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ABSTRACT 

 Stability of a ground vehicle is dependent on its aerodynamic characteristics 
when encountered by sudden crosswind disturbances. Aerodynamic side force and yaw 
moment have been identified as the main influence on the sensitivity of a vehicle 
towards crosswind, which is largely shape related. A reliable identification technique is 
a prerequisite to estimate the aerodynamic side force and the yaw moment. One of the 
recent techniques in wind-tunnel testing is the use of a pure yawing motion test rig to 
simulate the transient behavior of a simple vehicle model in crosswind condition. 
Adapting the stiffness and damping approach, the lateral aerodynamic derivatives are 
evaluated from the identified system’s frequency and damping of a pure yawing motion. 
This research explores the alternative identification technique apart from the 
conventional method of using a spectral density plot to identify the system’s frequency 
and the logarithmic decrement of peak amplitude for estimating the system’s damping 
from a recorded impulse response data. The present study aims to design a multilayer 
feedforward neural network to carry out the estimation of natural frequency and 
damping ratio trained with the Bayesian Regularization training algorithm. The network 
properties studied are necessary to give insight on the optimum network architecture, the 
suitable input representation and the effect of noise. The possibility of using principal 
component analysis technique for reducing the network input dimension has also been 
explored. The results show that the neural network is able to approximate the natural 
frequency and the damping ratio of an impulse response data and also the ability of the 
network to handle noisy input data. The application of principal component analysis 
technique has been shown to reduce the network input dimension while maintaining 
good estimation results and shortening the network training period. This study 
demonstrates that the identification of the frequency and the damping of the system can 
be done using neural network and can be applied to any other similar systems. 
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ABSTRAK 

Kestabilan kenderaan darat bergantung kepada ciri aerodinamiknya apabila 
berhadapan dengan gangguan angin lintang mengejut. Daya sisi aerodinamik dan 
momen rewang aerodinamik adalah pengaruh utama yang menentukan kepekaan 
kenderaan terhadap angin lintang dan nilainya berkait dengan bentuk kenderaan. Satu 
teknik yang boleh diharap bagi mengenalpasti nilai daya dan momen aerodinamik 
merupakan satu prasyarat. Salah satu teknik terkini dalam ujian terowong angin adalah 
penggunaan rig pergerakan rewang tulen untuk menyelakukan kelakuan fana model 
ringkas kenderaan dalam keadaan angin lintang. Menggunakan pendekatan kekakuan 
dan peredaman, nilai terbitan aerodinamik sisi diperolehi daripada nilai kekakuan dan 
redaman sistem tersebut. Penyelidikan ini meneroka teknik pengenalpastian alternatif 
selain daripada teknik lazim yang mana nilai kekakuan dikenalpasti menerusi 
penggunaan plot ketumpatan spektral dan nilai redaman diperolehi daripada teknik 
penyusutan logaritma amplitud puncak. Kaedah pengenalpastian ini adalah berdasarkan 
sambutan dedenyut sistem tersebut yang telah direkodkan. Kajian ini bertujuan untuk 
menghasilkan rangkaian neural suap depan berbilang lapis untuk mengenalpasti nilai 
frekuensi tabii dan nisbah redaman yang dilatih dengan algoritma Penyusunan Semula 
Bayesian. Sifat rangkaian neural yang dikaji adalah perlu untuk memberi gambaran bagi 
menghasilkan seni bina rangkaian yang optimum, perwakilan masukan yang sesuai, dan 
kesan hinggar. Kajian ini juga mengkaji kemungkinan penggunaan teknik analisis 
komponen utama bagi mengurangkan dimensi masukan rangkaian neural. Hasil kajian 
menunjukkan bahawa rangkaian neural boleh menganggarkan nilai frekuensi tabii dan 
nisbah redaman sambutan dedenyut dan ia juga boleh mengendalikan data masukan 
yang dipengaruhi oleh hingar. Penggunaan analisis komponen utama pula boleh 
mengurangkan dimensi masukan rangkaian neural sementara mengekalkan nilai 
anggaran yang baik dan memendekkan tempoh latihan. Kajian ini telah menunjukkan 
kaedah pengenalpastian frekuensi dan redaman sesuatu sistem oleh rangkaian neural dan 
ia boleh diaplikasikan kepada sistem lain yang setara. 
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CHAPTER 1 

1. INTRODUCTION 

1.1 Motivation  

Crosswind stability is an important area of study in vehicle aerodynamic design 

for it leads to safety issues. The main concern in aerodynamic design for years has been 

concentrated on reducing the drag for fuel efficiency. Later on, it was found that the 

streamlined vehicle shapes are sensitive to crosswind disturbance. The styling trend 

towards rounder shapes especially at the rear of the vehicles and a continuing reduction 

in aerodynamic drags are suspected to contribute to the crosswind sensitivity (Howell, 

1993).     

The theoretical and computational fluid dynamic methods have yet to prove their 

reliability in investigating the vehicle behavior in crosswind disturbance and ground 

vehicle aerodynamicist resorts to the experimental techniques where wind-tunnel testing 

has been widely used to simulate the transient condition. The primary motivation to this 

work is to design an alternative parameter identification technique to estimate ground 

vehicle’s aerodynamic derivatives. One of the early uses of parameter estimation was to 

validate wind tunnel or analytical predictions of aircraft stability and control derivatives 

(Ming-Der, 1990). Quantitative analysis of ground vehicle stability and its handling 

qualities make direct use of these parameter estimates. Thus, it is important to have a 

reliable parameter identification technique for these analyses.  
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1.2 Problem Statement 

The oscillating test rig for wind tunnel testing that has been developed by 

Mansor (2006) managed to capture the transient response of a simple automotive body 

type in crosswind disturbances. The following mathematical analysis of the oscillating 

test rig model enables the determination of aerodynamic derivatives from the system’s 

stiffness and damping which are governed by the natural frequency and damping ratio 

and was identified in a conventional manner. Conventional method uses an indirect 

manner of identifying the aerodynamic derivatives where the damping ratio is calculated 

from the time to half amplitude and frequency is obtained from peak-picking method 

based on power spectral density calculation.  

In the current work, a multilayer neural network was developed to carry out the 

function approximation task where the natural frequency and damping ratio is 

approximated based on the recorded impulse time response data. The study investigates 

the effectiveness of neural network with respect to input representation to the network, 

the network architecture, the training samples distribution and size, and the application 

of principal component analysis in reducing the size of the network input dimension. 

The estimated natural frequency and damping ratio from the designed network is used to 

calculate the aerodynamic derivatives and the results were compared with the derivatives 

retrieved through conventional identification process. To validate both techniques, 

impulse responses were generated from the model systems transfer function and the 

generated data were compared with the response actually recorded during wind tunnel 

test. 

1.3 Research Objectives 

The first objective of this research work is to design an alternative identification 

scheme for identification of ground vehicle’s aerodynamic derivatives. The work 
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proposes on the use of an artificial neural network that can identify the natural 

frequency and damping ratio given the impulse response of the automotive body 

recorded from the oscillating test rig. Secondly, this neural network approach is aimed to 

provide an alternative identification technique in identifying the natural frequency and 

damping ratio. The performance from both techniques; conventional and neural network, 

are compared. Through a modern computational approach, the steps in the identification 

process in estimating the modal parameters are tried to be reduced.  

The properties of the network had been studied to construct the optimum design 

of neural network that can give a good estimation of damping ratio and natural 

frequency. In this identification work, the aerodynamic damping that acted on the bluff 

body is considerably low and it is crucial that the designed network should be able to 

give good estimation values. In addition, the network should be able to generalize well 

since all the response measured during the wind tunnel test are of arbitrary pair of 

natural frequency and damping ratio that have not been encountered by the network 

during the training process.  

To optimize the network size which is proportional to the number of input nodes, 

the proper input representation to the network had been investigated. This work explores 

on the possibility of introducing the application of principal component analysis in 

reducing the number of input nodes to the network. The well used technique in the 

pattern recognition using the neural network were extended to the function 

approximation application since this identification process was conducted offline based 

on the past recorded time response.   

1.4 Research Methodology 

The estimation of the aerodynamic derivatives was based on the time response 

data recorded during the dynamic wind tunnel test conducted by Mansor (2006). The 
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impulse response was recorded within the linear range of oscillation (below ±20°) and 

within the frequency range of influence to the vehicle’s crosswind sensitivity given by 

the reduced frequency of 0.09 - 0.9. The estimation was based on the response amplitude 

range from 10° to 1° as the range has lesser significant effect from the initial release and 

the influence of noise.   

The estimation of the aerodynamic derivatives are based on the identification of 

the frequency and damping of the measured response. The identification process was 

carried out with two identification tools; the conventional technique and the multilayer 

neural network as in Figure 1.1. These two identification tools were used to identify the 

natural frequency and damping ratio from the measured impulse response data. The 

aerodynamic derivatives were calculated using the identified parameters and the results 

from both approaches were compared.   

For the neural network approach, a multilayer feedforward neural network 

(MLNN) was first trained using the training data that were generated from the standard 

second order systems transfer function. The neural network was trained in an inverse 

system method using the Bayesian regularization training algorithm. Two methods of 

input representation were introduced. The first representation is in the form of standard 

plot of a second order system while the second representation consists of the whole 

impulse response input to the network. In optimizing the size of input nodes in the 

second representation, principal component analysis was used. The neural network 

properties were investigated before the proper network architecture was selected. The 

network was trained in an iterative process until the network output coincides with the 

targeted output. Figure 1.2 shows the training process for the two input representation 

method.     
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Figure 1.1 Overall research process 
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Figure 1.2 Training process of the MLNN 
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1.5 Scope of work 

The current research work is limited to the following: 

(i) Using available experimental data. The data was generated from a free 

oscillation test using an oscillating test rig to capture the transient behavior of a 

simple model in crosswind.  

(ii) The identification of yaw moment and side force derivatives for ground vehicle 

in crosswind. The derivatives value gives the rate of change of aerodynamic 

force or moment acting on the body with respect to yaw angle.  

(iii) Identification based on damped response of a second order system given that the 

system is of pure yawing motion of a single degree of freedom system.  

(iv) The damping ratio range is between 0.001-0.1 and natural frequency ranges from 

2.5-26.5 rad/s.  

(v) Using a multilayer feedforward neural network. 

(vi) Training algorithm: Bayesian Regularization. 

1.6 Organization of the thesis 

This thesis is divided into 6 main chapters. The introduction in this chapter is 

aimed to give some background on the research work. The purpose of the study and the 

methodology used to achieve the research objective is described and the thesis content is 

overviewed. The previous research work related to the study is presented in Chapter 2. 
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