be manipulated by the user. Consequently, specified figure based on previous
sequence of operation can be generated by creating suitable frames, generating
static text and assigning handles to the user interface control (uicontrol). Finally, a
procedure called ‘setting the CallBack’ is performed and is described in greater
detail in the following section.

Figure 17 shows an application of the uicontrol functions written in the program.

constant=get(handles(3),’value’);
if constant == 1;
A=eval(get(h_c11,’string’));

uicontrol(h_figsta,...
‘unit’,’normalize’,...
‘position’,[.22 .7 .2 .25],...
‘style’,’text’,...
‘string’,’constant force’);

uicontrol(h_figsta,...
‘unit’,’normalize’,...
‘position’,[.42 .7 .1 .25],...
‘style’,’text’,...
‘string’,A);

uicontrol(h_figsta,...
‘unit’,’normalize’,...
‘position’,[.52 .7 .05 .25],...
‘style’,’text’,...
‘string’,’N’);

else
A=0;
end

Figure 17 Part of the MATLAB program involving uicontrol functions

JTDIS43A[05]new.pmd 02/15/2007, 15:5367

MUSA MAILAH & POH YANG LIANG68

5.2.1 Setting the CallBack

CallBack is the logic statement and command in a MATLAB based program. The
algorithms and command that need to be executed is written as CallBack function
or routine. CallBack is the key or central element of the program that makes the
program works appropriately. In the software development related to the study, the
CallBack routines serve to gather and assign values to parameters, start the simulation,
and other related commands used to create real-time uicontrols. As an example, in
one of the created figures (windows), there is a push-button labelled as ‘simulate
now!’ located somewhere at the right bottom corner of the figure. This push-button
plays an important role in the execution of the software. The CallBack set for this
uicontrol contains most of the execution commands. This pushbutton is created with
statements such as the one shown in Figure 18.

When this push-button is pressed, the related CallBack function will be executed.
There are a number of operations that are carried out when this part of program is
activated. They are generating additional sub-figure, gathering the users’ input
parameters, setting the simulation model’s solver and finally, starting the simulation.

5.3 Execution Procedure of the Software

The execution procedure of the software follows the sequence as shown in Figure
19. At the beginning stage, the user needs to call the program from the first command
(main) window displayed on the computer screen by running the a batch file called
runafc which would in turn execute the intermediate script file. This script file declares
the relevant variables as global variables at the base workspace and is ‘hidden’ from
the users. Subsequently, this script file will call on the GUI function file. A window
in the form of a figure showing a menu of push-buttons shall then appear on the
screen as shown in Figure 20. In this window, the user can choose the desired
robotic control scheme (APDC, AFC, AFCAIL, AFCANN, AFCAIL or AFCAGA)
by simply clicking the mouse onto the selected push-button representing the control
scheme.

Figure 18 Example on the use of the CallBack routine

 h_sim=uicontrol(h_fig,...
‘unit’,’normalized’,...
‘position’,[.7 .03 0.13 0.05],...
‘style’,’pushbutton’,...
‘string’,’simulate now!’,...
‘callback’,’afc(‘’sim’’)’);

JTDIS43A[05]new.pmd 02/15/2007, 15:5368

DEVELOPMENT OF A SOFTWARE FOR SIMULATING ACTIVE FORCE CONTROL 69

Once the button is pressed for the desired control scheme, another figure shall
appear as shown in Figure 21. For the AFC scheme that utilises crude approximation
technique, the figure displays a number of relevant parameters with their
corresponding fields (in white boxes) containing the default values of the parameters
that may be edited by the user. Thus, the user is free to key-in the data (parameters)
for the selected system apart from the default values. These include the robot

Figure 19 A flow chart showing execution procedure of the software

Main window Intermediate
script file

Gui function file

runafc

testapdc

testafc

testail

testann

testafl

testaga afcaga

afcafl

afcann

afcail

afc

apdc

Figure 20 First figure (window) generated upon execution of the runafc command

JTDIS43A[05]new.pmd 02/15/2007, 15:5369

MUSA MAILAH & POH YANG LIANG70

parameters, operating and loading conditions. Oblivious to the user, these input
values (data) will be assigned and transferred to the MATLAB/SIMULINK
environment through a latent operation.

Consequently, the simulation will be executed if the ‘simulate now!’ button is
pressed. The user can now observe and at the same time analyse the simulation
result on-line through a series of graphs displayed on the screen. If he/she desires to
try another AFC scheme, the window has to be closed and the initial procedure of
selecting a different scheme may be repeated. Figure 22 shows an example of the
on-line graphical results arranged in tile mode during the execution of the program.

The uicontrol elements used in the generation of the figures largely comprise push-
buttons, editable texts, static texts, sliders and pop-up menus. All the uicontrol elements
have been suitably chosen according to the design requirements of the proposed
GUI program. In general, most of the figures for all the schemes look similar. The
differences can be seen through the application of different parameters required for
the intelligent algorithms and the default values for the relevant parameters.

6.0 CONCLUSION

All the robotic control schemes (the AFCs, in particular) have been successfully
integrated into a single computer program that is interactive, user-friendly and flexible.
The developed software employs graphic user interface technique that produces a
series of customised figures that are very easy to use and manipulate. The interlinking
of the individual robotic control models is found to be smooth and transparent. The

Figure 21 Figure generated for the AFC (with crude approximation method) scheme

JTDIS43A[05]new.pmd 02/15/2007, 15:5370

DEVELOPMENT OF A SOFTWARE FOR SIMULATING ACTIVE FORCE CONTROL 71

Figure 22 On-line graphical results observed during the execution of the program

program is flexible due to the fact that the user can readily experiment with the
chosen system by manipulating the values of the parameters. Later, the user can
simultaneously observe and analyse the results on-line through the graphic capability
of the software while the program is still running. In this way, a comparative study
between the schemes can be performed easily and fast. In future, more control
schemes can be added into the software and other relevant features duly enhanced.

ACKNOWLEDGEMENTS

We would like to thank the Malaysian Ministry of Science and Technology and the
Innovation (MOSTI) and Universiti Teknologi Malaysia (UTM) for their continuous
support in the research work. This research was fully supported by an Intensified
Research on Priority Areas (IRPA) grant (03-02-06-0038EA067)

REFERENCES
[1] Craig, J. 1986. Introduction to Robotics: Mechanics and Control. Second Edition. Addison-Wesley Publishing

Co.

JTDIS43A[05]new.pmd 02/15/2007, 15:5371

MUSA MAILAH & POH YANG LIANG72

[2] Hewit, J. R., and J. S. Burness. 1981. Fast Dynamics Decoupled Control for Robotics Using Active Force
Control. Mechanism and Machine Theory. 16(5): 535-545

[3] Hewit, J. R., and J. S. Burness. 1986. An Active Method for the Control of Mechanical Systems in The
Presence of Unmeasurable Forcing. Transactions on Mechanism and Machine Theory. 21(3): 393-400.

[4] Hewit, J. R., and K. B. Marouf. 1996. Practical Control Enhancement via Mechatronics Design. IEEE
Transactions on Industrial Electronics. 43(1): 16-22.

[5] Meeran, S., M. Mailah, and J. R. Hewit. 1996. Active Force Control Applied To A Rigid Robot Arm,
Jurnal Mekanikal. II: 52-68.

[6] Mailah, M. 1998. Intel ligent Active Force Control of a Rigid Robot Arm Using Neural Network and Iterative
Learning. PhD Thesis. University of Dundee.

[7] Rahim, N. I., and M. Mailah. 2000. Intelligent Active Force Control of A Robot Arm Using Fuzzy Logic,
IEEE International Conference on Intelligent Systems and Technologies (TENCON 2000). II: 291-297.

[8] Wong, M.Y., M. Mailah, and H. Jamaluddin. 2002. Intelligent Active Force Control A Robot Arm Using
Genetic Algorithm. Jurnal Mekanikal. 13: 50-63.

[9] Mailah, M., and J. R. Hewit. 2000 A Comparative Study of the Active Force Control Scheme Applied To
A Robot Arm. Jurnal Teknologi. 32(A): 1-22.

[10] Mailah, M. 1999. Trajectory Track Control of a Rigid Robotic Manipulator Using Iterative Learning
Technique and Active Force Control. Proceedings of World Engineering Congress on Robotics and
Automation. 107-114.

[11] Mailah, M. 2000. Experimental Implementation of Active Force Control and Iterative Learning Technique
to Control A Robot Arm. Elektrika. 3(1): 14-26.

[12] Marchand, P. 1996. Graphic and GUIs with MATLAB. New York: CRC Press.
[13] Hornik, K., M. Stinchcombe, and H. White. 1989. Multilayer Feedforward Networks Are Universal

Approximators. Neural Networks. 2: 359-366.
[14] Demuth, and Beale, D. 1994. The Neural Network Toolbox for Use with MATLAB. The Math Works Inc.

JTDIS43A[05]new.pmd 02/15/2007, 15:5372

